1
|
Gao D, Abdullah S, Baldwin T, Caspersen A, Williams E, Carlson A, Petersen M, Hu G, Klos KE, Bregitzer P. Agrobacterium-mediated transfer of the Fusarium graminearum Tri6 gene into barley using mature seed-derived shoot tips as explants. PLANT CELL REPORTS 2024; 43:40. [PMID: 38244048 PMCID: PMC10799836 DOI: 10.1007/s00299-023-03129-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/08/2023] [Indexed: 01/22/2024]
Abstract
KEY MESSAGE We transferred the Tri6 gene into the elite barley GemCraft via new transformation method through shoot organogenesis and identified the rearrangements of transgenes and phenotypic variations in the transgenic plants. Despite its agronomic and economic importance, barley transformation is still very challenging for many elite varieties. In this study, we used direct shoot organogenesis to transform the elite barley cultivar GemCraft with the RNAi constructs containing Tri6 gene of Fusarium graminearum, which causes fusarium head blight (FHB). We isolated 4432 shoot tips and co-cultured these explants with Agrobacterium tumefaciens. A total of 25 independent T0 transgenic plants were generated including 15 events for which transgene-specific PCR amplicons were observed. To further determine the presence of transgenes, the T1 progenies of all 15 T0 plants were analyzed, and the expected PCR products were obtained in 10 T1 lines. Droplet digital (dd) PCR analysis revealed various copy numbers of transgenes in the transgenic plants. We determined the insertion site of transgenes using long-read sequencing data and observed the rearrangements of transgenes. We found phenotypic variations in both T1 and T2 generation plants. FHB disease was evaluated under growth chamber conditions, but no significant differences in disease severity or deoxynivalenol accumulation were observed between two Tri6 transgenic lines and the wildtype. Our results demonstrate the feasibility of the shoot tip transformation and may open the door for applying this system for genetic improvement and gene function research in other barley genotypes.
Collapse
Affiliation(s)
- Dongying Gao
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA.
| | - Sidrat Abdullah
- Oak Ridge Institute for Science and Education (ORISE) Research Participant, Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Thomas Baldwin
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108, USA
| | - Ann Caspersen
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Edward Williams
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Alvar Carlson
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Mike Petersen
- Wisconsin Crop Innovation Center, University of Wisconsin-Madison, Middleton, WI, 53562, USA
| | - Gongshe Hu
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Kathy Esvelt Klos
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| | - Phil Bregitzer
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, Aberdeen, ID, 83210, USA
| |
Collapse
|
2
|
Matthew L, Reyes MEC, Mann CWG, McDowall AW, Eamens AL, Carroll BJ. DEFECTIVE EMBRYO AND MERISTEMS1 (DEM1) Is Essential for Cell Proliferation and Cell Differentiation in Tomato. PLANTS 2022; 11:plants11192545. [PMID: 36235411 PMCID: PMC9573268 DOI: 10.3390/plants11192545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 09/21/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Most flowering plant species contain at least two copies of the DEFECTIVE EMBRYO AND MERISTEMS (DEM) gene with the encoded DEM proteins lacking homology to proteins of known biochemical function. In tomato (Sl; Solanum lycopersicum), stable mutations in the SlDEM1 locus result in shoot and root meristem defects with the dem1 mutant failing to progress past the cotyledon stage of seedling development. Generation of a Somatic Mutagenesis of DEM1 (SMD) transformant line in tomato allowed for the characterization of SlDEM1 gene function past the seedling stage of vegetative development with SMD plants displaying a range of leaf development abnormalities. Further, the sectored or stable in planta expression of specific regions of the SlDEM1 coding sequence also resulted in the generation of tomato transformants that displayed a range of vegetative development defects, which when considered together with the dem1 mutant seedling and SMD transformant line phenotypic data, allowed for the assignment of SlDEM1 gene function to early embryo development, adaxial epidermis cell development, lateral leaf blade expansion, and mesophyll cell proliferation and differentiation.
Collapse
Affiliation(s)
- Louisa Matthew
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Melquiades E. C. Reyes
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Christopher W. G. Mann
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Alasdair W. McDowall
- Centre for Microscopy and Microanalysis, The University of Queensland, St. Lucia, QLD 4072, Australia
- California Institute of Technology, Pasadena, CA 91125, USA
| | - Andrew L. Eamens
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- School of Health and Behavioural Sciences, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
- Correspondence: (A.L.E.); (B.J.C.)
| | - Bernard J. Carroll
- School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, QLD 4072, Australia
- Correspondence: (A.L.E.); (B.J.C.)
| |
Collapse
|
3
|
Zhang X, Zhao M, McCarty DR, Lisch D. Transposable elements employ distinct integration strategies with respect to transcriptional landscapes in eukaryotic genomes. Nucleic Acids Res 2020; 48:6685-6698. [PMID: 32442316 PMCID: PMC7337890 DOI: 10.1093/nar/gkaa370] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/24/2020] [Accepted: 04/29/2020] [Indexed: 12/27/2022] Open
Abstract
Transposable elements (TEs) are ubiquitous DNA segments capable of moving from one site to another within host genomes. The extant distributions of TEs in eukaryotic genomes have been shaped by both bona fide TE integration preferences in eukaryotic genomes and by selection following integration. Here, we compare TE target site distribution in host genomes using multiple de novo transposon insertion datasets in both plants and animals and compare them in the context of genome-wide transcriptional landscapes. We showcase two distinct types of transcription-associated TE targeting strategies that suggest a process of convergent evolution among eukaryotic TE families. The integration of two precision-targeting elements are specifically associated with initiation of RNA Polymerase II transcription of highly expressed genes, suggesting the existence of novel mechanisms of precision TE targeting in addition to passive targeting of open chromatin. We also highlight two features that can facilitate TE survival and rapid proliferation: tissue-specific transposition and minimization of negative impacts on nearby gene function due to precision targeting.
