1
|
Du H, Zhang R, Zhang Q, Shi X, Wang J, Peng Q, Batool A, Li S. Identification and Expression Analysis of Acid Phosphatase Gene ( PAP) in Brassica napus: Effects of cis-Acting Elements on Two BnaPAP10 Genes in Response to Phosphorus Stress. PLANTS (BASEL, SWITZERLAND) 2025; 14:461. [PMID: 39943024 PMCID: PMC11819708 DOI: 10.3390/plants14030461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/17/2025] [Accepted: 01/24/2025] [Indexed: 02/16/2025]
Abstract
Purple acid phosphatases (PAPs) play a key role in phosphorus (P) assimilation and redistribution in plants, catalyzing the hydrolysis of phosphate esters to produce inorganic phosphate (Pi). In this study, a total of 77 PAP genes were identified in B. napus. The candidate genes were divided into three groups and ten subgroups based on the phylogenetic analyses and exon-intron organization. Among these 77 BnaPAP proteins, 35 exhibit typical metal-ligating residues characteristic of known PAPs, whereas certain unaltered amino acid residues were absent or displaced in other BnaPAPs. A computational prediction was conducted, revealing that the majority of PAPs contain signal peptide motifs and display a range of N-glycosylation levels, as well as transmembrane helix motifs. An analysis of previously obtained RNA-seq data revealed that 55.84% (43 of 77) of the BnaPAPs responded to Pi deficiency. Moreover, we conducted a preliminary examination of the expression profiles of BnaPAP genes in response to salt stress, and discovered that 42.86% (33 of 77) of these genes were induced under salt stress, either in the shoots or in the roots. Further qRT-PCR and GUS analyses revealed that BnaC9.PAP10 and BnaA7.PAP10, two paralogs of BnaPAP10s, were induced by Pi deficiency. Notably, BnaC9.PAP10 exhibits robust induction, compared to the relatively mild induction observed in BnaA7.PAP10. Our research shows that BnaA7.PAP10 uniquely responds to Pi stress via the W-box, while BnaA7.PAP10 predominantly responds via the P1BS element, and the differences in cis-regulatory elements (CREs) within their promoter regions specifically contribute to their distinct expression levels under Pi stress. Our findings provide valuable insights and establish a foundation for future functional studies of BnaPAPs.
Collapse
Affiliation(s)
- Hongyuan Du
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang 438000, China; (Q.P.); (A.B.); (S.L.)
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Ruiqian Zhang
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Qingxue Zhang
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Xun Shi
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Jiaxue Wang
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Qian Peng
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang 438000, China; (Q.P.); (A.B.); (S.L.)
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Asfa Batool
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang 438000, China; (Q.P.); (A.B.); (S.L.)
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| | - Shisheng Li
- Hubei Key Laboratory of Economic Forest Germplasm Improvement and Resources Comprehensive Utilization, Huanggang 438000, China; (Q.P.); (A.B.); (S.L.)
- College of Biology and Agriculture Resources, Huanggang Normal University, Huanggang 438000, China; (R.Z.); (Q.Z.); (X.S.); (J.W.)
