1
|
Ndlovu N, Gowda M, Beyene Y, Das B, Mahabaleswara SL, Makumbi D, Ogugo V, Burgueno J, Crossa J, Spillane C, McKeown PC, Brychkova G, Prasanna BM. A combination of joint linkage and genome-wide association study reveals putative candidate genes associated with resistance to northern corn leaf blight in tropical maize. FRONTIERS IN PLANT SCIENCE 2024; 15:1448961. [PMID: 39421144 PMCID: PMC11484028 DOI: 10.3389/fpls.2024.1448961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/05/2024] [Indexed: 10/19/2024]
Abstract
Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is a major fungal disease affecting maize production in sub-Saharan Africa. Utilizing host plant resistance to mitigate yield losses associated with NCLB can serve as a cost-effective strategy. In this study, we conducted a high-resolution genome-wide association study (GWAS) in an association mapping panel and linkage mapping with three doubled haploid (DH) and three F3 populations of tropical maize. These populations were phenotyped for NCLB resistance across six hotspot environments in Kenya. Across environments and genotypes, NCLB scores ranged from 2.12 to 5.17 (on a scale of 1-9). NCLB disease severity scores exhibited significant genotypic variance and moderate-to-high heritability. From the six biparental populations, 23 quantitative trait loci (QTLs) were identified, each explaining between 2.7% and 15.8% of the observed phenotypic variance. Collectively, the detected QTLs explained 34.28%, 51.37%, 41.12%, 12.46%, 12.11%, and 14.66% of the total phenotypic variance in DH populations 1, 2, and 3 and F3 populations 4, 5, and 6, respectively. GWAS, using 337,110 high-quality single nucleotide polymorphisms (SNPs), identified 15 marker-trait associations and several putative candidate genes linked to NCLB resistance in maize. Joint linkage association mapping (JLAM) identified 37 QTLs for NCLB resistance. Using linkage mapping, JLAM, and GWAS, several QTLs were identified within the genomic region spanning 4 to 15 Mbp on chromosome 2. This genomic region represents a promising target for enhancing NCLB resistance via marker-assisted breeding. Genome-wide predictions revealed moderate correlations with mean values of 0.45, 0.44, 0.55, and 0.42 for within GWAS panel, DH pop1, DH pop2, and DH pop3, respectively. Prediction by incorporating marker-by-environment interactions did not show much improvement. Overall, our findings indicate that NCLB resistance is quantitative in nature and is controlled by few major-effect and many minor-effect QTLs. We conclude that genomic regions consistently detected across mapping approaches and populations should be prioritized for improving NCLB resistance, while genome-wide prediction results can help incorporate both major- and minor-effect genes. This study contributes to a deeper understanding of the genetic and molecular mechanisms driving maize resistance to NCLB.
Collapse
Affiliation(s)
- Noel Ndlovu
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Manje Gowda
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Yoseph Beyene
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Biswanath Das
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Suresh L. Mahabaleswara
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Dan Makumbi
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Veronica Ogugo
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| | - Juan Burgueno
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Jose Crossa
- Biometrics and Statistics Unit, International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Estado. de México, Mexico
| | - Charles Spillane
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Peter C. McKeown
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Galina Brychkova
- Agriculture & Bioeconomy Research Centre, Ryan Institute, University of Galway, Galway, Ireland
| | - Boddupalli M. Prasanna
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Nairobi, Kenya
| |
Collapse
|
2
|
Weiss M, Sniezko RA, Puiu D, Crepeau MW, Stevens K, Salzberg SL, Langley CH, Neale DB, De La Torre AR. Genomic basis of white pine blister rust quantitative disease resistance and its relationship with qualitative resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:365-376. [PMID: 32654344 PMCID: PMC10773528 DOI: 10.1111/tpj.14928] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/17/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
The genomic architecture and molecular mechanisms controlling variation in quantitative disease resistance loci are not well understood in plant species and have been barely studied in long-generation trees. Quantitative trait loci mapping and genome-wide association studies were combined to test a large single nucleotide polymorphism (SNP) set for association with quantitative and qualitative white pine blister rust resistance in sugar pine. In the absence of a chromosome-scale reference genome, a high-density consensus linkage map was generated to obtain locations for associated SNPs. Newly discovered associations for white pine blister rust quantitative disease resistance included 453 SNPs involved in wide biological functions, including genes associated with disease resistance and others involved in morphological and developmental processes. In addition, NBS-LRR pathogen recognition genes were found to be involved in quantitative disease resistance, suggesting these newly reported genes are qualitative genes with partial resistance, they are the result of defeated qualitative resistance due to avirulent races, or they have epistatic effects on qualitative disease resistance genes. This study is a step forward in our understanding of the complex genomic architecture of quantitative disease resistance in long-generation trees, and constitutes the first step towards marker-assisted disease resistance breeding in white pine species.