Collapse
Affiliation(s)
- Xinyan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Biology, Miami University, Oxford, OH 45056, USA
| | - Donald R McCarty
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, USA
| | - Damon Lisch
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
4
|
Viana VE, Pegoraro C, Busanello C, Costa de Oliveira A. Mutagenesis in Rice: The Basis for Breeding a New Super Plant. FRONTIERS IN PLANT SCIENCE 2019; 10:1326. [PMID: 31781133 PMCID: PMC6857675 DOI: 10.3389/fpls.2019.01326] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/24/2019] [Indexed: 05/28/2023]
Abstract
The high selection pressure applied in rice breeding since its domestication thousands of years ago has caused a narrowing in its genetic variability. Obtaining new rice cultivars therefore becomes a major challenge for breeders and developing strategies to increase the genetic variability has demanded the attention of several research groups. Understanding mutations and their applications have paved the way for advances in the elucidation of a genetic, physiological, and biochemical basis of rice traits. Creating variability through mutations has therefore grown to be among the most important tools to improve rice. The small genome size of rice has enabled a faster release of higher quality sequence drafts as compared to other crops. The move from structural to functional genomics is possible due to an array of mutant databases, highlighting mutagenesis as an important player in this progress. Furthermore, due to the synteny among the Poaceae, other grasses can also benefit from these findings. Successful gene modifications have been obtained by random and targeted mutations. Furthermore, following mutation induction pathways, techniques have been applied to identify mutations and the molecular control of DNA damage repair mechanisms in the rice genome. This review highlights findings in generating rice genome resources showing strategies applied for variability increasing, detection and genetic mechanisms of DNA damage repair.
Collapse
Affiliation(s)
| | | | | | - Antonio Costa de Oliveira
- Centro de Genômica e Fitomelhoramento, Faculdade de Agronomia Eliseu Maciel, Departamento de Fitotecnia, Universidade Federal de Pelotas, Campus Capão do Leão, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Insertional Mutagenesis Approaches and Their Use in Rice for Functional Genomics. PLANTS 2019; 8:plants8090310. [PMID: 31470516 PMCID: PMC6783850 DOI: 10.3390/plants8090310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/07/2019] [Accepted: 08/07/2019] [Indexed: 01/01/2023]
Abstract
Insertional mutagenesis is an indispensable tool for engendering a mutant population using exogenous DNA as the mutagen. The advancement in the next-generation sequencing platform has allowed for faster screening and analysis of generated mutated populations. Rice is a major staple crop for more than half of the world's population; however, the functions of most of the genes in its genome are yet to be analyzed. Various mutant populations represent extremely valuable resources in order to achieve this goal. Here, we have reviewed different insertional mutagenesis approaches that have been used in rice, and have discussed their principles, strengths, and limitations. Comparisons between transfer DNA (T-DNA), transposons, and entrapment tagging approaches have highlighted their utilization in functional genomics studies in rice. We have also summarised different forward and reverse genetics approaches used for screening of insertional mutant populations. Furthermore, we have compiled information from several efforts made using insertional mutagenesis approaches in rice. The information presented here would serve as a database for rice insertional mutagenesis populations. We have also included various examples which illustrate how these populations have been useful for rice functional genomics studies. The information provided here will be very helpful for future functional genomics studies in rice aimed at its genetic improvement.
Collapse
|
6
|
Bhagat YS, Bhat RS, Kolekar RM, Patil AC, Lingaraju S, Patil RV, Udikeri SS. Remusatia vivipara lectin and Sclerotium rolfsii lectin interfere with the development and gall formation activity of Meloidogyne incognita in transgenic tomato. Transgenic Res 2019; 28:299-315. [PMID: 30868351 DOI: 10.1007/s11248-019-00121-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/11/2019] [Indexed: 11/24/2022]
Abstract
Root knot nematodes are serious threats to growth and yield of solaneous crops including tomato. In this study, a binary vector carrying Remusatia vivipara (rvl1) and Sclerotium rolfsii (srl1) lectin genes were introduced independently into Lycopersicon esculentum cv. Pusa Ruby via Agrobacterium tumefaciens for resistance against root knot nematode, Meloidogyne incognita. In total, one hundred and one rvl1 and srl1-transformed plants exhibiting kanamycin resistance were confirmed to carry transgenes as detected by polymerase chain reaction (PCR) with 4.59% transformation efficiency. Genetic analysis of T1 progeny confirmed Mendelian segregation of the introduced genes. Three events each of rvl1 and srl1 transgenic tomato were randomly selected for further confirmation by Southern and TAIL-PCR analyses. All three events of srl1 transgenics showed single copy transgene, whereas two rvl1 transgenic events showed single copy of transgene, while remaining event showed two copies of transgenes. Site of integration obtained for rvl1 and srl1 transgenic events by TAIL-PCR revealed that all the three events of rvl1 and srl1 transgenics differed for their site of integration and insertion sites did not contain any predicted gene. Moreover, expression of the rvl1 and srl1 transgenes was detected by haemagglutination assay in all three events of rvl1 and srl1, but not in non-transgenic tomato plant. Homozygous progenies of these events were grown and inoculated with M. incognita. Development and reproduction of M. incognita was severely affected in transgenic tomato plants expressing RVL1 and SRL1 exhibiting the high levels of resistance compared to non-transgenic plants. Therefore, these transgenic lines demonstrate a promising potential for variety development of tomato lines with enhanced resistance against M. incognita.