| |
Collapse
|
2
|
Zhang H, He X, Munyaneza V, Zhang G, Ye X, Wang C, Shi L, Wang X, Ding G. Acid phosphatase involved in phosphate homeostasis in Brassica napus and the functional analysis of BnaPAP10s. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108389. [PMID: 38377886 DOI: 10.1016/j.plaphy.2024.108389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/21/2023] [Accepted: 01/18/2024] [Indexed: 02/22/2024]
Abstract
Purple acid phosphatases (PAPs) are involved in activating the rhizosphere's organic phosphorus (P) and promoting P recycling during plant development, especially under the long-term P deficiency conditions in acid soil. However, the function of BnaPAPs in response to P deficiency stress in Brassica napus has rarely been explored. In this study, we found that the acid phosphatase activities (APA) of rapeseed shoot and root increased under P deficienct conditions. Genome-wide identification found that 82 PAP genes were unevenly distributed on 19 chromosomes in B. napus, which could be divided into eight subfamilies. The segmental duplication events were the main driving force for expansion during evolution, and the gene structures and conserved motifs of most members within the same subfamily were highly conservative. Moreover, the expression levels of 37 and 23 different expressed genes were induced by low P in leaf and root, respectively. BnaA09.PAP10a and BnaC09.PAP10a were identified as candidate genes via interaction networks. Significantly, both BnaPAP10a overexpression lines significantly increased root-related APA and total phosphate concentration under P deficiency and ATP supply conditions, thereby improving plant growth and root length. In summary, our results provided a valuable foundation for further study of BnaPAP functions.
Collapse
Affiliation(s)
- Hao Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xuyou He
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Venuste Munyaneza
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Guangzeng Zhang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xiangsheng Ye
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Chuang Wang
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Lei Shi
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-products of Guangdong Academy of Agricultural Sciences, 510000, Guangdong, China
| | - Guangda Ding
- College of Resources and Environment/Microelement Research Center/Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, 430070, Wuhan, China.
| |
Collapse
|
3
|
Wan S, Yang M, Ni F, Chen W, Wang Y, Chu P, Guan R. A small chromosomal inversion mediated by MITE transposons confers cleistogamy in Brassica napus. PLANT PHYSIOLOGY 2022; 190:1841-1853. [PMID: 36005931 PMCID: PMC9614453 DOI: 10.1093/plphys/kiac395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Cleistogamy, self-pollination within closed flowers, can help maintain seed purity, accelerate breeding speed, and aid in the development of ornamental flowers. However, the mechanism underlying petal closing/opening behavior remains elusive. Here, we found that a Brassica napus petal closing/opening behavior was inherited in a Mendelian manner. Fine mapping and positional cloning experiments revealed that the Mendelian factor originated from a short (29.8 kb) inversion mediated by BnDTH9 miniature inverted-repeat transposable elements (MITEs) on chromosome C03. This inversion led to tissue-specific gene promoter exchange between BnaC03.FBA (BnaC03G0156800ZS encoding an F-Box-associated domain-containing protein) and BnaC03.EFO1 (BnaC03G0157400ZS encoding an EARLY FLOWERING BY OVEREXPRESSION 1 protein) positioned near the respective inversion breakpoints. Our genetic transformation work demonstrated that the cleistogamy originated from high tissue-specific expression of the BnaC03.FBA gene caused by promoter changes due to the MITE-mediated inversion. BnaC03.FBA is involved in the formation of an SCF (Skp1-Cullin-F-box) complex, which participates in ubiquitin-mediated protein targeting for degradation through the ubiquitin 26S-proteasome system. Our results shed light on a molecular model of petal-closing behavior.
Collapse
Affiliation(s)
- Shubei Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Mao Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Ni
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Chen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Yangming Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Pu Chu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| | - Rongzhan Guan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Zhang C, Chang W, Li X, Yang B, Zhang L, Xiao Z, Li J, Lu K. Transcriptome and Small RNA Sequencing Reveal the Mechanisms Regulating Harvest Index in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:855486. [PMID: 35444672 PMCID: PMC9014204 DOI: 10.3389/fpls.2022.855486] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass weight, is an economically critical value reflecting the convergence of complex agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in other major crops, and the underlying regulatory network is largely unknown. In this study, we performed mRNA and small RNA sequencing to reveal the mechanisms shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially expressed genes (DEGs) between high-HI and low-HI accessions in four tissues (silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression network, 72 gene modules were identified, and a key gene BnaSTY46 was found to participate in retarded establishment of photosynthetic capacity to influence HI. Further research found that the genes involved in circadian rhythms and response to stimulus may play important roles in HI and that their transcript levels were modulated by differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs), including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-related genes were critical to enhancing HI in good cultivation environments. Of 903 miRNAs, we found that the bna-miR396-Bna.A06SRp34a/Bna.A01EMB3119 pair may control the seed development and the accumulation of storage compounds, thus contributing to higher HI. Our findings uncovered the underlying complex regulatory network behind HI and offer potential approaches to rapeseed improvement.
