1
|
Rawandoozi ZJ, Barocco A, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Genetic dissection of stem and leaf rachis prickles in diploid rose using a pedigree-based QTL analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1356750. [PMID: 39359628 PMCID: PMC11445041 DOI: 10.3389/fpls.2024.1356750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 08/16/2024] [Indexed: 10/04/2024]
Abstract
Introduction Prickles are often deemed undesirable traits in many crops, including roses (Rosa sp.), and there is demand for rose cultivars with no or very few prickles. This study aims to identify new and/or validate reported quantitative trait loci (QTLs) associated with stem and leaf rachis prickle density, characterize the effects of functional haplotypes for major QTLs, and identify the sources of QTL-alleles associated with increased/decreased prickle density in roses. Methods QTL mapping using pedigree-based analysis (PBA), and haplotype analysis were conducted on two multi-parental diploid rose populations (TX2WOB and TX2WSE). Results and discussion Twelve QTLs were identified on linkage groups (LGs) 2, 3, 4, and 6. The major QTLs for the stem prickle density were located between 42.25 and 45.66 Mbp on chromosome 3 of the Rosa chinensis genome assembly, with individual QTLs explaining 18 to 49% of phenotypic variance (PVE). The remaining mapped QTLs were minor. As for the rachis prickle density, several QTLs were detected on LG3, 4, and 6 with PVE 8 to 17%. Also, this study identified that ancestors R. wichurana 'Basye's Thornless', 'Old Blush', and the pollen parent of M4-4 were common sources of favorable alleles (q) associated with decreased prickle density, whereas 'Little Chief' and 'Srche Europy' were the source of unfavorable alleles (Q) in the TX2WOB and TX2WSE populations, respectively. The outcomes of this work complement other studies to locate factors that affect prickle density. These results can also be utilized to develop high-throughput DNA tests and apply parental selection to develop prickle-free rose cultivars.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Andrew Barocco
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
2
|
Wang D, Dong X, Zhong MC, Jiang XD, Cui WH, Bendahmane M, Hu JY. Molecular and genetic regulation of petal number variation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3233-3247. [PMID: 38546444 DOI: 10.1093/jxb/erae136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/26/2024] [Indexed: 06/11/2024]
Abstract
Floral forms with an increased number of petals, also known as double-flower phenotypes, have been selected and conserved in many domesticated plants, particularly in ornamentals, because of their great economic value. The molecular and genetic mechanisms that control this trait are therefore of great interest, not only for scientists, but also for breeders. In this review, we summarize current knowledge of the gene regulatory networks of flower initiation and development and known mutations that lead to variation of petal number in many species. In addition to the well-accepted miR172/AP2-like module, for which many questions remain unanswered, we also discuss other pathways in which mutations also lead to the formation of extra petals, such as those involved in meristem maintenance, hormone signalling, epigenetic regulation, and responses to environmental signals. We discuss how the concept of 'natural mutants' and recent advances in genomics and genome editing make it possible to explore the molecular mechanisms underlying double-flower formation, and how such knowledge could contribute to the future breeding and selection of this trait in more crops.
Collapse
Affiliation(s)
- Dan Wang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, 650204 Kunming, Yunnan, China
| | - Xue Dong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 650201 Kunming, Yunnan, China
| | - Mi-Cai Zhong
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Xiao-Dong Jiang
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Wei-Hua Cui
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, INRAE-CNRS-Lyon1-ENS, Ecole Normale Supérieure de Lyon, Lyon, France
| | - Jin-Yong Hu
- Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
3
|
Mei S, Song Y, Zhang Z, Cui H, Hou S, Miao W, Rong W. WRR4B contributes to a broad-spectrum disease resistance against powdery mildew in Arabidopsis. MOLECULAR PLANT PATHOLOGY 2024; 25:e13415. [PMID: 38279853 PMCID: PMC10777751 DOI: 10.1111/mpp.13415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/29/2024]
Abstract
Oidium heveae HN1106, a powdery mildew (PM) that infects rubber trees, has been found to trigger disease resistance in Arabidopsis thaliana through ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1)-, PHYTOALEXIN DEFICIENT 4 (PAD4)- and salicylic acid (SA)-mediated signalling pathways. In this study, a typical TOLL-INTERLEUKIN 1 RECEPTOR, NUCLEOTIDE-BINDING, LEUCINE-RICH REPEAT (TIR-NB-LRR)-encoding gene, WHITE RUST RESISTANCE 4 (WRR4B), was identified to be required for the resistance against O. heveae in Arabidopsis. The expression of WRR4B was upregulated by O. heveae inoculation, and WRR4B positively regulated the expression of genes involved in SA biosynthesis, such as EDS1, PAD4, ICS1 (ISOCHORISMATE SYNTHASE 1), SARD1 (SYSTEMIC-ACQUIRED RESISTANCE DEFICIENT 1) and CBP60g (CALMODULIN-BINDING PROTEIN 60 G). Furthermore, WRR4B triggered self-amplification, suggesting that WRR4B mediated plant resistance through taking part in the SA-based positive feedback loop. In addition, WRR4B induced an EDS1-dependent hypersensitive response in Nicotiana benthamiana and contributed to disease resistance against three other PM species: Podosphaera xanthii, Erysiphe quercicola and Erysiphe neolycopersici, indicating that WRR4B is a broad-spectrum disease resistance gene against PMs.
Collapse
Affiliation(s)
- Shuangshuang Mei
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Yuxin Song
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Zuer Zhang
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Haitao Cui
- Shandong Provincial Key Laboratory of Agricultural Microbiology, College of Plant ProtectionShandong Agricultural UniversityTai'anShandongChina
| | - Shuguo Hou
- Institute of Advanced Agricultural SciencesPeking UniversityWeifangShandongChina
| | - Weiguo Miao
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| | - Wei Rong
- College of Plant ProtectionHainan UniversityHaikouHainanChina
- Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and PestsHainan University, Ministry of EducationHaikouHainanChina
| |
Collapse
|
4
|
Rawandoozi Z, Young EL, Liang S, Wu X, Fu Q, Hochhaus T, Yan M, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Pedigree-based QTL analysis of flower size traits in two multi-parental diploid rose populations. FRONTIERS IN PLANT SCIENCE 2023; 14:1226713. [PMID: 37650001 PMCID: PMC10464838 DOI: 10.3389/fpls.2023.1226713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/11/2023] [Indexed: 09/01/2023]
Abstract
Rose (Rosa spp.) is one of the most economically important ornamental species worldwide. Flower diameter, flower weight, and the number of petals and petaloids are key flower-size parameters and attractive targets for DNA-informed breeding. Pedigree-based analysis (PBA) using FlexQTL software was conducted using two sets of multi-parental diploid rose populations. Phenotypic data for flower diameter (Diam), flower weight (fresh (FWT)/dry (DWT)), number of petals (NP), and number of petaloids (PD) were collected over six environments (seasons) at two locations in Texas. The objectives of this study were to 1) identify new and/or validate previously reported QTL(s); 2) identify SNP haplotypes associated with QTL alleles (Q-/q-) of a trait and their sources; and 3) determine QTL genotypes for important rose breeding parents. Several new and previously reported QTLs for NP and Diam traits were identified. In addition, QTLs associated with flower weight and PD were identified for the first time. Two major QTLs with large effects were mapped for all traits. The first QTL was at the distal end of LG1 (60.44-60.95 Mbp) and was associated with Diam and DWT in the TX2WOB populations. The second QTL was consistently mapped in the middle region on LG3 (30.15-39.34 Mbp) and associated with NP, PD, and flower weight across two multi-parent populations (TX2WOB and TX2WSE). Haplotype results revealed a series of QTL alleles with differing effects at important loci for most traits. This work is distinct from previous studies by conducting co-factor analysis to account for the DOUBLE FLOWER locus while mapping QTL for NP. Sources of high-value (Q) alleles were identified, namely, 'Old Blush' and Rosa wichuraiana from J14-3 for Diam, while 'Violette' and PP-J14-3 were sources for other traits. In addition, the source of the low-value (q) alleles for Diam was 'Little Chief', and Rosa wichuraiana through J14-3 was the source for the remaining traits. Hence, our results can potentially inform parental/seedling selections as means to improve ornamental quality in roses and a step towards implementing DNA-informed techniques for use in rose breeding programs.