Collapse
Affiliation(s)
- Yogesh S Bhagat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India.
| | - Ramesh S Bhat
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Rohini M Kolekar
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - Ashlesha C Patil
- Department of Biotechnology, College of Agriculture, University of Agricultural Sciences, Bangalore, Bengaluru, 560065, India
| | - S Lingaraju
- Insititute of Organic Farming, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| | - R V Patil
- Department of Horticulture, College of Agriculture, Bijapur, University of Agricultural Sciences, Dharwad, 586103, India
| | - S S Udikeri
- Agriculture Research Station, Dharwad Farm, University of Agricultural Sciences, Dharwad, Dharwad, 580005, India
| |
Collapse
|
7
|
Xuan YH, Kim CM, Je BI, Liu JM, Li TY, Lee GS, Kim TH, Han CD. Transposon Ds-Mediated Insertional Mutagenesis in Rice (Oryza sativa). CURRENT PROTOCOLS IN PLANT BIOLOGY 2016; 1:466-487. [PMID: 31725960 DOI: 10.1002/cppb.20030] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Rice (Oryza sativa) is the most important consumed staple food for a large and diverse population worldwide. Since databases of genomic sequences became available, functional genomics and genetic manipulations have been widely practiced in rice research communities. Insertional mutants are the most common genetic materials utilized to analyze gene function. To mutagenize rice genomes, we exploited the transpositional activity of an Activator/Dissociation (Ac/Ds) system in rice. To mobilize Ds in rice genomes, a maize Ac cDNA was expressed under the CaMV35S promoter, and a gene trap Ds was utilized to detect expression of host genes via the reporter gene GUS. Conventional transposon-mediated gene-tagging systems rely on genetic crossing and selection markers. Furthermore, the activities of transposases have to be monitored. By taking advantage of the fact that Ds becomes highly active during tissue culture, a plant regeneration system employing tissue culture was employed to generate a large Ds transposant population in rice. This system overcomes the requirement for markers and the monitoring of Ac activity. In the regenerated populations, more than 70% of the plant lines contained independent Ds insertions and 12% expressed GUS at seedling stages. This protocol describes the method for producing a Ds-mediated insertional population via tissue culture regeneration systems. © 2016 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Yuan Hu Xuan
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Chul Min Kim
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Byoung Il Je
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Jing Miao Liu
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| | - Tian Ya Li
- College of Plant Protection, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Gang-Seob Lee
- Biosafty Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science (NIAS), RDA, Jeonju, Korea
| | - Tae-Ho Kim
- Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Science (NIAS), RDA, Jeonju, Korea
| | - Chang-Deok Han
- Division of Applied Life Science (BK21 program), Plant Molecular Biology & Biotechnology Research Center (PMBBRC), Gyeongsang National University, Jinju, Korea
| |
Collapse
|
8
|
Wei FJ, Tsai YC, Hsu YM, Chen YA, Huang CT, Wu HP, Huang LT, Lai MH, Kuang LY, Lo SF, Yu SM, Lin YR, Hsing YIC. Lack of Genotype and Phenotype Correlation in a Rice T-DNA Tagged Line Is Likely Caused by Introgression in the Seed Source. PLoS One 2016; 11:e0155768. [PMID: 27186981 PMCID: PMC4871347 DOI: 10.1371/journal.pone.0155768] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/03/2016] [Indexed: 01/12/2023] Open
Abstract
Rice (Oryza sativa) is one of the most important crops in the world. Several rice insertional mutant libraries are publicly available for systematic analysis of gene functions. However, the tagging efficiency of these mutant resources-the relationship between genotype and phenotype-is very low. We used whole-genome sequencing to analyze a T-DNA-tagged transformant from the Taiwan Rice Insertional Mutants (TRIM) resource. The phenomics records for M0028590, one of the TRIM lines, revealed three phenotypes-wild type, large grains, and tillering dwarf-in the 12 T1 plants. Using the sequencing data for 7 plants from three generations of this specific line, we demonstrate that introgression from an indica rice variety might occur in one generation before the seed was used for callus generation and transformation of this line. In addition, the large-grain trait came from the GS3 gene of the introgressed region and the tillering dwarf phenotype came from a single nucleotide change in the D17 gene that occurred during the callus induction to regeneration of the transformant. As well, another regenerant showed completely heterozygous single-nucleotide polymorphisms across the whole genome. In addition to the known sequence changes such as T-DNA integration, single nucleotide polymorphism, insertion, deletion, chromosome rearrangement and doubling, spontaneous outcrossing occurred in the rice field may also explain some mutated traits in a tagged mutant population. Thus, the co-segregation of an integration event and the phenotype should be checked when using these mutant populations.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yuan-Ching Tsai
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-Ming Hsu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Yu-An Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Ching-Ting Huang
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsin Lai
- Crop Science Division, Taiwan Agriculture Research Institute, Taichung, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, Taipei, Taiwan
| | - Shuen-Fang Lo
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Yann-Rong Lin
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Yue-Ie Caroline Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
9
|
Wei FJ, Kuang LY, Oung HM, Cheng SY, Wu HP, Huang LT, Tseng YT, Chiou WY, Hsieh-Feng V, Chung CH, Yu SM, Lee LY, Gelvin SB, Hsing YIC. Somaclonal variation does not preclude the use of rice transformants for genetic screening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 85:648-59. [PMID: 26833589 DOI: 10.1111/tpj.13132] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/21/2015] [Accepted: 01/20/2016] [Indexed: 05/07/2023]
Abstract
Rice (Oryza sativa) is one of the world's most important crops. Rice researchers make extensive use of insertional mutants for the study of gene function. Approximately half a million flanking sequence tags from rice insertional mutant libraries are publicly available. However, the relationship between genotype and phenotype is very weak. Transgenic plant assays have been used frequently for complementation, overexpression or antisense analysis, but sequence changes caused by callus growth, Agrobacterium incubation medium, virulence genes, transformation and selection conditions are unknown. We used high-throughput sequencing of DNA from rice lines derived from Tainung 67 to analyze non-transformed and transgenic rice plants for mutations caused by these parameters. For comparison, we also analyzed sequence changes for two additional rice varieties and four T-DNA tagged transformants from the Taiwan Rice Insertional Mutant resource. We identified single-nucleotide polymorphisms, small indels, large deletions, chromosome doubling and chromosome translocations in these lines. Using standard rice regeneration/transformation procedures, the mutation rates of regenerants and transformants were relatively low, with no significant differences among eight tested treatments in the Tainung 67 background and in the cultivars Taikeng 9 and IR64. Thus, we could not conclusively detect sequence changes resulting from Agrobacterium-mediated transformation in addition to those caused by tissue culture-induced somaclonal variation. However, the mutation frequencies within the two publically available tagged mutant populations, including TRIM transformants or Tos17 lines, were about 10-fold higher than the frequency of standard transformants, probably because mass production of embryogenic calli and longer callus growth periods were required to generate these large libraries.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Lin-Yun Kuang
- Transgenic Plant Core Facility, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hui-Min Oung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Sin-Yuan Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Hshin-Ping Wu
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lin-Tzu Huang
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Yi-Tzu Tseng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
- Institute of Plant Biology, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Wan-Yi Chiou
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Vicki Hsieh-Feng
- Department of Agronomy, National Taiwan University, No. 1, Section 4, Roosevelt Rd, Taipei, 10617, Taiwan
| | - Cheng-Han Chung
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Su-May Yu
- Institute of Molecular Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| | - Lan-Ying Lee
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Stanton B Gelvin
- Department of Biological Sciences, Purdue University, 201 South University St., West Lafayette, IN, 47907-1392, USA
| | - Yue-Ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Yien-Chu-Yuan Road, Taipei, 11529, Taiwan
| |
Collapse
|
10
|
Lu N, Carter JD, Boluarte Medina T, Holt SH, Manrique-Carpintero NC, Upham KT, Pereira A, Shulaev V, Veilleux RE. Transposon based activation tagging in diploid strawberry and monoploid derivatives of potato. PLANT CELL REPORTS 2014; 33:1203-1216. [PMID: 24728112 DOI: 10.1007/s00299-014-1610-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 03/21/2014] [Accepted: 03/24/2014] [Indexed: 06/03/2023]
Abstract
Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds. As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5% in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85% reliable in strawberry and potato, respectively), although the effective concentration differed (0.5% for strawberry and 0.03% for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.