Collapse
Affiliation(s)
- Matthew Weiss
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| | - Richard A. Sniezko
- Dorena Genetic Resource Center, USDA Forest Service,
Cottage-Grove, OR 97424
| | - Daniela Puiu
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
| | - Marc W. Crepeau
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Kristian Stevens
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - Steven L. Salzberg
- Department of Biomedical Engineering, Computer Science and
Biostatistics and Center for Computational Biology, Johns Hopkins University, 3100
Wyman Park Dr., Wyman Park Building Room S220, Baltimore, MD 21211
- Departments of Computer Science and Biostatistics, Johns
Hopkins University, Baltimore, MD 21218
| | - Charles H. Langley
- Department of Evolution and Ecology, University of
California-Davis, One Shields Avenue, Davis, CA 95616
| | - David B. Neale
- Department of Plant Sciences, University of
California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E.
Pine Knoll, Flagstaff, AZ 86011
| |
Collapse
|
3
|
Increased experimental conditions and marker densities identified more genetic loci associated with southern and northern leaf blight resistance in maize. Sci Rep 2018; 8:6848. [PMID: 29717181 PMCID: PMC5931595 DOI: 10.1038/s41598-018-25304-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/19/2018] [Indexed: 01/01/2023] Open
Abstract
Southern leaf blight (SLB) and northern leaf blight (NLB) are the two major foliar diseases limiting maize production worldwide. Upon previous study with the nested association mapping (NAM) population, which consist of 5,000 recombinant inbred lines from 25 parents crossed with B73, we expanded the phenotyping environments from the United States (US) to China, and increased the marker densities from 1106 to 7386 SNPs for linkage mapping, and from 1.6 to 28.5 million markers for association mapping. We identified 49 SLB and 48 NLB resistance-related unique QTLs in linkage mapping, and multiple loci in association mapping with candidate genes involved in known plant disease-resistance pathways. Furthermore, an independent natural population with 282 diversified inbred lines were sequenced for four candidate genes selected based on their biological functions. Three of them demonstrated significant associations with disease resistance. These findings provided valuable resources for further implementations to develop varieties with superior resistance for NLB and SLB.
Collapse
|
4
|
Lana UGDP, Prazeres de Souza IR, Noda RW, Pastina MM, Magalhaes JV, Guimaraes CT. Quantitative Trait Loci and Resistance Gene Analogs Associated with Maize White Spot Resistance. PLANT DISEASE 2017; 101:200-208. [PMID: 30682293 DOI: 10.1094/pdis-06-16-0899-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Maize white spot (MWS), caused by the bacterium Pantoea ananatis, is one of the most important maize foliar diseases in tropical and subtropical regions, causing significant yield losses. Despite its economic importance, genetic studies of MWS are scarce. The aim of this study was to map quantitative trait loci (QTL) associated with MWS resistance and to identify resistance gene analogs (RGA) underlying these QTL. QTL mapping was performed in a tropical maize F2:3 population, which was genotyped with simple-sequence repeat and RGA-tagged markers and phenotyped for the response to MWS in two Brazilian southeastern locations. Nine QTL explained approximately 70% of the phenotypic variance for MWS resistance at each location, with two of them consistently detected in both environments. Data mining using 112 resistance genes cloned from different plant species revealed 1,697 RGA distributed in clusters within the maize genome. The RGA Pto19, Pto20, Pto99, and Xa26.151.4 were genetically mapped within MWS resistance QTL on chromosomes 4 and 8 and were preferentially expressed in the resistant parental line at locations where their respective QTL occurred. The consistency of QTL mapping, in silico prediction, and gene expression analyses revealed RGA and genomic regions suitable for marker-assisted selection to improve MWS resistance.
Collapse
|
5
|
Gowda M, Das B, Makumbi D, Babu R, Semagn K, Mahuku G, Olsen MS, Bright JM, Beyene Y, Prasanna BM. Genome-wide association and genomic prediction of resistance to maize lethal necrosis disease in tropical maize germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1957-68. [PMID: 26152570 PMCID: PMC4572053 DOI: 10.1007/s00122-015-2559-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/13/2015] [Indexed: 05/05/2023]
Abstract
KEY MESSAGE Genome-wide association analysis in tropical and subtropical maize germplasm revealed that MLND resistance is influenced by multiple genomic regions with small to medium effects. The maize lethal necrosis disease (MLND) caused by synergistic interaction of Maize chlorotic mottle virus and Sugarcane mosaic virus, and has emerged as a serious threat to maize production in eastern Africa since 2011. Our objective was to gain insights into the genetic architecture underlying the resistance to MLND by genome-wide association study (GWAS) and genomic selection. We used two association mapping (AM) panels comprising a total of 615 diverse tropical/subtropical maize inbred lines. All the lines were evaluated against MLND under artificial inoculation. Both the panels were genotyped using genotyping-by-sequencing. Phenotypic variation for MLND resistance was significant and heritability was moderately high in both the panels. Few promising lines with high resistance to MLND were identified to be used as potential donors. GWAS revealed 24 SNPs that were significantly associated (P < 3 × 10(-5)) with MLND resistance. These SNPs are located within or adjacent to 20 putative candidate genes that are associated with plant disease resistance. Ridge regression best linear unbiased prediction with five-fold cross-validation revealed higher prediction accuracy for IMAS-AM panel (0.56) over DTMA-AM (0.36) panel. The prediction accuracy for both within and across panels is promising; inclusion of MLND resistance associated SNPs into the prediction model further improved the accuracy. Overall, the study revealed that resistance to MLND is controlled by multiple loci with small to medium effects and the SNPs identified by GWAS can be used as potential candidates in MLND resistance breeding program.