Collapse
Affiliation(s)
- Zena Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Shuyin Liang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Xuan Wu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
5
|
Rawandoozi ZJ, Young EL, Kang S, Yan M, Noyan S, Fu Q, Hochhaus T, Rawandoozi MY, Klein PE, Byrne DH, Riera-Lizarazu O. Pedigree-based analysis in multi-parental diploid rose populations reveals QTLs for cercospora leaf spot disease resistance. FRONTIERS IN PLANT SCIENCE 2023; 13:1082461. [PMID: 36684798 PMCID: PMC9859674 DOI: 10.3389/fpls.2022.1082461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Cercospora leaf spot (CLS) (Cercospora rosicola) is a major fungal disease of roses (Rosa sp.) in the southeastern U.S. Developing CLS-resistant cultivars offers a potential solution to reduce pesticide use. Yet, no work has been performed on CLS resistance. This study aimed to identify QTLs and to characterize alleles for resistance to CLS. The study used pedigree-based QTL analysis to dissect the genetic basis of CLS resistance using two multi-parental diploid rose populations (TX2WOB and TX2WSE) evaluated across five years in two Texas locations. A total 38 QTLs were identified across both populations and distributed over all linkage groups. Three QTLs on LG3, LG4, and LG6 were consistently mapped over multiple environments. The LG3 QTL was mapped in a region between 18.9 and 27.8 Mbp on the Rosa chinensis genome assembly. This QTL explained 13 to 25% of phenotypic variance. The LG4 QTL detected in the TX2WOB population spanned a 35.2 to 39.7 Mbp region with phenotypic variance explained (PVE) up to 48%. The LG6 QTL detected in the TX2WSE population was localized to 17.9 to 33.6 Mbp interval with PVE up to 36%. Also, this study found multiple degrees of favorable allele effects (q-allele) associated with decreasing CLS at major loci. Ancestors 'OB', 'Violette', and PP-M4-4 were sources of resistance q-alleles. These results will aid breeders in parental selection to develop CLS-resistant rose cultivars. Ultimately, high throughput DNA tests that target major loci for CLS could be developed for routine use in a DNA-informed breeding program.
Collapse
Affiliation(s)
- Zena J. Rawandoozi
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Ellen L. Young
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Stella Kang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Seza Noyan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Qiuyi Fu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Tessa Hochhaus
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Maad Y. Rawandoozi
- Norman Borlaug Institute for International Agriculture and Development, Texas A&M AgriLife Research, Texas A&M System, College Station, TX, United States
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| | - Oscar Riera-Lizarazu
- Department of Horticultural Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
6
|
Genetic and Biochemical Aspects of Floral Scents in Roses. Int J Mol Sci 2022; 23:ijms23148014. [PMID: 35887360 PMCID: PMC9321236 DOI: 10.3390/ijms23148014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 12/12/2022] Open
Abstract
Floral scents possess high ornamental and economic values to rose production in the floricultural industry. In the past two decades, molecular bases of floral scent production have been studied in the rose as well as their genetic inheritance. Some significant achievements have been acquired, such as the comprehensive rose genome and the finding of a novel geraniol synthase in plants. In this review, we summarize the composition of floral scents in modern roses, focusing on the recent advances in the molecular mechanisms of floral scent production and emission, as well as the latest developments in molecular breeding and metabolic engineering of rose scents. It could provide useful information for both studying and improving the floral scent production in the rose.
Collapse
|
7
|
Bourke PM, Voorrips RE, Hackett CA, van Geest G, Willemsen JH, Arens P, Smulders MJM, Visser RGF, Maliepaard C. Detecting quantitative trait loci and exploring chromosomal pairing in autopolyploids using polyqtlR. Bioinformatics 2021; 37:3822-3829. [PMID: 34358315 PMCID: PMC8570814 DOI: 10.1093/bioinformatics/btab574] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/28/2021] [Accepted: 08/04/2021] [Indexed: 11/13/2022] Open
Abstract
Motivation The investigation of quantitative trait loci (QTL) is an essential component in our understanding of how organisms vary phenotypically. However, many important crop species are polyploid (carrying more than two copies of each chromosome), requiring specialized tools for such analyses. Moreover, deciphering meiotic processes at higher ploidy levels is not straightforward, but is necessary to understand the reproductive dynamics of these species, or uncover potential barriers to their genetic improvement. Results Here, we present polyqtlR, a novel software tool to facilitate such analyses in (auto)polyploid crops. It performs QTL interval mapping in F1 populations of outcrossing polyploids of any ploidy level using identity-by-descent probabilities. The allelic composition of discovered QTL can be explored, enabling favourable alleles to be identified and tracked in the population. Visualization tools within the package facilitate this process, and options to include genetic co-factors and experimental factors are included. Detailed information on polyploid meiosis including prediction of multivalent pairing structures, detection of preferential chromosomal pairing and location of double reduction events can be performed. Availabilityand implementation polyqtlR is freely available from the Comprehensive R Archive Network (CRAN) at http://cran.r-project.org/package=polyqtlR. Supplementary information Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Christine A Hackett
- Biomathematics and Statistics Scotland, Invergowrie, Dundee DD2 5DA, Scotland, UK
| | - Geert van Geest
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands.,Deliflor Chrysanten B.V, Korte Kruisweg 163, Maasdijk, 2676BS, The Netherlands
| | - Johan H Willemsen
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Marinus J M Smulders
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University & Research, Droevendaalsesteeg 1, Wageningen, 6708PB, The Netherlands
| |
Collapse
|
8
|
Recent Progress in Enhancing Fungal Disease Resistance in Ornamental Plants. Int J Mol Sci 2021; 22:ijms22157956. [PMID: 34360726 PMCID: PMC8348885 DOI: 10.3390/ijms22157956] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 01/19/2023] Open
Abstract
Fungal diseases pose a major threat to ornamental plants, with an increasing percentage of pathogen-driven host losses. In ornamental plants, management of the majority of fungal diseases primarily depends upon chemical control methods that are often non-specific. Host basal resistance, which is deficient in many ornamental plants, plays a key role in combating diseases. Despite their economic importance, conventional and molecular breeding approaches in ornamental plants to facilitate disease resistance are lagging, and this is predominantly due to their complex genomes, limited availability of gene pools, and degree of heterozygosity. Although genetic engineering in ornamental plants offers feasible methods to overcome the intrinsic barriers of classical breeding, achievements have mainly been reported only in regard to the modification of floral attributes in ornamentals. The unavailability of transformation protocols and candidate gene resources for several ornamental crops presents an obstacle for tackling the functional studies on disease resistance. Recently, multiomics technologies, in combination with genome editing tools, have provided shortcuts to examine the molecular and genetic regulatory mechanisms underlying fungal disease resistance, ultimately leading to the subsequent advances in the development of novel cultivars with desired fungal disease-resistant traits, in ornamental crops. Although fungal diseases constitute the majority of ornamental plant diseases, a comprehensive overview of this highly important fungal disease resistance seems to be insufficient in the field of ornamental horticulture. Hence, in this review, we highlight the representative mechanisms of the fungal infection-related resistance to pathogens in plants, with a focus on ornamental crops. Recent progress in molecular breeding, genetic engineering strategies, and RNAi technologies, such as HIGS and SIGS for the enhancement of fungal disease resistance in various important ornamental crops, is also described.