Collapse
Affiliation(s)
- Nan Lu
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wei FJ, Droc G, Guiderdoni E, Hsing YIC. International Consortium of Rice Mutagenesis: resources and beyond. RICE (NEW YORK, N.Y.) 2013; 6:39. [PMID: 24341871 PMCID: PMC3946042 DOI: 10.1186/1939-8433-6-39] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 05/20/2023]
Abstract
Rice is one of the most important crops in the world. The rice community needs to cooperate and share efforts and resources so that we can understand the functions of rice genes, especially those with a role in important agronomical traits, for application in agricultural production. Mutation is a major source of genetic variation that can be used for studying gene function. We will present here the status of mutant collections affected in a random manner by physical/chemical and insertion mutageneses.As of early September 2013, a total of 447, 919 flanking sequence tags from rice mutant libraries with T-DNA, Ac/Ds, En/Spm, Tos17, nDART/aDART insertions have been collected and publicly available. From these, 336,262 sequences are precisely positioned on the japonica rice chromosomes, and 67.5% are in gene interval. We discuss the genome coverage and preference of the insertion, issues limiting the exchange and use of the current collections, as well as new and improved resources. We propose a call to renew all mutant populations as soon as possible. We also suggest that a common web portal should be established for ordering seeds.
Collapse
Affiliation(s)
- Fu-Jin Wei
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| | - Gaëtan Droc
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Emmanuel Guiderdoni
- CIRAD, Centre de coopération Internationale en Recherche Agronomique pour le Développement, Cirad - av. Agropolis -TA A-108/03, 34398 Montpellier Cedex 5, France
| | - Yue-ie C Hsing
- Institute of Plant and Microbial Biology, Academia Sinica, Hsing: Rm312, IPMB, Academia Sinica, Nankang District, Taipei 11529 Taiwan
| |
Collapse
|
12
|
Abstract
Maize Activator (Ac) is one of the prototype transposable elements of the hAT transposon superfamily, members of which were identified in plants, fungi, and animals. The autonomous Ac and nonautonomous Dissociation (Ds) elements are mobilized by the single transposase protein encoded by Ac. To date Ac/Ds transposons were shown to be functional in approximately 20 plant species and have become the most widely used transposable elements for gene tagging and functional genomics approaches in plants. In this chapter we review the biology, regulation, and transposition mechanism of Ac/Ds elements in maize and heterologous plants. We discuss the parameters that are known to influence the functionality and transposition efficiency of Ac/Ds transposons and need to be considered when designing Ac transposase expression constructs and Ds elements for application in heterologous plant species.
Collapse
Affiliation(s)
- Katina Lazarow
- Leibniz-Institute for Molecular Pharmacology (FMP), Berlin, Germany
| | | | | |
Collapse
|
13
|
Veilleux RE, Mills KP, Baxter AJ, Upham KT, Ferguson TJ, Holt SH, Lu N, Ruiz-Rojas JJ, Pantazis CJ, Davis CM, Lindsay RC, Powell FL, Dan Y, Dickerman AW, Oosumi T, Shulaev V. Transposon tagging in diploid strawberry. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:985-994. [PMID: 22845757 DOI: 10.1111/j.1467-7652.2012.00728.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Fragaria vesca was transformed with a transposon tagging construct harbouring amino terminally deleted maize transposase and EGFP (Ac element), NPTII, CaMV 35S promoter (P35S) driving transposase and mannopine synthase promoter (Pmas) driving EGFP (Ds element). Of 180 primary transgenics, 48 were potential launch pads, 72 were multiple insertions or chimaeras, and 60 exhibited somatic transposition. T₁ progeny of 32 putative launch pads were screened by multiplex PCR for transposition. Evidence of germ-line transposition occurred in 13 putative launch pads; however, the transposition frequency was too low in three for efficient recovery of transposants. The transposition frequency in the remaining launch pads ranged from 16% to 40%. After self-pollination of the T₀ launch pads, putative transposants in the T₁ generation were identified by multiplex PCR. Sequencing of hiTAIL-PCR products derived from nested primers within the Ds end sequences (either P35S at the left border or the inverted repeat at the right border) of T₁ plants revealed transposition of the Ds element to distant sites in the strawberry genome. From more than 2400 T₁ plants screened, 103 unique transposants have been identified, among which 17 were somatic transpositions observed in the T₀ generation. Ds insertion sites were dispersed among various gene elements [exons (15%), introns (23%), promoters (30%), 3' UTRs (17%) as well as intergenically (15%)]. Three-primer (one on either side of the Ds insertion and one within the Ds T-DNA) PCR could be used to identify homozygous T₂ transposon-tagged plants. The mutant collection has been catalogued in an on-line database.