Collapse
Affiliation(s)
- Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya.
| | - Biswanath Das
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Raman Babu
- International Maize and Wheat Improvement Center (CIMMYT), Hyderabad, India
| | - Kassa Semagn
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - George Mahuku
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Michael S Olsen
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Jumbo M Bright
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| | - Boddupalli M Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), P. O. Box 1041, Village Market, Nairobi, 00621, Kenya
| |
Collapse
|
6
|
Abstract
Diseases caused by viruses are found throughout the maize-growing regions of the world and can cause significant losses for producers. In this review, virus diseases of maize and the pathogens that cause them are discussed. Factors leading to the spread of disease and measures for disease control are reviewed, as is our current knowledge of the genetics of virus resistance in this important crop.
Collapse
Affiliation(s)
- Margaret G Redinbaugh
- USDA, Agricultural Research Service, Corn, Soybean and Wheat Quality Research Unit and Department of Plant Pathology, Ohio State University-OARDC, Wooster, Ohio, USA.
| | - José L Zambrano
- Instituto Nacional Autónomo de Investigaciones Agropecuarias (INIAP), Programa Nacional del Maíz, Quito, Ecuador
| |
Collapse
|
7
|
Bastiaanse H, Muhovski Y, Parisi O, Paris R, Mingeot D, Lateur M. Gene expression profiling by cDNA-AFLP reveals potential candidate genes for partial resistance of 'Président Roulin' against Venturia inaequalis. BMC Genomics 2014; 15:1043. [PMID: 25433532 PMCID: PMC4302150 DOI: 10.1186/1471-2164-15-1043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 11/19/2014] [Indexed: 12/03/2022] Open
Abstract
Background Scab, caused by the fungus Venturia inaequalis, is one of the most important diseases of cultivated apple. While a few scab resistance genes (R genes) governing qualitative resistance have been isolated and characterized, the biological roles of genes governing quantitative resistance, supposed to be more durable, are still unknown. This study aims to investigate the molecular mechanisms involved in the partial resistance of the old Belgian apple cultivar ‘Président Roulin’ against V. inaequalis. Results A global gene expression analysis was conducted in ‘Président Roulin’ (partially resistant) and in ‘Gala’ (susceptible) challenged by V. inaequalis by using the cDNA-AFLP method (cDNA-Amplified Fragment Length Polymorphism). Transcriptome analysis revealed significant modulation (up- or down-regulation) of 281 out of approximately 20,500 transcript derived fragments (TDFs) in ‘Président Roulin’ 48 hours after inoculation. Sequence annotation revealed similarities to several genes encoding for proteins belonging to the NBS-LRR and LRR-RLK classes of plant R genes and to other defense-related proteins. Differentially expressed genes were sorted into functional categories according to their gene ontology annotation and this expression signature was compared to published apple cDNA libraries by Gene Enrichment Analysis. The first comparison was made with two cDNA libraries from Malus x domestica uninfected leaves, and revealed in both libraries a signature of enhanced expression in ‘Président Roulin’ of genes involved in response to stress and photosynthesis. In the second comparison, the pathogen-responsive TDFs from the partially resistant cultivar were compared to the cDNA library from inoculated leaves of Rvi6 (HcrVf2)-transformed ‘Gala’ lines (complete disease resistance) and revealed both common physiological events, and notably differences in the regulation of defense response, the regulation of hydrolase activity, and response to DNA damage. TDFs were in silico mapped on the ‘Golden Delicious’ apple reference genome and significant co-localizations with major scab R genes, but not with quantitative trait loci (QTLs) for scab resistance nor resistance gene analogues (RGAs) were found. Conclusions This study highlights possible candidate genes that may play a role in the partial scab resistance mechanisms of ‘Président Roulin’ and increase our understanding of the molecular mechanisms involved in the partial resistance against apple scab. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1043) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Héloïse Bastiaanse
- Life Sciences Department, Breeding and Biodiversity Unit, Walloon Agricultural Research Center, Rue de Liroux, 4, 5030 Gembloux, Belgium.