Collapse
|
9
|
Cheng B, Wan H, Han Y, Yu C, Luo L, Pan H, Zhang Q. Identification and QTL Analysis of Flavonoids and Carotenoids in Tetraploid Roses Based on an Ultra-High-Density Genetic Map. FRONTIERS IN PLANT SCIENCE 2021; 12:682305. [PMID: 34177997 PMCID: PMC8226220 DOI: 10.3389/fpls.2021.682305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 05/27/2023]
Abstract
Roses are highly valuable within the flower industry. The metabolites of anthocyanins, flavonols, and carotenoids in rose petals are not only responsible for the various visible petal colors but also important bioactive compounds that are important for human health. In this study, we performed a QTL analysis on pigment contents to locate major loci that determine the flower color traits. An F1 population of tetraploid roses segregating for flower color was used to construct an ultra-high-density genetic linkage map using whole-genome resequencing technology to detect genome-wide SNPs. Previously developed SSR and SNP markers were also utilized to increase the marker density. Thus, a total of 9,259 markers were mapped onto seven linkage groups (LGs). The final length of the integrated map was 1285.11 cM, with an average distance of 0.14 cM between adjacent markers. The contents of anthocyanins, flavonols and carotenoids of the population were assayed to enable QTL analysis. Across the 33 components, 46 QTLs were detected, explaining 11.85-47.72% of the phenotypic variation. The mapped QTLs were physically clustered and primarily distributed on four linkage groups, namely LG2, LG4, LG6, and LG7. These results improve the basis for flower color marker-assisted breeding of tetraploid roses and guide the development of rose products.
Collapse
Affiliation(s)
- Bixuan Cheng
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Huihua Wan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| | - Yu Han
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Chao Yu
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Le Luo
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Huitang Pan
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
| | - Qixiang Zhang
- Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and Rural Ecological Environment, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, School of Landscape Architecture, Beijing Forestry University, Beijing, China
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
| |
Collapse
|
10
|
Bhattarai K, Conesa A, Xiao S, Peres NA, Clark DG, Parajuli S, Deng Z. Sequencing and analysis of gerbera daisy leaf transcriptomes reveal disease resistance and susceptibility genes differentially expressed and associated with powdery mildew resistance. BMC PLANT BIOLOGY 2020; 20:539. [PMID: 33256589 PMCID: PMC7706040 DOI: 10.1186/s12870-020-02742-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/16/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND RNA sequencing has been widely used to profile genome-wide gene expression and identify candidate genes controlling disease resistance and other important traits in plants. Gerbera daisy is one of the most important flowers in the global floricultural trade, and powdery mildew (PM) is the most important disease of gerbera. Genetic improvement of gerbera PM resistance has become a crucial goal in gerbera breeding. A better understanding of the genetic control of gerbera resistance to PM can expedite the development of PM-resistant cultivars. RESULTS The objectives of this study were to identify gerbera genotypes with contrasting phenotypes in PM resistance and sequence and analyze their leaf transcriptomes to identify disease resistance and susceptibility genes differentially expressed and associated with PM resistance. An additional objective was to identify SNPs and SSRs for use in future genetic studies. We identified two gerbera genotypes, UFGE 4033 and 06-245-03, that were resistant and susceptible to PM, respectively. De novo assembly of their leaf transcriptomes using four complementary pipelines resulted in 145,348 transcripts with a N50 of 1124 bp, of which 67,312 transcripts contained open reading frames and 48,268 were expressed in both genotypes. A total of 494 transcripts were likely involved in disease resistance, and 17 and 24 transcripts were up- and down-regulated, respectively, in UFGE 4033 compared to 06-245-03. These gerbera disease resistance transcripts were most similar to the NBS-LRR class of plant resistance genes conferring resistance to various pathogens in plants. Four disease susceptibility transcripts (MLO-like) were expressed only or highly expressed in 06-245-03, offering excellent candidate targets for gene editing for PM resistance in gerbera. A total of 449,897 SNPs and 19,393 SSRs were revealed in the gerbera transcriptomes, which can be a valuable resource for developing new molecular markers. CONCLUSION This study represents the first transcriptomic analysis of gerbera PM resistance, a highly important yet complex trait in a globally important floral crop. The differentially expressed disease resistance and susceptibility transcripts identified provide excellent targets for development of molecular markers and genetic maps, cloning of disease resistance genes, or targeted mutagenesis of disease susceptibility genes for PM resistance in gerbera.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Ana Conesa
- Department of Microbiology and Cell Science, University of Florida, IFAS, Gainesville, FL, 32611, USA
- University of Florida, Genetics Institute, Gainesville, FL, 32611, USA
| | - Shunyuan Xiao
- University of Maryland, College of Agriculture and Natural Resources, 4291 Fieldhouse Drive, Rockville, MD, 20850, USA
| | - Natalia A Peres
- Department of Plant Pathology, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - David G Clark
- Department of Environmental Horticulture, University of Florida, IFAS, Gainesville, FL, 32611, USA
| | - Saroj Parajuli
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA
| | - Zhanao Deng
- Department of Environmental Horticulture, Gulf Coast Research and Education Center, University of Florida, IFAS, 14625 County Road 672, Wimauma, FL, 33598, USA.
| |
Collapse
|
11
|
Zhou NN, Tang KX, Jeauffre J, Thouroude T, Arias DCL, Foucher F, Oyant LHS. Genetic determinism of prickles in rose. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3017-3035. [PMID: 32734323 DOI: 10.1007/s00122-020-03652-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 07/03/2020] [Indexed: 05/18/2023]
Abstract
KEY MESSAGE The genetic determinism of prickle in rose is complex, with a major locus on LG3 that controls the absence/presence of prickles on the rose stem. Rose is one of the major ornamental plants. The selection of glabrous cultivars is an important breeding target but remains a difficult task due to our limited genetic knowledge. Our objective was to understand the genetic and molecular determinism of prickles. Using a segregating diploid rose F1 population, we detected two types of prickles (glandular and non-glandular) in the progeny. We scored the number of non-glandular prickles on the floral and main stems for three years. We performed QTL analysis and detected four prickle loci on LG1, 3, 4 and 6. We determined the credible interval on the reference genome. The QTL on LG3 is a major locus that controls the presence of prickles, and three QTLs (LG3, 4 and 1) may be responsible for prickle density. We further revealed that glabrous hybrids are caused by the combination of the two recessive alleles from both parents. In order to test whether rose prickles could originate from a 'trichome-like structure,' we used a candidate approach to characterize rose gene homologues known in Arabidopsis, involved in trichome initiation. Four of these homologues were located within the overlapping credible interval of the detected QTLs. Transcript accumulation analysis weakly supports the involvement of trichome homologous genes, in the molecular control of prickle initiation. Our studies provide strong evidence for a complex genetic determinism of stem prickle and could help to establish guidelines for glabrous rose breeding. New insights into the relationship between prickles and trichomes constitute valuable information for reverse genetic research on prickles.
Collapse
Affiliation(s)
- N N Zhou
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France.
- National Engineering Research Center for Ornamental Horticulture; Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650231, China.
| | - K X Tang
- National Engineering Research Center for Ornamental Horticulture; Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650231, China
| | - J Jeauffre
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - T Thouroude
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - D C Lopez Arias
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - F Foucher
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| | - L Hibrand-Saint Oyant
- INRAE, GDO-IRHS (Genetics and Diversity of Ornamental Plants, Institut de Recherche en Horticulture Et Semences), Université D'Angers, Agrocampus-Ouest, SFR 4207 QUASAV, 49071, Angers, France
| |
Collapse
|
12
|
Li S, Yang G, Yang S, Just J, Yan H, Zhou N, Jian H, Wang Q, Chen M, Qiu X, Zhang H, Dong X, Jiang X, Sun Y, Zhong M, Bendahmane M, Ning G, Ge H, Hu JY, Tang K. The development of a high-density genetic map significantly improves the quality of reference genome assemblies for rose. Sci Rep 2019; 9:5985. [PMID: 30979937 PMCID: PMC6461668 DOI: 10.1038/s41598-019-42428-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/07/2019] [Indexed: 01/11/2023] Open
Abstract
Roses are important woody plants featuring a set of important traits that cannot be investigated in traditional model plants. Here, we used the restriction-site associated DNA sequencing (RAD-seq) technology to develop a high-density linkage map of the backcross progeny (BC1F1) between Rosa chinensis 'Old Blush' (OB) and R. wichuraiana 'Basyes' Thornless' (BT). We obtained 643.63 million pair-end reads and identified 139,834 polymorphic tags that were distributed uniformly in the rose genome. 2,213 reliable markers were assigned to seven linkage groups (LGs). The length of the genetic map was 1,027.425 cM in total with a mean distance of 0.96 cM per marker locus. This new linkage map allowed anchoring an extra of 1.21/23.14 Mb (12.18/44.52%) of the unassembled OB scaffolds to the seven reference pseudo-chromosomes, thus significantly improved the quality of assembly of OB reference genome. We demonstrate that, while this new linkage map shares high collinearity level with strawberry genome, it also features two chromosomal rearrangements, indicating its usefulness as a resource for understanding the evolutionary scenario among Rosaceae genomes. Together with the newly released genome sequences for OB, this linkage map will facilitate the identification of genetic components underpinning key agricultural and biological traits, hence should greatly advance the studies and breeding efforts of rose.