Collapse
|
14
|
Vega-Sánchez ME, Verhertbruggen Y, Christensen U, Chen X, Sharma V, Varanasi P, Jobling SA, Talbot M, White RG, Joo M, Singh S, Auer M, Scheller HV, Ronald PC. Loss of Cellulose synthase-like F6 function affects mixed-linkage glucan deposition, cell wall mechanical properties, and defense responses in vegetative tissues of rice. PLANT PHYSIOLOGY 2012; 159:56-69. [PMID: 22388489 PMCID: PMC3375985 DOI: 10.1104/pp.112.195495] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 02/29/2012] [Indexed: 05/17/2023]
Abstract
Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked β-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Pamela C. Ronald
- Joint BioEnergy Institute, Emeryville, California 94608 (M.E.V.-S., Y.V., U.C., X.C., V.S., P.V., M.J., S.S., M.A., H.V.S., P.C.R.); Divisions of Physical Biosciences (Y.V., U.C., V.S., H.V.S., P.C.R.) and Life Sciences (M.J., M.A.), Lawrence Berkeley National Laboratory, Berkeley, California 94720; Commonwealth Scientific and Industrial Research Organization Food Futures Flagship (S.A.J., M.T., R.G.W.) and Commonwealth Scientific and Industrial Research Organization Plant Industry (S.A.J.), Black Mountain Laboratories, Black Mountain, Australian Capital Territory 2601, Australia; Department of Plant Pathology (M.E.V.-S., X.C., P.C.R.) and The Genome Center (P.C.R.), University of California, Davis, California 95616; Biomass Science and Conversion Technologies Department, Sandia National Laboratories, Livermore, California 94551 (P.V., S.S.); and Department of Plant Molecular System Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin 446–701, Korea (P.C.R.)
| |
Collapse
|
15
|
Rizal G, Karki S, Thakur V, Chatterjee J, A. Coe R, Wanchana S, Quick WP. Towards a C4 Rice. ACTA ACUST UNITED AC 2012. [DOI: 10.3923/ajcb.2012.13.31] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Charng YC. A one-time inducible transposon to create knockout mutants in rice. Methods Mol Biol 2012; 847:369-377. [PMID: 22351022 DOI: 10.1007/978-1-61779-558-9_29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Use of a transposon is an efficient tagging tool for exploring the function of the gene it inserts into or is adjacent to. A few modifications have been applied to the native Ac transposon to allow it to transpose efficiently or spontaneously and stop quickly thereafter. Furthermore, locating the transposon between a constitutive plant promoter and a reporter gene, such as the firefly luciferase gene, allows for nondestructively detecting excision events in vivo. This chapter describes a detailed protocol for one-time inducible transposon tagging of rice cells and their subsequent screening and regeneration into mutant lines.
Collapse
Affiliation(s)
- Yuh-Chyang Charng
- Department of Agronomy, National Taiwan University, Taipei, Taiwan, Republic of China.
| |
Collapse
|
17
|
Singh S, Tan HQ, Singh J. Mutagenesis of barley malting quality QTLs with Ds transposons. Funct Integr Genomics 2011; 12:131-41. [DOI: 10.1007/s10142-011-0258-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/28/2022]
|
18
|
Chern CG, Fan MJ, Huang SC, Yu SM, Wei FJ, Wu CC, Trisiriroj A, Lai MH, Chen S, Hsing YIC. Methods for rice phenomics studies. Methods Mol Biol 2011; 678:129-138. [PMID: 20931377 DOI: 10.1007/978-1-60761-682-5_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. A systematic phenotypic profiling of mutant collections will provide major insights into gene functions important for crop growth or production. Thus, detailed phenomics analysis is the key to functional genomics. Currently, the two major types of rice mutant collections are insertional mutants and chemical or irradiation-induced mutants. Here we describe how to manipulate a rice mutant population, including conducting phenomics studies and the subsequent propagation and seed storage. We list the phenotypes screened and also describe how to collect data systematically for a database of the qualitative and quantitative phenotypic traits. Thus, data on mutant lines, phenotypes, and segregation rate for all kinds of mutant populations, as well as integration sites for insertional mutant populations, would be searchable, and the collection would be a good resource for rice functional genomics study.
Collapse
Affiliation(s)
- Chyr-Guan Chern
- Taiwan Agricultural Research Institute, Wufeng, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Insertion mutants offer one of the direct ways to relate a gene to its function by employing forward or reverse genetics approaches. Both T-DNA and transposon insertional mutants are being produced in several crops, including rice, the first cereal with its complete genome sequenced. Transposons have several advantages over T-DNA including the ability to produce multiple independent insertion lines from individual starter lines, as well as producing revertants by remobilization. With our new gene constructs, and a two-component transposon iAc/Ds mutagenesis protocol, we have improved both gene trapping and screening efficiencies in rice.