| | | | | | | | | | | |
Collapse
|
8
|
Zambrano JL, Jones MW, Brenner E, Francis DM, Tomas A, Redinbaugh MG. Genetic analysis of resistance to six virus diseases in a multiple virus-resistant maize inbred line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:867-80. [PMID: 24500307 DOI: 10.1007/s00122-014-2263-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Accepted: 01/03/2014] [Indexed: 05/11/2023]
Abstract
Novel and previously known resistance loci for six phylogenetically diverse viruses were tightly clustered on chromosomes 2, 3, 6 and 10 in the multiply virus-resistant maize inbred line, Oh1VI. Virus diseases in maize can cause severe yield reductions that threaten crop production and food supplies in some regions of the world. Genetic resistance to different viruses has been characterized in maize populations in diverse environments using different screening techniques, and resistance loci have been mapped to all maize chromosomes. The maize inbred line, Oh1VI, is resistant to at least ten viruses, including viruses in five different families. To determine the genes and inheritance mechanisms responsible for the multiple virus resistance in this line, F1 hybrids, F2 progeny and a recombinant inbred line (RIL) population derived from a cross of Oh1VI and the virus-susceptible inbred line Oh28 were evaluated. Progeny were screened for their responses to Maize dwarf mosaic virus, Sugarcane mosaic virus, Wheat streak mosaic virus, Maize chlorotic dwarf virus, Maize fine streak virus, and Maize mosaic virus. Depending on the virus, dominant, recessive, or additive gene effects were responsible for the resistance observed in F1 plants. One to three gene models explained the observed segregation of resistance in the F2 generation for all six viruses. Composite interval mapping in the RIL population identified 17 resistance QTLs associated with the six viruses. Of these, 15 were clustered in specific regions of chr. 2, 3, 6, and 10. It is unknown whether these QTL clusters contain single or multiple virus resistance genes, but the coupling phase linkage of genes conferring resistance to multiple virus diseases in this population could facilitate breeding efforts to develop multi-virus resistant crops.
Collapse
Affiliation(s)
- Jose Luis Zambrano
- Department of Horticulture and Crop Science, The Ohio State University-Ohio Agriculture Research and Development Center (OSU-OARDC), Wooster, OH, 44691, USA
| | | | | | | | | | | |
Collapse
|
9
|
Zhao P, Zhang G, Wu X, Li N, Shi D, Zhang D, Ji C, Xu M, Wang S. Fine mapping of RppP25, a southern rust resistance gene in maize. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:462-72. [PMID: 23302046 DOI: 10.1111/jipb.12027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2012] [Accepted: 12/20/2012] [Indexed: 05/13/2023]
Abstract
Southern rust (Puccinia polysora Underw.) is a major disease that can cause severe yield losses in maize (Zea mays L.). In our previous study, a major gene RppP25 that confers resistance to southern rust was identified in inbred line P25. Here, we report the fine mapping and candidate gene analysis of RppP25 from the near-isogenic line F939, which harbors RppP25 in the genetic background of the susceptible inbred line F349. The inheritance of resistance to southern rust was investigated in the BC1 F1 and BC3 F1 populations, which were derived from a cross between F939 and F349 (as the recurrent parent). The 1:1 segregation ratio of resistance to susceptible plants in these two populations indicated that the resistance is controlled by a single dominant gene. Ten markers, including three simple sequence repeat (SSR) markers and seven insertion/deletion (InDel) markers, were developed in the RppP25 region. RppP25 was delimited to an interval between P091 and M271, with an estimated length of 40 kb based on the physical map of B73. In this region, a candidate gene was identified that was predicted to encode a putative nucleotide-binding site leucine-rich repeat (NBS-LRR) protein. Two co-segregated markers will aid in pyramiding diverse southern rust resistance alleles into elite materials, and thereby improve southern rust resistance worldwide.
Collapse
Affiliation(s)
- Panfeng Zhao
- National Maize Improvement Center of China, Key Laboratory of Biology and Genetic Improvement of Maize (Ministry of Agriculture), China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Liu Z, Feng S, Pandey MK, Chen X, Culbreath AK, Varshney RK, Guo B. Identification of expressed resistance gene analogs from peanut (Arachis hypogaea L.) expressed sequence tags. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:453-461. [PMID: 23384141 DOI: 10.1111/jipb.12037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 01/24/2013] [Indexed: 06/01/2023]
Abstract
Low genetic diversity makes peanut (Arachis hypogaea L.) very vulnerable to plant pathogens, causing severe yield loss and reduced seed quality. Several hundred partial genomic DNA sequences as nucleotide-binding-site leucine-rich repeat (NBS-LRR) resistance genes (R) have been identified, but a small portion with expressed transcripts has been found. We aimed to identify resistance gene analogs (RGAs) from peanut expressed sequence tags (ESTs) and to develop polymorphic markers. The protein sequences of 54 known R genes were used to identify homologs from peanut ESTs from public databases. A total of 1,053 ESTs corresponding to six different classes of known R genes were recovered, and assembled 156 contigs and 229 singletons as peanut-expressed RGAs. There were 69 that encoded for NBS-LRR proteins, 191 that encoded for protein kinases, 82 that encoded for LRR-PK/transmembrane proteins, 28 that encoded for Toxin reductases, 11 that encoded for LRR-domain containing proteins and four that encoded for TM-domain containing proteins. Twenty-eight simple sequence repeats (SSRs) were identified from 25 peanut expressed RGAs. One SSR polymorphic marker (RGA121) was identified. Two polymerase chain reaction-based markers (Ahsw-1 and Ahsw-2) developed from RGA013 were homologous to the Tomato Spotted Wilt Virus (TSWV) resistance gene. All three markers were mapped on the same linkage group AhIV. These expressed RGAs are the source for RGA-tagged marker development and identification of peanut resistance genes.