Collapse
Affiliation(s)
- Shubin Li
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Guoqian Yang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan Province, China
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Shuhua Yang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jeremy Just
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69364, Lyon, France
| | - Huijun Yan
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Ningning Zhou
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Hongying Jian
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Qigang Wang
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Min Chen
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Xianqin Qiu
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Hao Zhang
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China
| | - Xue Dong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaodong Jiang
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan Province, China
| | - Yibo Sun
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan Province, China
| | - Micai Zhong
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Sciences, University of Chinese Academy of Sciences, Kunming, 650201, Yunnan Province, China
| | - Mohammed Bendahmane
- Laboratoire Reproduction et Développement des Plantes, Univ Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69364, Lyon, France
| | - Guogui Ning
- Key laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture & Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hong Ge
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Jin-Yong Hu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Kaixue Tang
- National Engineering Research Center For Ornamental Horticulture, Flower Research Institute, Yunnan Academy of Agricultural Sciences; Yunnan Flower Breeding Key Lab, Kunming, 650231, China.
| |
Collapse
|
13
|
Yan M, Byrne D, Klein P, van de Weg W, Yang J, Cai L. Black spot partial resistance in diploid roses:
QTL discovery and linkage map creation. ACTA ACUST UNITED AC 2019. [DOI: 10.17660/actahortic.2019.1232.21] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Smulders MJM, Arens P, Bourke PM, Debener T, Linde M, Riek JD, Leus L, Ruttink T, Baudino S, Hibrant Saint-Oyant L, Clotault J, Foucher F. In the name of the rose: a roadmap for rose research in the genome era. HORTICULTURE RESEARCH 2019; 6:65. [PMID: 31069087 PMCID: PMC6499834 DOI: 10.1038/s41438-019-0156-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/18/2019] [Indexed: 05/07/2023]
Abstract
The recent completion of the rose genome sequence is not the end of a process, but rather a starting point that opens up a whole set of new and exciting activities. Next to a high-quality genome sequence other genomic tools have also become available for rose, including transcriptomics data, a high-density single-nucleotide polymorphism array and software to perform linkage and quantitative trait locus mapping in polyploids. Rose cultivars are highly heterogeneous and diverse. This vast diversity in cultivated roses can be explained through the genetic potential of the genus, introgressions from wild species into commercial tetraploid germplasm and the inimitable efforts of historical breeders. We can now investigate how this diversity can best be exploited and refined in future breeding work, given the rich molecular toolbox now available to the rose breeding community. This paper presents possible lines of research now that rose has entered the genomics era, and attempts to partially answer the question that arises after the completion of any draft genome sequence: 'Now that we have "the" genome, what's next?'. Having access to a genome sequence will allow both (fundamental) scientific and (applied) breeding-orientated questions to be addressed. We outline possible approaches for a number of these questions.
Collapse
Affiliation(s)
- Marinus J. M. Smulders
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Peter M. Bourke
- Plant Breeding, Wageningen University and Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thomas Debener
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Marcus Linde
- Faculty of Natural Sciences, Institute for Plant Genetics, Molecular Plant Breeding, Leibniz University of Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany
| | - Jan De Riek
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Leen Leus
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Tom Ruttink
- ILVO, Plant Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Caritasstraat 39, 9090 Melle, Belgium
| | - Sylvie Baudino
- BVpam CNRS, FRE 3727, UJM-Saint-Étienne, Univ. Lyon, Saint-Etienne, France
| | - Laurence Hibrant Saint-Oyant
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Jeremy Clotault
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| | - Fabrice Foucher
- IRHS, Agrocampus-Ouest, INRA, Université d’Angers, SFR 4207 QuaSaV, 42 rue Georges Morel BP 60057, 49 071 Beaucouzé, France
| |
Collapse
|
15
|
Bourke PM, Gitonga VW, Voorrips RE, Visser RGF, Krens FA, Maliepaard C. Multi-environment QTL analysis of plant and flower morphological traits in tetraploid rose. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2055-2069. [PMID: 29961102 PMCID: PMC6154034 DOI: 10.1007/s00122-018-3132-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 06/20/2018] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Rose morphological traits such as prickles or petal number are influenced by a few key QTL which were detected across different growing environments-necessary for genomics-assisted selection in non-target environments. Rose, one of the world's most-loved and commercially important ornamental plants, is predominantly tetraploid, possessing four rather than two copies of each chromosome. This condition complicates genetic analysis, and so the majority of previous genetic studies in rose have been performed at the diploid level. However, there may be advantages to performing genetic analyses at the tetraploid level, not least because this is the ploidy level of most breeding germplasm. Here, we apply recently developed methods for quantitative trait loci (QTL) detection in a segregating tetraploid rose population (F1 = 151) to unravel the genetic control of a number of key morphological traits. These traits were measured both in the Netherlands and Kenya. Since ornamental plant breeding and selection are increasingly being performed at locations other than the production sites, environment-neutral QTL are required to maximise the effectiveness of breeding programmes. We detected a number of robust, multi-environment QTL for such traits as stem and petiole prickles, petal number and stem length that were localised on the recently developed high-density SNP linkage map for rose. Our work explores the complex genetic architecture of these important morphological traits at the tetraploid level, while helping to advance the methods for marker-trait exploration in polyploid species.
Collapse
Affiliation(s)
- Peter M Bourke
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Virginia W Gitonga
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Selecta Kenya GmbH & Co. KG, P. O. Box 64132, Nairobi, 00620, Kenya
| | - Roeland E Voorrips
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Richard G F Visser
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Frans A Krens
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Chris Maliepaard
- Plant Breeding, Wageningen University and Research, Droevendaalsesteeg 1, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
16
|
Wu L, Zhang X, Xu B, Li Y, Jia L, Wang R, Ren X, Wang G, Xia Q. Identification and expression analysis of EDR1-like genes in tobacco ( Nicotiana tabacum) in response to Golovinomyces orontii. PeerJ 2018; 6:e5244. [PMID: 30018863 PMCID: PMC6044316 DOI: 10.7717/peerj.5244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Accepted: 06/26/2018] [Indexed: 01/15/2023] Open
Abstract
ENHANCED DISEASE RESISTANCE1 (EDR1) encodes a Raf-like mitogen-activated protein kinase, and it acts as a negative regulator of disease resistance and ethylene-induced senescence. Mutations in the EDR1 gene can enhance resistance to powdery mildew both in monocotyledonous and dicotyledonous plants. However, little is known about EDR1-like gene members from a genome-wide perspective in plants. In this study, the tobacco (Nicotiana tabacum)EDR1-like gene family was first systematically analyzed. We identified 19 EDR1-like genes in tobacco, and compared them to those from Arabidopsis, tomato and rice. Phylogenetic analyses divided the EDR1-like gene family into six clades, among them monocot and dicot plants were respectively divided into two sub-clades. NtEDR1-1A and NtEDR1-1B were classified into clade I in which the other members have been reported to negatively regulate plant resistance to powdery mildew. The expression patterns of tobacco EDR1-like genes were analyzed after plants were challenged by Golovinomyces orontii, and showed that several other EDR1-like genes were induced after infection, as well as NtEDR1-1A and NtEDR1-1B. Expression analysis showed that NtEDR1-13 and NtEDR1-16 had exclusively abundant expression patterns in roots and leaves, respectively, and the remaining NtEDR1-like members were actively expressed in most of the tissue/organ samples investigated. Our findings will contribute to further study of the physiological functions of EDR1-like genes in tobacco.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Xiaoying Zhang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Bingxin Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Yueyue Li
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Ling Jia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Rengang Wang
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Xueliang Ren
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, China
| | - Genhong Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China
| |
Collapse
|
17
|
Proteomic Analysis of Aphid-Resistant and -Sensitive Rose ( Rosa Hybrida) Cultivars at Two Developmental Stages. Proteomes 2018; 6:proteomes6020025. [PMID: 29799446 PMCID: PMC6027261 DOI: 10.3390/proteomes6020025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/22/2018] [Accepted: 05/23/2018] [Indexed: 01/05/2023] Open
Abstract
The rose is one the most commercially grown and costly ornamental plants because of its aesthetic beauty and aroma. A large number of pests attack its buds, flowers, leaves, and stem at every growing stage due to its high sugar content. The most common pest on roses are aphids which are considered to be the major cause for product loss. Aphid infestations lead to major changes in rose plants, such as large and irregular holes in petals, intact leaves and devouring tissues. It is hypothesized that different cut rose cultivars would have different levels of sensitivity or resistance to aphids, since different levels of infestation are observed in commercially cut rose production greenhouses. The present work compared four cut rose cultivars which were bred in Korea and were either resistant or sensitive to aphid infestation at different flower developmental stages. An integrative study was conducted using comprehensive proteome analyses. Proteins related to ubiquitin metabolism and the stress response were differentially expressed due to aphid infestation. The regulations and possible functions of identified proteins are presented in detail. The differential expressions of the identified proteins were validated by immunoblotting and blue native page. In addition, total sugar and carbohydrate content were also observed.