Collapse
|
20
|
Ruiz-Rojas JJ, Sargent DJ, Shulaev V, Dickerman AW, Pattison J, Holt SH, Ciordia A, Veilleux RE. SNP discovery and genetic mapping of T-DNA insertional mutants in Fragaria vesca L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:449-463. [PMID: 20349033 DOI: 10.1007/s00122-010-1322-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 03/05/2010] [Indexed: 05/29/2023]
Abstract
As part of a program to develop forward and reverse genetics platforms in the diploid strawberry [Fragaria vesca L.; (2n = 2x = 14)] we have generated insertional mutant lines by T-DNA mutagenesis using pCAMBIA vectors. To characterize the T-DNA insertion sites of a population of 108 unique single copy mutants, we utilized thermal asymmetric interlaced PCR (hiTAIL-PCR) to amplify the flanking region surrounding either the left or right border of the T-DNA. Bioinformatics analysis of flanking sequences revealed little preference for insertion site with regard to G/C content; left borders tended to retain more of the plasmid backbone than right borders. Primers were developed from F. vesca flanking sequences to attempt to amplify products from both parents of the reference F. vesca 815 x F. bucharica 601 mapping population. Polymorphism occurred as: presence/absence of an amplification product for 16 primer pairs and different size products for 12 primer pairs, For 46 mutants, where polymorphism was not found by PCR, the amplification products were sequenced to reveal SNP polymorphism. A cleaved amplified polymorphic sequence/derived cleaved amplified polymorphism sequence (CAPS/dCAPS) strategy was then applied to find restriction endonuclease recognition sites in one of the parental lines to map the SNP position of 74 of the T-DNA insertion lines. BLAST search of flanking regions against GenBank revealed that 46 of 108 flanking sequences were close to presumed strawberry genes related to annotated genes from other plants.
Collapse
Affiliation(s)
- J J Ruiz-Rojas
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Zhu QH, Upadhyaya NM, Gubler F, Helliwell CA. Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC PLANT BIOLOGY 2009; 9:149. [PMID: 20017947 PMCID: PMC2803185 DOI: 10.1186/1471-2229-9-149] [Citation(s) in RCA: 166] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/17/2009] [Indexed: 05/18/2023]
Abstract
BACKGROUND Regulation of gene expression by microRNAs (miRNAs) plays a crucial role in many developmental and physiological processes in plants. miRNAs act to repress expression of their target genes via mRNA cleavage or translational repression. Dozens of miRNA families have been identified in rice, 21 of which are conserved between rice and Arabidopsis. miR172 is a conserved miRNA family which has been shown to regulate expression of APETALA2 (AP2)-like transcription factors in Arabidopsis and maize. The rice genome encodes five AP2-like genes predicted to be targets of miR172. To determine whether these rice AP2-like genes are regulated by miR172 and investigate the function of the target genes, we studied the effect of over-expressing two members of the miR172 family on rice plant development. RESULTS Analysis of miR172 expression showed that it is most highly expressed in late vegetative stages and developing panicles. Analyses of expression of three miR172 targets showed that SUPERNUMERARY BRACT (SNB) and Os03g60430 have high expression in developing panicles. Expression of miR172 was not inversely correlated with expression of its targets although miR172-mediated cleavage of SNB was detected by 5' rapid amplification of cDNA ends (RACE). Over-expression of miR172b in rice delayed the transition from spikelet meristem to floral meristem, and resulted in floral and seed developmental defects, including changes to the number and identity of floral organs, lower fertility and reduced seed weight. Plants over-expressing miR172b not only phenocopied the T-DNA insertion mutant of SNB but showed additional defects in floret development not seen in the snb mutant. However SNB expression was not reduced in the miR172b over-expression plants. CONCLUSIONS The phenotypes resulting from over-expression of miR172b suggests it represses SNB and at least one of the other miR172 targets, most likely Os03g60430, indicating roles for other AP2-like genes in rice floret development. miR172 and the AP2-like genes had overlapping expression patterns in rice and their expression did not show an obvious negative correlation. There was not a uniform decrease in the expression of the AP2-like miR172 target mRNAs in the miR172b over-expression plants. These observations are consistent with miR172 functioning via translational repression or with expression of the AP2-like genes being regulated by a negative feedback loop.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | | - Frank Gubler
- CSIRO Plant Industry, GPO Box 1600, Canberra, ACT 2601, Australia
| | | |
Collapse
|
22
|
Fu FF, Ye R, Xu SP, Xue HW. Studies on rice seed quality through analysis of a large-scale T-DNA insertion population. Cell Res 2009; 19:380-91. [PMID: 19223856 DOI: 10.1038/cr.2009.15] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A rice (Oryza sativa) T-DNA insertion population, which included more than 63 000 independent transgenic lines and 8 840 identified flanking sequence tags (FSTs) that were mapped onto the rice genome, was developed to systemically study the rice seed quality control. Genome-wide analysis of the FST distribution showed that T-DNA insertions were positively correlated with expressed genes, but negatively with transposable elements and small RNAs. In addition, the recovered T-DNAs were preferentially located at the untranslated region of the expressed genes. More than 11 000 putative homozygous lines were obtained through multi-generations of planting and resistance screening, and measurement of seed quality of around half of them, including the contents of starch, amylose, protein and fat, with a nondestructive near-infrared spectroscopy method, identified 551 mutants with unique or multiple altered parameters of seed quality. Analysis of the corresponding FSTs showed that genes participating in diverse functions, including metabolic processes and transcriptional regulation, were involved, indicating that seed quality is regulated by a complex network.
Collapse
Affiliation(s)
- Fang-Fang Fu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Science (SIBS), Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, China
| | | | | | | |
Collapse
|
23
|
Krishnan A, Guiderdoni E, An G, Hsing YIC, Han CD, Lee MC, Yu SM, Upadhyaya N, Ramachandran S, Zhang Q, Sundaresan V, Hirochika H, Leung H, Pereira A. Mutant resources in rice for functional genomics of the grasses. PLANT PHYSIOLOGY 2009; 149:165-70. [PMID: 19126710 PMCID: PMC2613728 DOI: 10.1104/pp.108.128918] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Accepted: 11/04/2008] [Indexed: 05/18/2023]
Affiliation(s)
- Arjun Krishnan
- Virginia Bioinformatics Institute, Virginia Tech, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Luan WJ, He CK, Hu GC, Dey M, Fu YP, Si HM, Zhu L, Liu WZ, Duan F, Zhang H, Liu WY, Zhuo RY, Garg A, Wu R, Sun ZX. An efficient field screening procedure for identifying transposants for constructing an Ac/Ds-based insertional-mutant library of rice. Genome 2008; 51:41-9. [DOI: 10.1139/g07-102] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An efficient system was developed, and several variables tested, for generating a large-scale insertional-mutagenesis population of rice. The most important feature in this improved Ac/Ds tagging system is that one can conveniently carry out large-scale screening in the field and select transposants at the seedling stage. Rice was transformed with a plasmid that includes a Basta-resistance gene (bar). After the Ds element is excised during transposition, bar becomes adjacent to the ubiquitin promoter, and the rice plant becomes resistant to the herbicide Basta. In principle, one can plant up to one million plants in the field and select those plants that survive after spraying with Basta. To test the utility of this system, 4 Ds starter lines were crossed with 14 different Ac plants, and many transposants were successfully identified after planting 134 285 F2 plants in the field. Over 2 800 of these transposants were randomly chosen for PCR analysis, and the results fully confirmed the reliability of the field screening procedure.