Collapse
Affiliation(s)
- Chao Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Oil Research Institute of Guizhou Province, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Wei Chang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xiaodong Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bo Yang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liyuan Zhang
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhongchun Xiao
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiana Li
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Chongqing Rapeseed Engineering Research Center, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
5
|
Ren M, Zhang M, Yang H, Shi H. Reducing the nicotine content of tobacco by grafting with eggplant. BMC PLANT BIOLOGY 2020; 20:285. [PMID: 32571218 PMCID: PMC7310140 DOI: 10.1186/s12870-020-02459-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 05/24/2020] [Indexed: 05/31/2023]
Abstract
BACKGROUND Nicotine is a stimulant and potent parasympathomimetic alkaloid that accounts for 96-98% of alkaloid content. A reduction in the amount of nicotine in cigarettes to achieve a non-addictive level is necessary. We investigated whether replacing tobacco root with eggplant by grafting can restrict nicotine biosynthesis and produce tobacco leaves with ultra-low nicotine content, and analyzed the gene expression differences induced by eggplant grafting. RESULTS The nicotine levels of grafted tobacco leaves decreased dramatically. The contents of nornicotine, anabasine, NNN, NNK, NAT, total TSNAs and the nicotine of mainstream cigarette smoke decreased, and the contents of amino acids and the precursors of alkaloids increased in grafted tobacco. Eggplant grafting resulted in the differential expression of 440 genes. LOC107774053 had higher degrees in two PPI networks, which were regulated by LOC107802531 and LOC107828746 in the TF-target network. CONCLUSIONS Replacing tobacco root with eggplant by grafting can restrict nicotine biosynthesis and produce tobacco leaves with ultra-low or zero nicotine content. The differential expression of LOC107774053 may be associated with eggplant grafting.
Collapse
Affiliation(s)
- Mengjuan Ren
- College of Tobacco Science/Tobacco Cultivation Key Laboratory of China Tobacco/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Mengyue Zhang
- College of Tobacco Science/Tobacco Cultivation Key Laboratory of China Tobacco/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Huijuan Yang
- College of Tobacco Science/Tobacco Cultivation Key Laboratory of China Tobacco/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China
| | - Hongzhi Shi
- College of Tobacco Science/Tobacco Cultivation Key Laboratory of China Tobacco/Tobacco Harm Reduction Research Center, Henan Agricultural University, No. 95 Wenhua Road, Zhengzhou, 450002, Henan Province, China.
| |
Collapse
|
6
|
Lu K, Guo W, Lu J, Yu H, Qu C, Tang Z, Li J, Chai Y, Liang Y. Genome-Wide Survey and Expression Profile Analysis of the Mitogen-Activated Protein Kinase (MAPK) Gene Family in Brassica rapa. PLoS One 2015; 10:e0132051. [PMID: 26173020 PMCID: PMC4501733 DOI: 10.1371/journal.pone.0132051] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 06/09/2015] [Indexed: 12/29/2022] Open
Abstract
Mitogen-activated protein kinase (MAPK) cascades are fundamental signal transduction modules in plants, controlling cell division, development, hormone signaling, and biotic and abiotic stress responses. Although MAPKs have been investigated in several plant species, a comprehensive analysis of the MAPK gene family has hitherto not been performed in Brassica rapa. In this study, we identified 32 MAPKs in the B. rapa genome by conducting BLASTP and syntenic block analyses, and screening for the essential signature motif (TDY or TEY) of plant MAPK proteins. Of the 32 BraMAPK genes retrieved from the Brassica Database, 13 exhibited exon splicing errors, excessive splicing of the 5' sequence, excessive retention of the 5' sequence, and sequencing errors of the 3' end. Phylogenetic trees of the 32 corrected MAPKs from B. rapa and of MAPKs from other plants generated by the neighbor-joining and maximum likelihood methods suggested that BraMAPKs could be divided into four groups (groups A, B, C, and D). Gene number expansion was observed for BraMAPK genes in groups A and D, which may have been caused by the tandem duplication and genome triplication of the ancestral genome of the Brassica progenitor. Except for five members of the BraMAPK10 subfamily, the identified BraMAPKs were expressed in most of the tissues examined, including callus, root, stem, leaf, flower, and silique. Quantitative real-time PCR demonstrated that at least six and five BraMAPKs were induced or repressed by various abiotic stresses and hormone treatments, respectively, suggesting their potential roles in the abiotic stress response and various hormone signal transduction pathways in B. rapa. This study provides valuable insight into the putative physiological and biochemical functions of MAPK genes in B. rapa.