Collapse
|
18
|
Yan M, Byrne DH, Klein PE, Yang J, Dong Q, Anderson N. Genotyping-by-sequencing application on diploid rose and a resulting high-density SNP-based consensus map. HORTICULTURE RESEARCH 2018; 5:17. [PMID: 29619228 PMCID: PMC5878828 DOI: 10.1038/s41438-018-0021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/03/2017] [Accepted: 01/22/2018] [Indexed: 05/09/2023]
Abstract
Roses, which have been cultivated for at least 5000 years, are one of the most important ornamental crops in the world. Because of the interspecific nature and high heterozygosity in commercial roses, the genetic resources available for rose are limited. To effectively identify markers associated with QTL controlling important traits, such as disease resistance, abundant markers along the genome and careful phenotyping are required. Utilizing genotyping by sequencing technology and the strawberry genome (Fragaria vesca v2.0.a1) as a reference, we generated thousands of informative single nucleotide polymorphism (SNP) markers. These SNPs along with known bridge simple sequence repeat (SSR) markers allowed us to create the first high-density integrated consensus map for diploid roses. Individual maps were first created for populations J06-20-14-3×"Little Chief" (J14-3×LC), J06-20-14-3×"Vineyard Song" (J14-3×VS) and "Old Blush"×"Red Fairy" (OB×RF) and these maps were linked with 824 SNPs and 13 SSR bridge markers. The anchor SSR markers were used to determine the numbering of the rose linkage groups. The diploid consensus map has seven linkage groups (LGs), a total length of 892.2 cM, and an average distance of 0.25 cM between 3527 markers. By combining three individual populations, the marker density and the reliability of the marker order in the consensus map was improved over a single population map. Extensive synteny between the strawberry and diploid rose genomes was observed. This consensus map will serve as the tool for the discovery of marker-trait associations in rose breeding using pedigree-based analysis. The high level of conservation observed between the strawberry and rose genomes will help further comparative studies within the Rosaceae family and may aid in the identification of candidate genes within QTL regions.
Collapse
Affiliation(s)
- Muqing Yan
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - David H. Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| | - Patricia E. Klein
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
| | - Jizhou Yang
- Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, TX 77843 USA
- Present Address: Department of Computer Science, San Francisco State University, San Francisco, CA 94132 USA
| | - Qianni Dong
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
- Present Address: Monsanto Company, 700 Chesterfield Parkway West, Chesterfield, MO 63017 USA
| | - Natalie Anderson
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843 USA
| |
Collapse
|
19
|
Dong X, Jiang X, Kuang G, Wang Q, Zhong M, Jin D, Hu J. Genetic control of flowering time in woody plants: Roses as an emerging model. PLANT DIVERSITY 2017; 39:104-110. [PMID: 30159498 PMCID: PMC6112279 DOI: 10.1016/j.pld.2017.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 05/11/2023]
Abstract
Genetic control of the timing of flowering in woody plants is complex and has yet to be adequately investigated due to their long life-cycle and difficulties in genetic modification. Studies in Populus, one of the best woody plant models, have revealed a highly conserved genetic network for flowering timing in annuals. However, traits like continuous flowering cannot be addressed with Populus. Roses and strawberries have relatively small, diploid genomes and feature enormous natural variation. With the development of new genetic populations and genomic tools, roses and strawberries have become good models for studying the molecular mechanisms underpinning the regulation of flowering in woody plants. Here, we review findings on the molecular and genetic factors controlling continuous flowering in roses and woodland strawberries. Natural variation at TFL1 orthologous genes in both roses and strawberries seems be the key plausible factor that regulates continuous flowering. However, recent efforts suggest that a two-recessive-loci model may explain the controlling of continuous flowering in roses. We propose that epigenetic factors, including non-coding RNAs or chromatin-related factors, might also play a role. Insights into the genetic control of flowering time variation in roses should benefit the development of new germplasm for woody crops and shed light on the molecular genetic bases for the production and maintenance of plant biodiversity.
Collapse
Affiliation(s)
- Xue Dong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Xiaodong Jiang
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Guoqiang Kuang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Qingbo Wang
- Second High School, Rongcheng 264309, Shandong Province, PR China
| | - Micai Zhong
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Dongmin Jin
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
| | - Jinyong Hu
- Group of Plant Molecular Genetics and Adaptation, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences. Lanhei Road 132, Heilongtan, Kunming 650201, Yunnan Province, PR China
- Corresponding author.
| |
Collapse
|
20
|
Kuhn H, Kwaaitaal M, Kusch S, Acevedo-Garcia J, Wu H, Panstruga R. Biotrophy at Its Best: Novel Findings and Unsolved Mysteries of the Arabidopsis-Powdery Mildew Pathosystem. THE ARABIDOPSIS BOOK 2016; 14:e0184. [PMID: 27489521 PMCID: PMC4957506 DOI: 10.1199/tab.0184] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
It is generally accepted in plant-microbe interactions research that disease is the exception rather than a common outcome of pathogen attack. However, in nature, plants with symptoms that signify colonization by obligate biotrophic powdery mildew fungi are omnipresent. The pervasiveness of the disease and the fact that many economically important plants are prone to infection by powdery mildew fungi drives research on this interaction. The competence of powdery mildew fungi to establish and maintain true biotrophic relationships renders the interaction a paramount example of a pathogenic plant-microbe biotrophy. However, molecular details underlying the interaction are in many respects still a mystery. Since its introduction in 1990, the Arabidopsis-powdery mildew pathosystem has become a popular model to study molecular processes governing powdery mildew infection. Due to the many advantages that the host Arabidopsis offers in terms of molecular and genetic tools this pathosystem has great capacity to answer some of the questions of how biotrophic pathogens overcome plant defense and establish a persistent interaction that nourishes the invader while in parallel maintaining viability of the plant host.