Collapse
Affiliation(s)
- Wei-Jiang Luan
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Cheng-Kun He
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guo-Cheng Hu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Moul Dey
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ya-Ping Fu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hua-Min Si
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Li Zhu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wen-Zhen Liu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Faping Duan
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Hong Zhang
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Wen-Ying Liu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ren-Ying Zhuo
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ajay Garg
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Ray Wu
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Zong-Xiu Sun
- China National Rice Research Institute, State Key Laboratory of Rice Biology, Hangzhou, Zhejiang, People’s Republic of China
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
25
|
Park SH, Jun NS, Kim CM, Oh TY, Huang J, Xuan YH, Park SJ, Je BI, Piao HL, Park SH, Cha YS, Ahn BO, Ji HS, Lee MC, Suh SC, Nam MH, Eun MY, Yi G, Yun DW, Han CD. Analysis of gene-trap Ds rice populations in Korea. PLANT MOLECULAR BIOLOGY 2007; 65:373-84. [PMID: 17611799 DOI: 10.1007/s11103-007-9192-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2007] [Accepted: 05/21/2007] [Indexed: 05/16/2023]
Abstract
Insertional mutagen-mediated gene tagging populations have been essential resources for analyzing the function of plant genes. In rice, maize transposable elements have been successfully utilized to produce transposant populations. However, many generations and substantial field space are required to obtain a sufficiently sized transposant population. In rice, the japonica and indica subspecies are phenotypically and genetically divergent. Here, callus cultures with seeds carrying Ac and Ds were used to produce 89,700 lines of Dongjin, a japonica cultivar, and 6,200 lines of MGRI079, whose genome is composed of a mixture of the genetic backgrounds of japonica and indica. Of the more than 3,000 lines examined, 67% had Ds elements. Among the Ds-carrying lines, 81% of Dongjin and 63% of MGRI079 contained transposed Ds, with an average of around 2.0 copies. By examining more than 15,000 lines, it was found that 12% expressed the reporter gene GUS during the early-seedling stage. GUS was expressed in root hairs and crown root initials at estimated frequencies of 0.78% and 0.34%, respectively. The 5,271 analyzed Ds loci were found to be randomly distributed over all of the rice chromosomes.
Collapse
Affiliation(s)
- Sung Han Park
- Rice Functional Genomics, National Institute of Agricultural Biotechnology, RDA, Suwon 441-707, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chern CG, Fan MJ, Yu SM, Hour AL, Lu PC, Lin YC, Wei FJ, Huang SC, Chen S, Lai MH, Tseng CS, Yen HM, Jwo WS, Wu CC, Yang TL, Li LS, Kuo YC, Li SM, Li CP, Wey CK, Trisiriroj A, Lee HF, Hsing YIC. A rice phenomics study--phenotype scoring and seed propagation of a T-DNA insertion-induced rice mutant population. PLANT MOLECULAR BIOLOGY 2007; 65:427-38. [PMID: 17701278 DOI: 10.1007/s11103-007-9218-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2007] [Accepted: 07/23/2007] [Indexed: 05/16/2023]
Abstract
With the completion of the rice genome sequencing project, the next major challenge is the large-scale determination of gene function. As an important crop and a model organism, rice provides major insights into gene functions important for crop growth or production. Phenomics with detailed information about tagged populations provides a good tool for functional genomics analysis. By a T-DNA insertional mutagenesis approach, we have generated a rice mutant population containing 55,000 promoter trap and gene activation or knockout lines. Approximately 20,000 of these lines have known integration sites. The T0 and T1 plants were grown in net "houses" for two cropping seasons each year since 2003, with the mutant phenotypes recorded. Detailed data describing growth and development of these plants, in 11 categories and 65 subcategories, over the entire four-month growing season are available in a searchable database, along with the genetic segregation information and flanking sequence data. With the detailed data from more than 20,000 T1 lines and 12 plants per line, we estimated the mutation rates of the T1 population, as well the frequency of the dominant T0 mutants. The correlations among different mutation phenotypes are also calculated. Together, the information about mutant lines, their integration sites, and the phenotypes make this collection, the Taiwan Rice Insertion Mutants (TRIM), a good resource for rice phenomics study. Ten T2 seeds per line can be distributed to researchers upon request.
Collapse
Affiliation(s)
- Chyr-Guan Chern
- Taiwan Agricultural Research Institute, Wufeng, Taichung 41301, Taiwan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ayliffe MA, Pallotta M, Langridge P, Pryor AJ. A barley activation tagging system. PLANT MOLECULAR BIOLOGY 2007; 64:329-47. [PMID: 17429742 DOI: 10.1007/s11103-007-9157-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2006] [Accepted: 02/26/2007] [Indexed: 05/03/2023]
Abstract
Activation tagging, as the result of random genomic insertion of either promoter or enhancer sequences, can produce novel, dominant mutations by over-expression of endogenous genes. This powerful genomics tool has been used extensively in dicot species such as Arabidopsis, while rice is the only cereal for which an equivalent system exists. In this study we describe an activation tagging system in barley based upon the maize Ac/Ds transposable element system. A modified Ds element (UbiDs) containing two maize polyubiquitin promoters, transposed in families derived from multiple independent UbiDs transformants and generated new Ds insertion events at frequencies ranging from 0% to 52% per family. The majority of transposed UbiDs elements activated high levels of adjacent flanking sequence transcription. Transposon-mediated expression was detected in all barley cell and tissue types analysed suggesting that this system is applicable to all aspects of plant development and biogenesis. In addition to transcriptional activation, this system is also capable of generating insertional knockout mutants and a UbiDs inactivated allele of the granule bound starch synthase I gene (waxy) was recovered that lead to reduced amylose accumulation. The recovery and analysis of dominant over-expression phenotypes generated by this system will provide a novel approach to understanding gene function in large cereal genomes where gene redundancy may mask conventional loss-of-function mutations.