Collapse
Affiliation(s)
- Zhanji Liu
- University of Georgia, Department of Plant Pathology, Tifton, GA 31793, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Wang H, Xiao ZX, Wang FG, Xiao YN, Zhao JR, Zheng YL, Qiu FZ. Mapping of HtNB, a gene conferring non-lesion resistance before heading to Exserohilum turcicum (Pass.), in a maize inbred line derived from the Indonesian variety Bramadi. GENETICS AND MOLECULAR RESEARCH 2012; 11:2523-33. [PMID: 22869072 DOI: 10.4238/2012.july.10.7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The gene HtNB confers non-lesion resistance to the fungal pathogen Exserohilum turcicum in maize. To map this gene, we developed two F₂ populations, P111 (resistant line) x HuangZao 4 (susceptible line) and P111 x B73 (susceptible). HtNB was located on chromosome 8.07 bin, flanked by MAC216826-4 and umc2218 at distances of 3.3 and 3.4 cM, respectively. HtNB appears to be a new gene responsible for resistance to northern corn leaf blight. Functions of the genes in the region between umc1384 and umc2218 were predicted. In addition, several genes were found to be related to disease resistance, such as the genes encoding Ser/Thr protein kinase and protein-like leaf senescence.
Collapse
Affiliation(s)
- H Wang
- National Key Laboratory of Crop Genetic Improvement, HuaZhong Agriculture University, Wuhan, China
| | | | | | | | | | | | | |
Collapse
|
12
|
Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2012; 12:42. [PMID: 22443214 PMCID: PMC3353201 DOI: 10.1186/1471-2229-12-42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/23/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is one of the most important legumes in the world. Several diseases severely reduce bean production and quality; therefore, it is very important to better understand disease resistance in common bean in order to prevent these losses. More than 70 resistance (R) genes which confer resistance against various pathogens have been cloned from diverse plant species. Most R genes share highly conserved domains which facilitates the identification of new candidate R genes from the same species or other species. The goals of this study were to isolate expressed R gene-like sequences (RGLs) from 454-derived transcriptomic sequences and expressed sequence tags (ESTs) of common bean, and to develop RGL-tagged molecular markers. RESULTS A data-mining approach was used to identify tentative P. vulgaris R gene-like sequences from approximately 1.69 million 454-derived sequences and 116,716 ESTs deposited in GenBank. A total of 365 non-redundant sequences were identified and named as common bean (P. vulgaris = Pv) resistance gene-like sequences (PvRGLs). Among the identified PvRGLs, about 60% (218 PvRGLs) were from 454-derived sequences. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed that PvRGLs were actually expressed in the leaves of common bean. Upon comparison to P. vulgaris genomic sequences, 105 (28.77%) of the 365 tentative PvRGLs could be integrated into the existing common bean physical map. Based on the syntenic blocks between common bean and soybean, 237 (64.93%) PvRGLs were anchored on the P. vulgaris genetic map and will need to be mapped to determine order. In addition, 11 sequence-tagged-site (STS) and 19 cleaved amplified polymorphic sequence (CAPS) molecular markers were developed for 25 unique PvRGLs. CONCLUSIONS In total, 365 PvRGLs were successfully identified from 454-derived transcriptomic sequences and ESTs available in GenBank and about 65% of PvRGLs were integrated into the common bean genetic map. A total of 30 RGL-tagged markers were developed for 25 unique PvRGLs, including 11 STS and 19 CAPS markers. The expressed PvRGLs identified in this study provide a large sequence resource for development of RGL-tagged markers that could be used further for genetic mapping of disease resistant candidate genes and quantitative trait locus/loci (QTLs). This work also represents an additional method for identifying expressed RGLs from next generation sequencing data.
Collapse
Affiliation(s)
- Zhanji Liu
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Hi-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Mollee Crampton
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Antonette Todd
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| | - Venu Kalavacharla
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Center of Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
13
|
Pentony MM, Winters P, Penfold-Brown D, Drew K, Narechania A, DeSalle R, Bonneau R, Purugganan MD. The plant proteome folding project: structure and positive selection in plant protein families. Genome Biol Evol 2012; 4:360-71. [PMID: 22345424 PMCID: PMC3318447 DOI: 10.1093/gbe/evs015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Despite its importance, relatively little is known about the relationship between the structure, function, and evolution of proteins, particularly in land plant species. We have developed a database with predicted protein domains for five plant proteomes (http://pfp.bio.nyu.edu) and used both protein structural fold recognition and de novo Rosetta-based protein structure prediction to predict protein structure for Arabidopsis and rice proteins. Based on sequence similarity, we have identified ∼15,000 orthologous/paralogous protein family clusters among these species and used codon-based models to predict positive selection in protein evolution within 175 of these sequence clusters. Our results show that codons that display positive selection appear to be less frequent in helical and strand regions and are overrepresented in amino acid residues that are associated with a change in protein secondary structure. Like in other organisms, disordered protein regions also appear to have more selected sites. Structural information provides new functional insights into specific plant proteins and allows us to map positively selected amino acid sites onto protein structures and view these sites in a structural and functional context.