Collapse
Affiliation(s)
- Kun Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
- * E-mail: (KL); (YL)
| | - Wenjin Guo
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
| | - Junxing Lu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Hao Yu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
| | - Cunmin Qu
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
| | - Zhanglin Tang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
| | - Jiana Li
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
| | - Yourong Chai
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
| | - Ying Liang
- College of Agronomy and Biotechnology, Southwest University, Beibei, Chongqing 400715, PR China
- Chongqing Rapeseed Engineering Research Center, Southwest University, Beibei, Chongqing 400715, PR China
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Beibei, Chongqing 400715, PR China
- * E-mail: (KL); (YL)
| |
Collapse
|
7
|
Lei B, Lu K, Ding F, Zhang K, Chen Y, Zhao H, Zhang L, Ren Z, Qu C, Guo W, Wang J, Pan W. RNA sequencing analysis reveals transcriptomic variations in tobacco (Nicotiana tabacum) leaves affected by climate, soil, and tillage factors. Int J Mol Sci 2014; 15:6137-60. [PMID: 24733065 PMCID: PMC4013620 DOI: 10.3390/ijms15046137] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/18/2014] [Accepted: 04/01/2014] [Indexed: 11/16/2022] Open
Abstract
The growth and development of plants are sensitive to their surroundings. Although numerous studies have analyzed plant transcriptomic variation, few have quantified the effect of combinations of factors or identified factor-specific effects. In this study, we performed RNA sequencing (RNA-seq) analysis on tobacco leaves derived from 10 treatment combinations of three groups of ecological factors, i.e., climate factors (CFs), soil factors (SFs), and tillage factors (TFs). We detected 4980, 2916, and 1605 differentially expressed genes (DEGs) that were affected by CFs, SFs, and TFs, which included 2703, 768, and 507 specific and 703 common DEGs (simultaneously regulated by CFs, SFs, and TFs), respectively. GO and KEGG enrichment analyses showed that genes involved in abiotic stress responses and secondary metabolic pathways were overrepresented in the common and CF-specific DEGs. In addition, we noted enrichment in CF-specific DEGs related to the circadian rhythm, SF-specific DEGs involved in mineral nutrient absorption and transport, and SF- and TF-specific DEGs associated with photosynthesis. Based on these results, we propose a model that explains how plants adapt to various ecological factors at the transcriptomic level. Additionally, the identified DEGs lay the foundation for future investigations of stress resistance, circadian rhythm and photosynthesis in tobacco.