Collapse
Affiliation(s)
- Hannah Kuhn
- RWTH Aachen University, Institute for Biology I, Unit of Plant
Molecular Cell Biology, Worringerweg 1, D-52056 Aachen, Germany
- Address correspondence to
| | | | | | | | | | | |
Collapse
|
21
|
Vukosavljev M, Arens P, Voorrips RE, van ‘t Westende WPC, Esselink GD, Bourke PM, Cox P, van de Weg WE, Visser RGF, Maliepaard C, Smulders MJM. High-density SNP-based genetic maps for the parents of an outcrossed and a selfed tetraploid garden rose cross, inferred from admixed progeny using the 68k rose SNP array. HORTICULTURE RESEARCH 2016; 3:16052. [PMID: 27818777 PMCID: PMC5080978 DOI: 10.1038/hortres.2016.52] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 09/26/2016] [Accepted: 09/30/2016] [Indexed: 05/21/2023]
Abstract
Dense genetic maps create a base for QTL analysis of important traits and future implementation of marker-assisted breeding. In tetraploid rose, the existing linkage maps include <300 markers to cover 28 linkage groups (4 homologous sets of 7 chromosomes). Here we used the 68k WagRhSNP Axiom single-nucleotide polymorphism (SNP) array for rose, in combination with SNP dosage calling at the tetraploid level, to genotype offspring from the garden rose cultivar 'Red New Dawn'. The offspring proved to be not from a single bi-parental cross. In rose breeding, crosses with unintended parents occur regularly. We developed a strategy to separate progeny into putative populations, even while one of the parents was unknown, using principle component analysis on pairwise genetic distances based on sets of selected SNP markers that were homozygous, and therefore uninformative for one parent. One of the inferred populations was consistent with self-fertilization of 'Red New Dawn'. Subsequently, linkage maps were generated for a bi-parental and a self-pollinated population with 'Red New Dawn' as the common maternal parent. The densest map, for the selfed parent, had 1929 SNP markers on 25 linkage groups, covering 1765.5 cM at an average marker distance of 0.9 cM. Synteny with the strawberry (Fragaria vesca) genome was extensive. Rose ICM1 corresponded to F. vesca pseudochromosome 7 (Fv7), ICM4 to Fv4, ICM5 to Fv3, ICM6 to Fv2 and ICM7 to Fv5. Rose ICM2 corresponded to parts of F. vesca pseudochromosomes 1 and 6, whereas ICM3 is syntenic to the remainder of Fv6.
Collapse
Affiliation(s)
- Mirjana Vukosavljev
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Paul Arens
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Roeland E Voorrips
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Wendy PC van ‘t Westende
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - GD Esselink
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Peter M Bourke
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Peter Cox
- Roath BV, Eindhoven, The Netherlands
| | - W Eric van de Weg
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Richard GF Visser
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Chris Maliepaard
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
| | - Marinus JM Smulders
- Wageningen UR Plant Breeding, Wageningen University & Research, NL-6700 AJ Wageningen, The Netherlands
- ()
| |
Collapse
|
22
|
Schulz DF, Schott RT, Voorrips RE, Smulders MJM, Linde M, Debener T. Genome-Wide Association Analysis of the Anthocyanin and Carotenoid Contents of Rose Petals. FRONTIERS IN PLANT SCIENCE 2016; 7:1798. [PMID: 27999579 PMCID: PMC5138216 DOI: 10.3389/fpls.2016.01798] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 11/15/2016] [Indexed: 05/18/2023]
Abstract
Petal color is one of the key characteristics determining the attractiveness and therefore the commercial value of an ornamental crop. Here, we present the first genome-wide association study for the important ornamental crop rose, focusing on the anthocyanin and carotenoid contents in petals of 96 diverse tetraploid garden rose genotypes. Cultivated roses display a vast phenotypic and genetic diversity and are therefore ideal targets for association genetics. For marker analysis, we used a recently designed Axiom SNP chip comprising 68,000 SNPs with additionally 281 SSRs, 400 AFLPs and 246 markers from candidate genes. An analysis of the structure of the rose population revealed three subpopulations with most of the genetic variation between individual genotypes rather than between clusters and with a high average proportion of heterozygous loci. The mapping of markers significantly associated with anthocyanin and carotenoid content to the related Fragaria and Prunus genomes revealed clusters of associated markers indicating five genomic regions associated with the total anthocyanin content and two large clusters associated with the carotenoid content. Among the marker clusters associated with the phenotypes, we found several candidate genes with known functions in either the anthocyanin or the carotenoid biosynthesis pathways. Among others, we identified a glutathione-S-transferase, 4CL, an auxin response factor and F3'H as candidate genes affecting anthocyanin concentration, and CCD4 and Zeaxanthine epoxidase as candidates affecting the concentration of carotenoids. These markers are starting points for future validation experiments in independent populations as well as for functional genomic studies to identify the causal factors for the observed color phenotypes. Furthermore, validated markers may be interesting tools for marker-assisted selection in commercial breeding programmes in that they provide the tools to identify superior parental combinations that combine several associated markers in higher dosages.
Collapse
Affiliation(s)
- Dietmar F. Schulz
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Rena T. Schott
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Roeland E. Voorrips
- Wageningen University and Research Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Marinus J. M. Smulders
- Wageningen University and Research Plant Breeding, Wageningen University and Research CentreWageningen, Netherlands
| | - Marcus Linde
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
| | - Thomas Debener
- Abteilung Molekulare Pflanzenzüchtung, Institute for Plant Genetics, Leibnitz University HannoverHannover, Germany
- *Correspondence: Thomas Debener
| |
Collapse
|
23
|
Debener T, Byrne DH. Disease resistance breeding in rose: current status and potential of biotechnological tools. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 228:107-17. [PMID: 25438791 DOI: 10.1016/j.plantsci.2014.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/30/2014] [Accepted: 04/03/2014] [Indexed: 05/09/2023]
Abstract
The cultivated rose is a multispecies complex for which a high level of disease protection is needed due to the low tolerance of blemishes in ornamental plants. The most important fungal diseases are black spot, powdery mildew, botrytis and downy mildew. Rose rosette, a lethal viral pathogen, is emerging as a devastating disease in North America. Currently rose breeders use a recurrent phenotypic selection approach and perform selection for disease resistance for most pathogen issues in a 2-3 year field trial. Marker assisted selection could accelerate this breeding process. Thus far markers have been identified for resistance to black spot (Rdrs) and powdery mildew and with the ability of genotyping by sequencing to generate 1000s of markers our ability to identify markers useful in plant improvement should increase exponentially. Transgenic rose lines with various fungal resistance genes inserted have shown limited success and RNAi technology has potential to provide virus resistance. Roses, as do other plants, have sequences homologous to characterized R-genes in their genomes, some which have been related to specific disease resistance. With improving next generation sequencing technology, our ability to do genomic and transcriptomic studies of the resistance related genes in both the rose and the pathogens to reveal novel gene targets to develop resistant roses will accelerate. Finally, the development of designer nucleases opens up a potentially non-GMO approach to directly modify a rose's DNA to create a disease resistant rose. Although there is much potential, at present rose breeders are not using marker assisted breeding primarily because a good suite of marker/trait associations (MTA) that would ensure a path to stable disease resistance is not available. As our genomic analytical tools improve, so will our ability to identify useful genes and linked markers. Once these MTAs are available, it will be the cost savings, both in time and money, that will convince the breeders to use the technology.
Collapse
Affiliation(s)
- Thomas Debener
- Leibniz University of Hannover, Faculty of Natural Sciences, Institute for Plant Genetics, Hannover, Germany
| | - David H Byrne
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA.
| |
Collapse
|
24
|
Acevedo-Garcia J, Kusch S, Panstruga R. Magical mystery tour: MLO proteins in plant immunity and beyond. THE NEW PHYTOLOGIST 2014; 204:273-81. [PMID: 25453131 DOI: 10.1111/nph.12889] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Stable heritable restriction of the ubiquitous powdery mildew disease is a desirable trait for agri and horticulture. In barley (Hordeum vulgare), loss-of-function mutant alleles of the Mildew resistance locus o (Mlo) gene confer broad-spectrum resistance to almost all known isolates of the fungal barley powdery mildew pathogen, Blumeria graminis f.sp. hordei. Despite extensive cultivation of barley mlo genotypes, mlo resistance has been durable in the field. Mlo genes are present as small families in the genomes of all higher plant species. The presumed negative regulatory role of particular members in plant immunity is evolutionarily conserved, as powdery mildew resistant mlo mutants have also been described in Arabidopsis thaliana, tomato(Solanum lycopersicum) and pea (Pisum sativum). Barley Mlo encodes a plasma membrane-localized seven-transmembrane domain protein of unknown biochemical activity. Here, we review the known requirements for mlo-mediated disease resistance in barley and Arabidopsis and reflect current views regarding Mlo function. We discuss additional mlo mutant phenotypes recently discovered in Arabidopsis and present a meta-analysis of the phylogenetic relationships within the Mlo family. Finally, we consider the novel versatile tools for functional analysis and targeted genome modification that can be used to induce mlo-based powdery mildew resistance in virtually any plant species.