Collapse
Affiliation(s)
- M M Pentony
- Center for Genomics and Systems Biology, Department of Biology, New York University, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Differential gene expression in nearly isogenic lines with QTL for partial resistance to Puccinia hordei in barley. BMC Genomics 2010; 11:629. [PMID: 21070652 PMCID: PMC3018140 DOI: 10.1186/1471-2164-11-629] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2010] [Accepted: 11/11/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The barley-Puccinia hordei (barley leaf rust) pathosystem is a model for investigating partial disease resistance in crop plants and genetic mapping of phenotypic resistance has identified several quantitative trait loci (QTL) for partial resistance. Reciprocal QTL-specific near-isogenic lines (QTL-NILs) have been developed that combine two QTL, Rphq2 and Rphq3, the largest effects detected in a recombinant-inbred-line (RIL) population derived from a cross between the super-susceptible line L94 and partially-resistant line Vada. The molecular mechanism underpinning partial resistance in these QTL-NILs is unknown. RESULTS An Agilent custom microarray consisting of 15,000 probes derived from barley consensus EST sequences was used to investigate genome-wide and QTL-specific differential expression of genes 18 hours post-inoculation (hpi) with Puccinia hordei. A total of 1,410 genes were identified as being significantly differentially expressed across the genome, of which 55 were accounted for by the genetic differences defined by QTL-NILs at Rphq2 and Rphq3. These genes were predominantly located at the QTL regions and are, therefore, positional candidates. One gene, encoding the transcriptional repressor Ethylene-Responsive Element Binding Factor 4 (HvERF4) was located outside the QTL at 71 cM on chromosome 1H, within a previously detected eQTL hotspot for defence response. The results indicate that Rphq2 or Rphq3 contains a trans-eQTL that modulates expression of HvERF4. We speculate that HvERF4 functions as an intermediate that conveys the response signal from a gene(s) contained within Rphq2 or Rphq3 to a host of down-stream defense responsive genes. Our results also reveal that barley lines with extreme or intermediate partial resistance phenotypes exhibit a profound similarity in their spectrum of Ph-responsive genes and that hormone-related signalling pathways are actively involved in response to Puccinia hordei. CONCLUSIONS Differential gene expression between QTL-NILs identifies genes predominantly located within the target region(s) providing both transcriptional and positional candidate genes for the QTL. Genetically mapping the differentially expressed genes relative to the QTL has the potential to discover trans-eQTL mediated regulatory relays initiated from genes within the QTL regions.
Collapse
|
15
|
Liu YY, Li JZ, Li YL, Wei MG, Cui QX, Wang QL. Identification of differentially expressed genes at two key endosperm development stages using two maize inbreds with large and small grain and integration with detected QTL for grain weight. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:433-47. [PMID: 20364377 DOI: 10.1007/s00122-010-1321-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 03/05/2010] [Indexed: 05/24/2023]
Abstract
Maize endosperm accounts for more than 80% of the grain weight. Cell division and grain filling are the two key stages for endosperm development. Previous studies showed that gene expression during differential stages in endosperm development is greatly different. However, information on systematic identification and characterization of the differentially expressed genes between the two stages are limited. In this study, suppression subtractive hybridization (SSH) was used to generate four subtracted cDNA libraries for the two stages using two maize inbreds with large and small grain. Totally, 4,784 differentially expressed sequence tags (ESTs) were sequenced and 902 were non-redundant, which consisted of 344 unique ESTs. Among them 192 had high sequence similarity to the GenBank entries and represent diverse of functional categories, such as metabolism, cell growth/division, transcription, signal transduction, protein destination/storage, protein synthesis and others. The expression patterns of 75.7% SSH-derived cDNAs were confirmed by reverse Northern blot and semi-quantitative reverse transcription polymerase chain reaction, and exhibited the similar results (75.0%). Genes differentially expressed between two key stages for the two inbreds were involved in diverse physiological process pathway, which might be responsible for the formation of grain weight. 43.8% (70 of the 160 unique ESTs) of the identified ESTs were assigned to 39 chromosome bins distributed over all ten maize chromosomes. Eleven ESTs were found to co-localize with previous detected QTLs for grain weight, which might be considered as the candidate genes of grain weight for further study.