Collapse
Affiliation(s)
- Bo Lei
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| | - Kun Lu
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Fuzhang Ding
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| | - Kai Zhang
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Yi Chen
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| | - Huina Zhao
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| | - Lin Zhang
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Zhu Ren
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| | - Cunmin Qu
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Wenjing Guo
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Jing Wang
- Engineering Research Center of South Upland Agriculture, College of Agronomy and Biotechnology, Southwest University, Tiansheng Road 2, Beibei, Chongqing 400715, China.
| | - Wenjie Pan
- Key Laboratory of Molecular Genetics, China National Tobacco Corporation, Guizhou Academy of Tobacco Science, Longbatan Road 29, Guanshanhu District, Guiyang 550081, China.
| |
Collapse
|
8
|
Hunter PJ, Teakle GR, Bending GD. Root traits and microbial community interactions in relation to phosphorus availability and acquisition, with particular reference to Brassica. FRONTIERS IN PLANT SCIENCE 2014; 5:27. [PMID: 24575103 PMCID: PMC3920115 DOI: 10.3389/fpls.2014.00027] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 01/22/2014] [Indexed: 05/21/2023]
Abstract
Brassicas are among the most widely grown and important crops worldwide. Phosphorus (P) is a key mineral element in the growth of all plants and is largely supplied as inorganic rock-phosphate, a dwindling resource, which is likely to be an increasingly significant factor in global agriculture. In order to develop crops which can abstract P from the soil, utilize it more efficiently, require less of it or obtain more from other sources such as soil organic P reservoirs, a detailed understanding the factors that influence P metabolism and cycling in plants and associated soil is required. This review focuses on the current state of understanding of root traits, rhizodeposition and rhizosphere community interaction as it applies to P solubilization and acquisition, with particular reference to Brassica species. Physical root characteristics, exudation of organic acids (particularly malate and citrate) and phosphatase enzymes are considered and the potential mechanisms of control of these responses to P deficiency examined. The influence of rhizodeposits on the development of the rhizosphere microbial community is discussed and the specific features of this community in response to P deficiency are considered; specifically production of phosphatases, phytases and phosphonate hydrolases. Finally various potential approaches for improving overall P use efficiency in Brassica production are discussed.
Collapse
Affiliation(s)
- Paul J. Hunter
- School of Life Sciences, University of WarwickCoventry, UK
| | | | | |
Collapse
|
9
|
Qu C, Fu F, Lu K, Zhang K, Wang R, Xu X, Wang M, Lu J, Wan H, Zhanglin T, Li J. Differential accumulation of phenolic compounds and expression of related genes in black- and yellow-seeded Brassica napus. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:2885-98. [PMID: 23698630 PMCID: PMC3697950 DOI: 10.1093/jxb/ert148] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Developing yellow-seeded Brassica napus (rapeseed) with improved qualities is a major breeding goal. The intermediate and final metabolites of the phenylpropanoid and flavonoid pathways affect not only oil quality but also seed coat colour of B. napus. Here, the accumulation of phenolic compounds was analysed in the seed coats of black-seeded (ZY821) and yellow-seeded (GH06) B. napus. Using toluidine blue O staining and liquid chromatography-mass spectrometry, histochemical and biochemical differences were identified in the accumulation of phenolic compounds between ZY821 and GH06. Two and 13 unique flavonol derivatives were detected in ZY821 and GH06, respectively. Quantitative real-time PCR analysis revealed significant differences between ZY821 and GH06 in the expression of common phenylpropanoid biosynthetic genes (BnPAL and BnC4H), common flavonoid biosynthetic genes (BnTT4 and BnTT6), anthocyanin- and proanthocyandin-specific genes (BnTT3 and BnTT18), proanthocyandin-specific genes (BnTT12, BnTT10, and BnUGT2) and three transcription factor genes (BnTTG1, BnTTG2, and BnTT8) that function in the flavonoid biosynthetic pathway. These data provide insight into pigment accumulation in B. napus, and serve as a useful resource for researchers analysing the formation of seed coat colour and the underlying regulatory mechanisms in B. napus.