Collapse
Affiliation(s)
- Michael A Ayliffe
- CSIRO Plant Industry, Box 1600, Clunies Ross Drive, Canberra, ACT, 2601, Australia.
| | | | | | | |
Collapse
|
28
|
Jander G, Barth C. Tandem gene arrays: a challenge for functional genomics. TRENDS IN PLANT SCIENCE 2007; 12:203-10. [PMID: 17416543 DOI: 10.1016/j.tplants.2007.03.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2006] [Revised: 02/20/2007] [Accepted: 03/27/2007] [Indexed: 05/14/2023]
Abstract
In sequenced plant genomes, 15% or more of the identified genes are members of tandem-arrayed gene families. Because mutating only one gene in a duplicated pair often produces no measurable phenotype, this poses a particular challenge for functional analysis. To generate phenotypic knockouts, it is necessary to create deletions that affect multiple genes, select for rare meiotic recombination between tightly linked loci, or perform sequential mutant screens in the same plant line. Successfully implemented strategies include PCR-based screening for fast neutron-induced deletions, selection for recombination between herbicide resistance markers, and localized transposon mutagenesis. Here, we review the relative merits of current genetic approaches and discuss the prospect of site-directed mutagenesis for generating elusive knockouts of tandem-arrayed gene families.
Collapse
Affiliation(s)
- Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Road, Cornell University, Ithaca, NY 14853, USA.
| | | |
Collapse
|
29
|
Zhu QH, Dennis ES, Upadhyaya NM. Compact shoot and leafy head 1, a mutation affects leaf initiation and developmental transition in rice (Oryza sativa L). PLANT CELL REPORTS 2007; 26:421-7. [PMID: 17111113 DOI: 10.1007/s00299-006-0259-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2006] [Revised: 09/15/2006] [Accepted: 09/21/2006] [Indexed: 05/12/2023]
Abstract
The shoot apical meristem (SAM) produces lateral organs in a regular spacing (phyllotaxy) and at a regular interval (phyllochron) during the vegetative phase. In a Dissociation (Ds) insertion rice population, we identified a mutant, compact shoot and leafy head 1 (csl1), which produced massive number of leaves (~70) during the vegetative phase. In csl1, the transition from the vegetative to the reproductive phase was delayed by about 2 months under long-day conditions. With a reduced leaf size and severe dwarfism, csl1 failed to produce a normal panicle after the transition to reproductive growth. Instead, it produced a leafy panicle, in which all primary rachis-branches were converted to vegetative shoots. Phenotypically csl1 resembled pla mutants in short plastochron but was more severe in the conversion of the reproductive organs to vegetative organs. In addition, neither the expression nor the coding region of PLA1 or PLA2 was affected in csl1. csl1 is most likely a dominant mutation because no mutant segregant was observed in progeny of 67 siblings of the csl1 mutant. CSL1 may represent a novel gene, which functions downstream of PLA1 and/or PLA2, or alternatively functions in a separate pathway, involved in the regulation of leaf initiation and developmental transition via plant hormones or other mobile signals.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, Australian Capital Territory, 2601, Canberra, Australia.
| | | | | |
Collapse
|
30
|
Zhu QH, Ramm K, Eamens AL, Dennis ES, Upadhyaya NM. Transgene structures suggest that multiple mechanisms are involved in T-DNA integration in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2006; 171:308-22. [PMID: 22980200 DOI: 10.1016/j.plantsci.2006.03.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2005] [Revised: 01/20/2006] [Accepted: 03/28/2006] [Indexed: 05/04/2023]
Abstract
To gain further understanding of the mechanisms involved in Agrobacterium-mediated genetic transformation and T-DNA integration, we analysed 156 T-DNA/rice, 69 T-DNA/T-DNA and 11 T-DNA/vector backbone (VB) junctions, which included 171 left borders (LB) and 134 right borders (RB). Conserved cleavage was observed in 6% of the LB and 43% of the RB. Terminal microhomology (1-10bp) was identified in 58% of T-DNA/rice, 43% of T-DNA/T-DNA and 82% of T-DNA/VB junctions, and this occurred particularly at the LB junctions. Approximately 32% of both T-DNA/rice and T-DNA/T-DNA junctions harboured 1-344bp of filler DNA that was derived mainly from the T-DNA region adjacent to the breakpoint and/or from the rice genome flanking the T-DNA integration site. Structure of the filler DNA was more complicated at the T-DNA/T-DNA junction than at the T-DNA/rice junction, indicating the presence of T-DNA recombination or rearrangement prior to or during T-DNA integration. When two T-DNAs were integrated in the inverted repeat configuration, significant truncation was always observed in one of the two T-DNAs whereas with direct repeat configuration, a large truncation was less frequent. Most integration events analysed in this study could be addressed by previously proposed models; however, the characteristics of the T-DNA repeats and the complicated filler DNA between two T-DNA copies imply that multiple mechanisms are involved in the formation of T-DNA repeats as well as in T-DNA integration in plants.
Collapse
Affiliation(s)
- Qian-Hao Zhu
- CSIRO Plant Industry, Canberra, ACT 2601, Australia; New South Wales Agricultural Genomics Centre, Wagga Wagga, NSW 2678, Australia
| | | | | | | | | |
Collapse
|