Collapse
Affiliation(s)
- Y Y Liu
- College of Agriculture, Henan Agricultural University, 95 Wenhua Rd, Zhengzhou, China
| | | | | | | | | | | |
Collapse
|
16
|
Chung CL, Jamann T, Longfellow J, Nelson R. Characterization and fine-mapping of a resistance locus for northern leaf blight in maize bin 8.06. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 121:205-27. [PMID: 20217383 DOI: 10.1007/s00122-010-1303-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Accepted: 02/11/2010] [Indexed: 05/23/2023]
Abstract
As part of a larger effort to capture diverse alleles at a set of loci associated with disease resistance in maize, DK888, a hybrid known to possess resistance to multiple diseases, was used as a donor in constructing near-isogenic lines (NILs). A NIL pair contrasting for resistance to northern leaf blight (NLB), caused by Setosphaeria turcica, was identified and associated with bin 8.06. This region of the maize genome had been associated in previous studies with both qualitative and quantitative resistance to NLB. In addition, bins 8.05-8.06 had been associated with quantitative resistance to several other diseases, as well as resistance gene analogs and defense response gene homologs. To test the hypothesis that the DK888 allele at bin 8.06 (designated qNLB8.06 ( DK888 )) conditions the broad-spectrum quantitative resistance characteristic of the donor, the NILs were evaluated with a range of maize pathogens and different races of S. turcica. The results revealed that qNLB8.06 (DK888) confers race-specific resistance exclusively to NLB. Allelism analysis suggested that qNLB8.06 (DK888) is identical, allelic, or closely linked and functionally related to Ht2. The resistance conditioned by qNLB8.06 was incompletely dominant and varied in effectiveness depending upon allele and/or genetic background. High-resolution breakpoint analysis, using approximately 2,800 individuals in F(9)/F(10) heterogeneous inbred families and 98 F(10)/F(11) fixed lines carrying various recombinant events, delimited qNLB8.06 ( DK888 ) to a region of approximately 0.46 Mb, spanning 143.92-144.38 Mb on the B73 physical map. Three compelling candidate genes were identified in this region. Isolation of the gene(s) will contribute to better understanding of this complex locus.
Collapse
Affiliation(s)
- Chia-Lin Chung
- Department of Plant Pathology and Plant-Microbe Biology, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | |
Collapse
|
17
|
Ingvardsen CR, Xing Y, Frei UK, Lübberstedt T. Genetic and physical fine mapping of Scmv2, a potyvirus resistance gene in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2010; 120:1621-34. [PMID: 20155410 DOI: 10.1007/s00122-010-1281-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Accepted: 01/24/2010] [Indexed: 05/08/2023]
Abstract
Sugarcane mosaic virus (SCMV) is an important virus pathogen both in European and Chinese maize production, causing serious losses in grain and forage yield in susceptible cultivars. Two major resistance loci confer resistance to SCMV, one located on chromosome 3 (Scmv2) and one on chromosome 6 (Scmv1). We developed a large isogenic mapping population segregating in the Scmv2, but not the Scmv1 region, to minimize genetic variation potentially affecting expression of SCMV resistance. We fine mapped Scmv2 to a region of 0.28 cM, covering a physical distance of 1.3426 Mb, and developed six new polymorphic SSR markers based on publicly available BAC sequences within this region. At present, we still have three recombinants left between Scmv2 and the nearest polymorphic marker on either side of the Scmv2 locus. The region showed synteny to a 1.6 Mb long sequence on chromosome 12 in rice. Analysis of the public B73 BAC library as well as the syntenic rice region did not reveal any similarity to known resistance genes. However, four new candidate genes with a possible involvement in movement of virus were detected.
Collapse
Affiliation(s)
- Christina Roenn Ingvardsen
- Department of Genetics and Biotechnology, Faculty of Agricultural Sciences, University of Aarhus, Forsøgsvej 1, 4200, Slagelse, Denmark.
| | | | | | | |
Collapse
|
18
|
Mapping of Wheat Stripe Rust Resistance Gene YrZH84 with RGAP Markers and Its Application. ZUOWU XUEBAO 2009. [DOI: 10.3724/sp.j.1006.2009.01274] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
19
|
Loarce Y, Sanz MJ, Irigoyen ML, Fominaya A, Ferrer E. Mapping of STS markers obtained from oat resistance gene analog sequences. Genome 2009; 52:608-19. [DOI: 10.1139/g09-038] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two previously isolated resistance gene analogs (RGAs) of oat have been located as RFLPs in the reference map of Avena byzantina ‘Kanota’ × Avena sativa ‘Ogle’ in regions either homologous or homoeologous to loci for resistance to Puccinia coronata , the causal agent of crown rust. In this study, the RGAs were mapped in two recombinant inbred line (RIL) populations that segregate for crown rust resistance: the diploid Avena strigosa × Avena wiestii RIL population (Asw), which has been used for mapping the complex locus PcA, and the hexaploid MN841801-1 × Noble-2 RIL population (MN), in which QTLs have been located. To obtain single-locus markers, RGAs were converted to sequence tagged site (STS) markers using a procedure involving extension of the original RGA sequence lengths by PCR genome walking, amplification and cloning of the parental fragments, and identification of single nucleotide polymorphisms. The procedure successfully obtained STSs from different members of the L7M2 family of sequences, the initial NBS of which have nucleotide similarities of >83%. However, for RGA III2.18, the parental lines were not polymorphic for the STSs assayed. A sequence characterized amplified region (SCAR) marker with features of an RGA had been previously identified for gene Pc94. This marker was also mapped in the above RIL populations. Markers based on RGA L7M2 co-localized with markers defining the QTL Prq1a in linkage group MN3, and were located 15.2 cM from PcA in linkage group AswAC. The SCAR marker for Pc94 was also located in the QTL Prq1a but at 39.5 cM from PcA in AswAC, indicating that the NBS-LRR sequence represented by this marker is not related to PcA. L7M2 was also excluded as a member of the PcA cluster, although it could be an appropriate marker for the Prq1a cluster if chromosome rearrangements are postulated.