Collapse
Affiliation(s)
- Cunmin Qu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, S7N 02X, Saskatoon Saskatchewan, Canada
- *These authors contributed equally to this work
| | - Kun Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- *These authors contributed equally to this work
| | - Kai Zhang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Rui Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Xinfu Xu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Min Wang
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Junxing Lu
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Huafang Wan
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Tang Zhanglin
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
| | - Jiana Li
- Chongqing Engineering Research Center for Rapeseed, College of Agronomy and Biotechnology, Southwest University, 216 Tiansheng Road, Beibei, Chongqing 400716, People’s Republic of China
- Engineering Research Center of South Upland Agriculture of Ministry of Education, Southwest University, Beibei, Chongqing 400716, People’s Republic of China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
10
|
Wu P, Shou H, Xu G, Lian X. Improvement of phosphorus efficiency in rice on the basis of understanding phosphate signaling and homeostasis. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:205-12. [PMID: 23566853 DOI: 10.1016/j.pbi.2013.03.002] [Citation(s) in RCA: 162] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important cereal crops feeding a large segment of the world's population. Inefficient utilization of phosphate (Pi) fertilizer by the plant in rice production increases cost and pollution. Developing cultivars with improved Pi use efficiency is essential for the sustainability of agriculture. Pi uptake, translocation and remobilization are regulated by complex molecular mechanisms through the functions of Pi transporters (PTs) and other downstream Pi Starvation Induced (PSI) genes. Expressions of these PSI genes are regulated by the Pi Starvation Response Regulator (OsPHR2)-mediated transcriptional control and/or PHO2-mediated ubiquitination. SPX-domain containing proteins and the type I H(+)-PPase AVP1 involved in the maintenance and utilization of the internal phosphate. The potential application of posttranscriptional regulation of PT1 through OsPHF1 for Pi efficiency is proposed.
Collapse
Affiliation(s)
- Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | | | | | | |
Collapse
|
11
|
Gene silencing of BnTT10 family genes causes retarded pigmentation and lignin reduction in the seed coat of Brassica napus. PLoS One 2013; 8:e61247. [PMID: 23613820 PMCID: PMC3632561 DOI: 10.1371/journal.pone.0061247] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Accepted: 03/06/2013] [Indexed: 11/29/2022] Open
Abstract
Yellow-seed (i.e., yellow seed coat) is one of the most important agronomic traits of Brassica plants, which is correlated with seed oil and meal qualities. Previous studies on the Brassicaceae, including Arabidopsis and Brassica species, proposed that the seed-color trait is correlative to flavonoid and lignin biosynthesis, at the molecular level. In Arabidopsis thaliana, the oxidative polymerization of flavonoid and biosynthesis of lignin has been demonstrated to be catalyzed by laccase 15, a functional enzyme encoded by the AtTT10 gene. In this study, eight Brassica TT10 genes (three from B. napus, three from B. rapa and two from B. oleracea) were isolated and their roles in flavonoid oxidation/polymerization and lignin biosynthesis were investigated. Based on our phylogenetic analysis, these genes could be divided into two groups with obvious structural and functional differentiation. Expression studies showed that Brassica TT10 genes are active in developing seeds, but with differential expression patterns in yellow- and black-seeded near-isogenic lines. For functional analyses, three black-seeded B. napus cultivars were chosen for transgenic studies. Transgenic B. napus plants expressing antisense TT10 constructs exhibited retarded pigmentation in the seed coat. Chemical composition analysis revealed increased levels of soluble proanthocyanidins, and decreased extractable lignin in the seed coats of these transgenic plants compared with that of the controls. These findings indicate a role for the Brassica TT10 genes in proanthocyanidin polymerization and lignin biosynthesis, as well as seed coat pigmentation in B. napus.