Collapse
Affiliation(s)
- Johanna Acevedo-Garcia
- Unit of Plant Molecular Cell Biology, Institute for Biology I, RWTH Aachen University, Worringerweg 1, 52056 Aachen, Germany
| | | | | |
Collapse
|
25
|
Kirov I, Van Laere K, De Riek J, De Keyser E, Van Roy N, Khrustaleva L. Anchoring linkage groups of the Rosa genetic map to physical chromosomes with tyramide-FISH and EST-SNP markers. PLoS One 2014; 9:e95793. [PMID: 24755945 PMCID: PMC3995938 DOI: 10.1371/journal.pone.0095793] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 03/31/2014] [Indexed: 11/29/2022] Open
Abstract
In order to anchor Rosa linkage groups to physical chromosomes, a combination of the Tyramide-FISH technology and the modern molecular marker system based on High Resolution Melting (HRM) is an efficient approach. Although, Tyramide-FISH is a very promising technique for the visualization of short DNA probes, it is very challenging for plant species with small chromosomes such as Rosa. In this study, we successfully applied the Tyramide-FISH technique for Rosa and compared different detection systems. An indirect detection system exploiting biotinylated tyramides was shown to be the most suitable technique for reliable signal detection. Three gene fragments with a size of 1100 pb–1700 bp (Phenylalanine Ammonia Lyase, Pyrroline-5-Carboxylate Synthase and Orcinol O-Methyl Transferase) have been physically mapped on chromosomes 7, 4 and 1, respectively, of Rosa wichurana. The signal frequency was between 25% and 40%. HRM markers of these 3 gene fragments were used to include the gene fragments on the existing genetic linkage map of Rosa wichurana. As a result, three linkage groups could be anchored to their physical chromosomes. The information was used to check for synteny between the Rosa chromosomes and Fragaria.
Collapse
Affiliation(s)
- Ilya Kirov
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Katrijn Van Laere
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
- * E-mail:
| | - Jan De Riek
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Ellen De Keyser
- Institute for Agricultural and Fisheries Research (ILVO), Plant Sciences Unit, Applied Genetics and Breeding, Melle, Belgium
| | - Nadine Van Roy
- Center of Medical Genetics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Ludmila Khrustaleva
- Center of Molecular Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
- Department of Genetics and Biotechnology, Russian State Agrarian University - Moscow Timiryazev Agricultural Academy, Moscow, Russia
| |
Collapse
|
26
|
Yu C, Luo L, Pan H, Guo X, Wan H, Zhang Q. Filling gaps with construction of a genetic linkage map in tetraploid roses. FRONTIERS IN PLANT SCIENCE 2014; 5:796. [PMID: 25628638 PMCID: PMC4292389 DOI: 10.3389/fpls.2014.00796] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 12/21/2014] [Indexed: 05/21/2023]
Abstract
Rose (Rosa sp.) is one of the most economically important ornamental crops worldwide. The present work contains a genetic linkage map for tetraploid roses that was constructed from an F1 segregation population using AFLPs and SSRs on 189 individuals. The preliminary 'Yunzheng Xiawei' and 'Sun City' maps consisted of 298 and 255 markers arranged into 26 and 32 linkage groups, respectively. The recombined parental maps covered 737 and 752 cM of the genome, respectively. The integrated linkage map was composed of 295 polymorphic markers that spanned 874 cM, and it had a mean intermarker distance of 2.9 cM. In addition, a set of newly developed EST-SSRs that are distributed evenly throughout the mapping population were released. The work identified 67 anchoring points that came from 43 common SSRs. The results that were produced from a large number of individuals (189) and polymorphic SSRs (242) will enhance the ability to construct higher density consensus maps with the available diploid level rose maps, and they will definitely serve as a tool for accurate QTL detection and marker assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Qixiang Zhang
- *Correspondence: Qixiang Zhang, Beijing Key Laboratory of Ornamental Plants Germplasm Innovation and Molecular Breeding, National Engineering Research Center for Floriculture, Beijing Laboratory of Urban and rural ecological environment and College of Landscape Architecture, Beijing Forestry University, 35# Qinghua East Road, Beijing, 100083, China e-mail:
| |
Collapse
|
27
|
KOBAYASHI M, KANTO T, FUJIKAWA T, YAMADA M, ISHIWATA M, SATOU M, HISAMATSU T. Supplemental UV Radiation Controls Rose Powdery Mildew Disease under the Greenhouse Conditions. ACTA ACUST UNITED AC 2014. [DOI: 10.2525/ecb.51.157] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
28
|
Longhi S, Giongo L, Buti M, Surbanovski N, Viola R, Velasco R, Ward JA, Sargent DJ. Molecular genetics and genomics of the Rosoideae: state of the art and future perspectives. HORTICULTURE RESEARCH 2014; 1:1. [PMID: 26504527 PMCID: PMC4591673 DOI: 10.1038/hortres.2014.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 11/24/2013] [Indexed: 05/04/2023]
Abstract
The Rosoideae is a subfamily of the Rosaceae that contains a number of species of economic importance, including the soft fruit species strawberry (Fragaria ×ananassa), red (Rubus idaeus) and black (Rubus occidentalis) raspberries, blackberries (Rubus spp.) and one of the most economically important cut flower genera, the roses (Rosa spp.). Molecular genetics and genomics resources for the Rosoideae have developed rapidly over the past two decades, beginning with the development and application of a number of molecular marker types including restriction fragment length polymorphisms, amplified fragment length polymorphisms and microsatellites, and culminating in the recent publication of the genome sequence of the woodland strawberry, Fragaria vesca, and the development of high throughput single nucleotide polymorphism (SNP)-genotyping resources for Fragaria, Rosa and Rubus. These tools have been used to identify genes and other functional elements that control traits of economic importance, to study the evolution of plant genome structure within the subfamily, and are beginning to facilitate genomic-assisted breeding through the development and deployment of markers linked to traits such as aspects of fruit quality, disease resistance and the timing of flowering. In this review, we report on the developments that have been made over the last 20 years in the field of molecular genetics and structural genomics within the Rosoideae, comment on how the knowledge gained will improve the efficiency of cultivar development and discuss how these advances will enhance our understanding of the biological processes determining agronomically important traits in all Rosoideae species.
Collapse
Affiliation(s)
- Sara Longhi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Lara Giongo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Matteo Buti
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Nada Surbanovski
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Roberto Viola
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | - Riccardo Velasco
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| | | | - Daniel J Sargent
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all’Adige, Italy
| |
Collapse
|
29
|
Bendahmane M, Dubois A, Raymond O, Bris ML. Genetics and genomics of flower initiation and development in roses. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:847-57. [PMID: 23364936 PMCID: PMC3594942 DOI: 10.1093/jxb/ers387] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Roses hold high symbolic value and great cultural importance in different societies throughout human history. They are widely used as garden ornamental plants, as cut flowers, and for the production of essential oils for the perfume and cosmetic industries. Domestication of roses has a long and complex history, and the rose species have been hybridized across vast geographic areas such as Europe, Asia, and the Middle East. The domestication processes selected several flower characters affecting floral quality, such as recurrent flowering, double flowers, petal colours, and fragrance. The molecular and genetic events that determine some of these flower characters cannot be studied using model species such as Arabidopsis thaliana, or at least only in a limited manner. In this review, we comment on the recent development of genetic, genomic, and transcriptomic tools for roses, and then focus on recent advances that have helped unravel the molecular mechanisms underlying several rose floral traits.