Collapse
Affiliation(s)
- Yolanda Loarce
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - María Jesús Sanz
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - María Luisa Irigoyen
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Araceli Fominaya
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| | - Esther Ferrer
- Department of Cell Biology and Genetics, University of Alcalá, Campus Universitario, 28871 Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Poland JA, Balint-Kurti PJ, Wisser RJ, Pratt RC, Nelson RJ. Shades of gray: the world of quantitative disease resistance. TRENDS IN PLANT SCIENCE 2009; 14:21-9. [PMID: 19062327 DOI: 10.1016/j.tplants.2008.10.006] [Citation(s) in RCA: 357] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2008] [Revised: 10/20/2008] [Accepted: 10/22/2008] [Indexed: 05/18/2023]
Abstract
A thorough understanding of quantitative disease resistance (QDR) would contribute to the design and deployment of durably resistant crop cultivars. However, the molecular mechanisms that control QDR remain poorly understood, largely due to the incomplete and inconsistent nature of the resistance phenotype, which is usually conditioned by many loci of small effect. Here, we discuss recent advances in research on QDR. Based on inferences from analyses of the defense response and from the few isolated QDR genes, we suggest several plausible hypotheses for a range of mechanisms underlying QDR. We propose that a new generation of genetic resources, complemented by careful phenotypic analysis, will produce a deeper understanding of plant defense and more effective utilization of natural resistance alleles.
Collapse
Affiliation(s)
- Jesse A Poland
- Department of Plant Breeding & Genetics, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
21
|
Jiang L, Ingvardsen CR, Lübberstedt T, Xu M. The Pic19 NBS-LRR gene family members are closely linked to Scmv1, but not involved in maize resistance to sugarcane mosaic virus. Genome 2008; 51:673-84. [PMID: 18772945 DOI: 10.1139/g08-055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sugarcane mosaic virus (SCMV) is the causal pathogen for a severe mosaic virus disease of maize worldwide. In our previous research, the maize resistance gene analog (RGA) Pic19 and its three cognate BAC contigs were mapped to the same region as the SCMV resistance gene Scmv1. Here we report the isolation and characterization of the Pic19R gene family members from the inbred line FAP1360A, which shows complete resistance to SCMV. Two primer pairs were designed based on the conserved regions among the known Pic19 paralogs and used for rapid amplification of cDNA ends of FAP1360A. Six full-length cDNAs, corresponding to the Pic19R-1 to -6 paralogs, were obtained. Three of them (Pic19R-1 to -3) had uninterrupted coding sequences and were, therefore, regarded as candidates for the Scmv1 gene. A total of 18 positive BAC clones harboring the Pic19R-2 to -5 paralogs were obtained from the FAP1360A BAC library and assembled into two BAC contigs. Two markers, tagging Pic19R-2 and -3 and Pic19R-4, were developed and used to genotype a high-resolution mapping population segregating solely for the Scmv1 locus. Although closely linked, none of these three Pic19R paralogs co-segregated with the Scmv1 locus. Analysis of the Pic19R family indicated that the Pic19R-1 paralog is identical to the known Rxo1 gene conferring resistance to rice bacterial streak disease and none of the other Pic19R paralogs seems to be involved in resistance to SCMV.
Collapse
Affiliation(s)
- Lu Jiang
- National Maize Improvement Center of China, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, P.R. China
| | | | | | | |
Collapse
|
22
|
Salvaudon L, Giraud T, Shykoff JA. Genetic diversity in natural populations: a fundamental component of plant-microbe interactions. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:135-43. [PMID: 18329329 DOI: 10.1016/j.pbi.2008.02.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/21/2008] [Accepted: 02/05/2008] [Indexed: 05/20/2023]
Abstract
Genetic diversity for plant defense against microbial pathogens has been studied either by analyzing sequences of defense genes or by testing phenotypic responses to pathogens under experimental conditions. These two approaches give different but complementary information but, till date, only rare attempts at their integration have been made. Here we discuss the advances made, because of the two approaches, in understanding plant-pathogen coevolution and propose ways of integrating the two.
Collapse
Affiliation(s)
- Lucie Salvaudon
- Univ Paris-Sud, Laboratoire Ecologie Systématique et Evolution, UMR 8079, Orsay Cedex F-91405, France
| | | | | |
Collapse
|