Collapse
|
12
|
Lei B, Zhao XH, Zhang K, Zhang J, Ren W, Ren Z, Chen Y, Zhao HN, Pan WJ, Chen W, Li HX, Deng WY, Ding FZ, Lu K. Comparative transcriptome analysis of tobacco (Nicotiana tabacum) leaves to identify aroma compound-related genes expressed in different cultivated regions. Mol Biol Rep 2013; 40:345-57. [PMID: 23079704 DOI: 10.1007/s11033-012-2067-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 10/03/2012] [Indexed: 12/13/2022]
Abstract
To identify genes that are differentially expressed in tobacco in response to environmental changes and to decipher the mechanisms by which aromatic carotenoids are formed in tobacco, an Agilent Tobacco Gene Expression microarray was adapted for transcriptome comparison of tobacco leaves derived from three cultivated regions of China, Kaiyang (KY), Weining (WN) and Tianzhu (TZ). A total of 1,005 genes were differentially expressed between leaves derived from KY and TZ, 733 between KY and WN, and 517 between TZ and WN. Genes that were upregulated in leaves from WN and TZ tended to be involved in secondary metabolism pathways, and included several carotenoid pathway genes, e.g., NtPYS, NtPDS, and NtLCYE, whereas those that were down-regulated tended to be involved in the response to temperature and light. The expression of 10 differentially expressed genes (DEGs) was evaluated by real-time quantitative polymerase chain reaction (qRT-PCR) and found to be consistent with the microarray data. Gene Ontology and MapMan analyses indicate that the genes that were differentially expressed among the three cultivated regions were associated with the light reaction of photosystem II, response to stimuli, and secondary metabolism. High-performance liquid chromatography (HPLC) analysis showed that leaves derived from KY had the lowest levels of lutein, β-carotene, and neoxanthin, whereas the total carotenoid content in leaves from TZ was greatest, a finding that could well be explained by the expression patterns of DEGs in the carotenoid pathway. These results may help elucidate the molecular mechanisms underlying environmental adaptation and accumulation of aroma compounds in tobacco.
Collapse
Affiliation(s)
- Bo Lei
- Guizhou Tobacco Research Institute, North Yuntan Road, Jinyang New District, Guiyang 550081, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Dionisio G, Madsen CK, Holm PB, Welinder KG, Jørgensen M, Stoger E, Arcalis E, Brinch-Pedersen H. Cloning and characterization of purple acid phosphatase phytases from wheat, barley, maize, and rice. PLANT PHYSIOLOGY 2011; 156:1087-100. [PMID: 21220762 PMCID: PMC3135953 DOI: 10.1104/pp.110.164756] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Accepted: 01/06/2011] [Indexed: 05/18/2023]
Abstract
Barley (Hordeum vulgare) and wheat (Triticum aestivum) possess significant phytase activity in the mature grains. Maize (Zea mays) and rice (Oryza sativa) possess little or virtually no preformed phytase activity in the mature grain and depend fully on de novo synthesis during germination. Here, it is demonstrated that wheat, barley, maize, and rice all possess purple acid phosphatase (PAP) genes that, expressed in Pichia pastoris, give fully functional phytases (PAPhys) with very similar enzyme kinetics. Preformed wheat PAPhy was localized to the protein crystalloid of the aleurone vacuole. Phylogenetic analyses indicated that PAPhys possess four conserved domains unique to the PAPhys. In barley and wheat, the PAPhy genes can be grouped as PAPhy_a or PAPhy_b isogenes (barley, HvPAPhy_a, HvPAPhy_b1, and HvPAPhy_b2; wheat, TaPAPhy_a1, TaPAPhy_a2, TaPAPhy_b1, and TaPAPhy_b2). In rice and maize, only the b type (OsPAPhy_b and ZmPAPhy_b, respectively) were identified. HvPAPhy_a and HvPAPhy_b1/b2 share 86% and TaPAPhya1/a2 and TaPAPhyb1/b2 share up to 90% (TaPAPhy_a2 and TaPAPhy_b2) identical amino acid sequences. despite of this, PAPhy_a and PAPhy_b isogenes are differentially expressed during grain development and germination. In wheat, it was demonstrated that a and b isogene expression is driven by different promoters (approximately 31% identity). TaPAPhy_a/b promoter reporter gene expression in transgenic grains and peptide mapping of TaPAPhy purified from wheat bran and germinating grains confirmed that the PAPhy_a isogene set present in wheat/barley but not in rice/maize is the origin of high phytase activity in mature grains.