Collapse
Affiliation(s)
- Mohammed Bendahmane
- Reproduction et Développement des Plantes UMR INRA-CNRS-Université Lyon 1-ENSL, IFR128 BioSciences-Gerland Lyon sud, Ecole Normale Supérieure, 46 allée d'Italie, Lyon Cedex 07, France.
| | | | | | | |
Collapse
|
30
|
Kaufmann H, Qiu X, Wehmeyer J, Debener T. Isolation, Molecular Characterization, and Mapping of Four Rose MLO Orthologs. FRONTIERS IN PLANT SCIENCE 2012; 3:244. [PMID: 23130018 PMCID: PMC3487107 DOI: 10.3389/fpls.2012.00244] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 10/12/2012] [Indexed: 05/24/2023]
Abstract
Powdery mildew is a major disease of economic importance in cut and pot roses. As an alternative to conventional resistance breeding strategies utilizing single-dominant genes or QTLs, mildew resistance locus o (MLO)-based resistance might offer some advantages. In dicots such as Arabidopsis, pea, and tomato, loss-of-function mutations in MLO genes confer high levels of broad-spectrum resistance. Here, we report the isolation and characterization of four MLO homologs from a large rose EST collection isolated from leaves. These genes are phylogenetically closely related to other dicot MLO genes that are involved in plant powdery mildew interactions. Therefore, they are candidates for MLO genes involved in rose powdery mildew interactions. Two of the four isolated genes contain all of the sequence signatures considered to be diagnostic for MLO genes. We mapped all four genes to three linkage groups and conducted the first analysis of alternative alleles. This information is discussed in regards to a reverse genetics approach aimed at the selection of rose plants that are homozygous for loss-of-function in one or more MLO genes.
Collapse
Affiliation(s)
- Helgard Kaufmann
- Department of Molecular Breeding, Institute for Plant Genetics, Leibniz University of Hannover Hannover, Germany
| | | | | | | |
Collapse
|
31
|
Kawamura K, Hibrand-Saint Oyant L, Crespel L, Thouroude T, Lalanne D, Foucher F. Quantitative trait loci for flowering time and inflorescence architecture in rose. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:661-75. [PMID: 21046064 DOI: 10.1007/s00122-010-1476-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Accepted: 09/30/2010] [Indexed: 05/09/2023]
Abstract
The pattern of development of the inflorescence is an important characteristic in ornamental plants, where the economic value is in the flower. The genetic determinism of inflorescence architecture is poorly understood, especially in woody perennial plants with long life cycles. Our objective was to study the genetic determinism of this characteristic in rose. The genetic architectures of 10 traits associated with the developmental timing and architecture of the inflorescence, and with flower production were investigated in a F(1) diploid garden rose population, based on intensive measurements of phenological and morphological traits in a field. There were substantial genetic variations in inflorescence development traits, with broad-sense heritabilities ranging from 0.82 to 0.93. Genotypic correlations were significant for most (87%) pairs of traits, suggesting either pleiotropy or tight linkage among loci. However, non-significant and low correlations between some pairs of traits revealed two independent developmental pathways controlling inflorescence architecture: (1) the production of inflorescence nodes increased the number of branches and the production of flowers; (2) internode elongation connected with frequent branching increased the number of branches and the production of flowers. QTL mapping identified six common QTL regions (cQTL) for inflorescence developmental traits. A QTL for flowering time and many inflorescence traits were mapped to the same cQTL. Several candidate genes that are known to control inflorescence developmental traits and gibberellin signaling in Arabidopsis thaliana were mapped in rose. Rose orthologues of FLOWERING LOCUS T (RoFT), TERMINAL FLOWER 1 (RoKSN), SPINDLY (RoSPINDLY), DELLA (RoDELLA), and SLEEPY (RoSLEEPY) co-localized with cQTL for relevant traits. This is the first report on the genetic basis of complex inflorescence developmental traits in rose.
Collapse
Affiliation(s)
- Koji Kawamura
- INRA d'Angers Nantes, IFR 149 Quasav, UMR 1259 GenHort, Beaucouzé, France
| | | | | | | | | | | |
Collapse
|
32
|
Spiller M, Linde M, Hibrand-Saint Oyant L, Tsai CJ, Byrne DH, Smulders MJM, Foucher F, Debener T. Towards a unified genetic map for diploid roses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 122:489-500. [PMID: 20936462 DOI: 10.1007/s00122-010-1463-x] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2010] [Accepted: 09/24/2010] [Indexed: 05/03/2023]
Abstract
We have constructed the first integrated consensus map (ICM) for rose, based on the information of four diploid populations and more than 1,000 initial markers. The single population maps are linked via 59 bridge markers, on average 8.4 per linkage group (LG). The integrated map comprises 597 markers, 206 of which are sequence-based, distributed over a length of 530 cM on seven LGs. By using a larger effective population size and therefore higher marker density, the marker order in the ICM is more reliable than in the single population maps. This is supported by a more even marker distribution and a decrease in gap sizes in the consensus map as compared to the single population maps. This unified map establishes a standard nomenclature for rose LGs, and presents the location of important ornamental traits, such as self-incompatibility, black spot resistance (Rdr1), scent production and recurrent blooming. In total, the consensus map includes locations for 10 phenotypic single loci, QTLs for 7 different traits and 51 ESTs or gene-based molecular markers. This consensus map combines for the first time the information for traits with high relevance for rose variety development. It will serve as a tool for selective breeding and marker assisted selection. It will benefit future efforts of the rose community to sequence the whole rose genome and will be useful for synteny studies in the Rosaceae family and especially in the section Rosoideae.
Collapse
Affiliation(s)
- Monika Spiller
- Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Spiller M, Berger RG, Debener T. Genetic dissection of scent metabolic profiles in diploid rose populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1461-71. [PMID: 20084491 DOI: 10.1007/s00122-010-1268-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2009] [Accepted: 12/23/2009] [Indexed: 05/15/2023]
Abstract
The scent of flowers is a very important trait in ornamental roses in terms of both quantity and quality. In cut roses, scented varieties are a rare exception. Although metabolic profiling has identified more than 500 scent volatiles from rose flowers so far, nothing is known about the inheritance of scent in roses. Therefore, we analysed scent volatiles and molecular markers in diploid segregating populations. We resolved the patterns of inheritance of three volatiles (nerol, neryl acetate and geranyl acetate) into single Mendelian traits, and we mapped these as single or oligogenic traits in the rose genome. Three other volatiles (geraniol, beta-citronellol and 2-phenylethanol) displayed quantitative variation in the progeny, and we mapped a total of six QTLs influencing the amounts of these volatiles onto the rose marker map. Because we included known scent related genes and newly generated ESTs for scent volatiles as markers, we were able to link scent related QTLs with putative candidate genes. Our results serve as a starting point for both more detailed analyses of complex scent biosynthetic pathways and the development of markers for marker-assisted breeding of scented rose varieties.
Collapse
Affiliation(s)
- M Spiller
- Department of Molecular Plant Breeding, Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Str. 2, 30419, Hannover, Germany
| | | | | |
Collapse
|
34
|
Biber A, Kaufmann H, Linde M, Spiller M, Terefe D, Debener T. Molecular markers from a BAC contig spanning the Rdr1 locus: a tool for marker-assisted selection in roses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:765-73. [PMID: 19911159 DOI: 10.1007/s00122-009-1197-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Accepted: 10/17/2009] [Indexed: 05/03/2023]
Abstract
We constructed a BAC contig of about 300 kb spanning the Rdr1 locus for black spot resistance in Rosa multiflora hybrids, using a new BIBAC library from DNA of this species. From this contig, we developed broadly applicable simple sequence repeat (SSR) markers tightly linked to Rdr1, which are suitable for genetic analyses and marker-assisted selection in roses. As a source for the high molecular weight DNA, we chose the homozygous resistant R. multiflora hybrid 88/124-46. For the assembly of the BAC contig, we made use of molecular markers derived from a previously established R. rugosa contig. In order to increase the resolution for fine mapping, the size of the population was increased to 974 plants. The genomic region spanning Rdr1 is now genetically restricted to 0.2 cM, corresponding to a physical distance of about 300 kb. One single-stranded conformational polymorphism (SSCP) and one SSR marker cosegregate with the Rdr1-mediated black spot resistance, while one SSR and several cleaved amplified polymorphic sequence or SSCP markers are very tightly linked with one to three recombinants among the 974 plants. The benefits of the molecular markers developed from the R. multiflora contig for the genetic analysis of roses and the integration of rose genetic maps are discussed.
Collapse
Affiliation(s)
- Anja Biber
- Institute for Plant Genetics, Leibniz University Hannover, Herrenhaeuser Strasse 2, Hannover, Germany
| | | | | | | | | | | |
Collapse
|