Collapse
|
14
|
Zhang Q, Wang C, Tian J, Li K, Shou H. Identification of rice purple acid phosphatases related to phosphate starvation signalling. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:7-15. [PMID: 21143719 DOI: 10.1111/j.1438-8677.2010.00346.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Purple acid phosphatases (PAPs) are a family of metallo-phosphoesterases involved in a variety of physiological functions, especially phosphate deficiency adaptations in plants. We identified 26 putative PAP genes by a genome-wide analysis of rice (Oryza sativa), 24 of which have isolated EST sequences in the dbEST database. Amino acid sequence analysis revealed that 25 of these genes possess sets of metal-ligating residues typical of known PAPs. Phylogenetic analysis classified the 26 rice and 29 Arabidopsis PAPs into three main groups and seven subgroups. We detected transcripts of 21 PAP genes in roots or leaves of rice seedlings. The expression levels of ten PAP genes were up-regulated by both phosphate deprivation and over-expression of the transcription factor OsPHR2. These PAP genes all contained one or two OsPHR2 binding elements in their promoter regions, implying that they are directly regulated by OsPHR2. Both acid phosphatase (AP) and surface secretory acid phosphatase (SAP) activity assays showed that the up-regulation of PAPs by Pi starvation, OsPHR2 over-expression, PHO2 knockout or OsSPX1 RNA interference led to an increase in AP and SAP activity in rice roots. This study reveals the potential for developing technologies for crop improvement in phosphorus use efficiency.
Collapse
Affiliation(s)
- Q Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
15
|
Espley RV, Brendolise C, Chagné D, Kutty-Amma S, Green S, Volz R, Putterill J, Schouten HJ, Gardiner SE, Hellens RP, Allan AC. Multiple repeats of a promoter segment causes transcription factor autoregulation in red apples. THE PLANT CELL 2009; 21:168-83. [PMID: 19151225 PMCID: PMC2648084 DOI: 10.1105/tpc.108.059329] [Citation(s) in RCA: 341] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 12/19/2008] [Accepted: 01/06/2009] [Indexed: 05/18/2023]
Abstract
Mutations in the genes encoding for either the biosynthetic or transcriptional regulation of the anthocyanin pathway have been linked to color phenotypes. Generally, this is a loss of function resulting in a reduction or a change in the distribution of anthocyanin. Here, we describe a rearrangement in the upstream regulatory region of the gene encoding an apple (Malus x domestica) anthocyanin-regulating transcription factor, MYB10. We show that this modification is responsible for increasing the level of anthocyanin throughout the plant to produce a striking phenotype that includes red foliage and red fruit flesh. This rearrangement is a series of multiple repeats, forming a minisatellite-like structure that comprises five direct tandem repeats of a 23-bp sequence. This MYB10 rearrangement is present in all the red foliage apple varieties and species tested but in none of the white fleshed varieties. Transient assays demonstrated that the 23-bp sequence motif is a target of the MYB10 protein itself, and the number of repeat units correlates with an increase in transactivation by MYB10 protein. We show that the repeat motif is capable of binding MYB10 protein in electrophoretic mobility shift assays. Taken together, these results indicate that an allelic rearrangement in the promoter of MYB10 has generated an autoregulatory locus, and this autoregulation is sufficient to account for the increase in MYB10 transcript levels and subsequent ectopic accumulation of anthocyanins throughout the plant.
Collapse
Affiliation(s)
- Richard V Espley
- New Zealand Institute for Plant and Food Research Limited, Mt Albert Research Centre, Auckland 1025, New Zealand
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|