1
|
Miao H, Zhang J, Zheng Y, Jia C, Hu Y, Wang J, Zhang J, Sun P, Jin Z, Zhou Y, Zheng S, Wang W, Rouard M, Xie J, Liu J. Shaping the future of bananas: advancing genetic trait regulation and breeding in the postgenomics era. HORTICULTURE RESEARCH 2025; 12:uhaf044. [PMID: 40236735 PMCID: PMC11997438 DOI: 10.1093/hr/uhaf044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/03/2025] [Indexed: 04/17/2025]
Abstract
Bananas (Musa spp.) are among the top-produced food crops, serving as a primary source of food for millions of people. Cultivated bananas originated primarily from the wild diploid species Musa acuminata (A genome) and Musa balbisiana (B genome) through intra- and interspecific hybridization and selections via somatic variation. Following the publication of complete A- and B-genome sequences, prospects for complementary studies on S- and T-genome traits, key gene identification for yield, ripening, quality, and stress resistance, and advances in molecular breeding have significantly expanded. In this review, latest research progress on banana A, B, S, and T genomes is briefly summarized, highlighting key advances in banana cytoplasmic inheritance, flower and fruit development, sterility, and parthenocarpy, postharvest ripening and quality regulation, and biotic and abiotic stress resistance associated with desirable economic traits. We provide updates on transgenic, gene editing, and molecular breeding. We also explore future directions for banana breeding and genetic improvement.
Collapse
Affiliation(s)
- Hongxia Miao
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jianbin Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yunke Zheng
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Caihong Jia
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Yulin Hu
- Key Laboratory of Tropical Fruit Biology of Ministry of Agriculture and Rural Affairs, Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xiuhu Road 1, Mazhang District, Zhanjiang 524000, China
| | - Jingyi Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Jing Zhang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Peiguang Sun
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Zhiqiang Jin
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Yongfeng Zhou
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- National Key Laboratory of Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Pengfei Road 7, Dapengxin District, Shenzhen 518000, China
| | - Sijun Zheng
- Yunnan Key Laboratory of Green Prevention and Control of Agricultural Transboundary Pests, Agricultural Environment and Resources Institute, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
- Bioversity International, Yunnan Academy of Agricultural Sciences, Beijing Road 2238, Kunming 650205, China
| | - Wei Wang
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier 34397, Cedex 5, France
| | - Jianghui Xie
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
| | - Juhua Liu
- National key Laboratory of Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology & Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Sanya/Haikou 571101, China
- Hainan Key Laboratory for Protection and Utilization of Tropical Bioresources, Hainan Institute for Tropical Agricultural Resources, Chinese Academy of Tropical Agricultural Sciences, Xueyuan Road 4, Longhua District, Haikou 571101, China
| |
Collapse
|
2
|
Lin YE, Chiu HL, Wu CS, Chaw SM. Phylogenomics identifies parents of naturally occurring tetraploid bananas. BOTANICAL STUDIES 2024; 65:19. [PMID: 38995516 PMCID: PMC11245450 DOI: 10.1186/s40529-024-00429-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Triploid bananas are almost sterile. However, we succeeded in harvesting seeds from two edible triploid banana individuals (Genotype: ABB) in our conservation repository where various wild diploid bananas were also grown. The resulting rare offspring survived to seedling stages. DNA content analyses reveal that they are tetraploid. Since bananas contain maternally inherited plastids and paternally inherited mitochondria, we sequenced and assembled plastomes and mitogenomes of these seedlings to trace their hybridization history. RESULTS The coding sequences of both organellar genomic scaffolds were extracted, aligned, and concatenated for constructing phylogenetic trees. Our results suggest that these tetraploid seedlings be derived from hybridization between edible triploid bananas and wild diploid Musa balbisiana (BB) individuals. We propose that generating female triploid gametes via apomeiosis may allow the triploid maternal bananas to produce viable seeds. CONCLUSIONS Our study suggests a practical avenue towards expanding genetic recombination and increasing genetic diversity of banana breeding programs. Further cellular studies are needed to understand the fusion and developmental processes that lead to formation of hybrid embryos in banana reproduction, polyploidization, and evolution.
Collapse
Affiliation(s)
- Yu-En Lin
- Department of Biochemical Science and Technology, National Taiwan University, Taipei, 106319, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Hui-Lung Chiu
- Crop Genetic Resources and Biotechnology Division, Taiwan Agricultural Research Institute, Taichung, 413008, Taiwan
| | - Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan
| | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, 11529, Taiwan.
| |
Collapse
|
3
|
Martin G, Cottin A, Baurens FC, Labadie K, Hervouet C, Salmon F, Paulo-de-la-Reberdiere N, Van den Houwe I, Sardos J, Aury JM, D'Hont A, Yahiaoui N. Interspecific introgression patterns reveal the origins of worldwide cultivated bananas in New Guinea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:802-818. [PMID: 36575919 DOI: 10.1111/tpj.16086] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/16/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Hybridizations between Musa species and subspecies, enabled by their transport via human migration, were proposed to have played an important role in banana domestication. We exploited sequencing data of 226 Musaceae accessions, including wild and cultivated accessions, to characterize the inter(sub)specific hybridization pattern that gave rise to cultivated bananas. We identified 11 genetic pools that contributed to cultivars, including two contributors of unknown origin. Informative alleles for each of these genetic pools were pinpointed and used to obtain genome ancestry mosaics of accessions. Diploid and triploid cultivars had genome mosaics involving three up to possibly seven contributors. The simplest mosaics were found for some diploid cultivars from New Guinea, combining three contributors, i.e., banksii and zebrina representing Musa acuminata subspecies and, more unexpectedly, the New Guinean species Musa schizocarpa. Breakpoints of M. schizocarpa introgressions were found to be conserved between New Guinea cultivars and the other analyzed diploid and triploid cultivars. This suggests that plants bearing these M. schizocarpa introgressions were transported from New Guinea and gave rise to currently cultivated bananas. Many cultivars showed contrasted mosaics with predominant ancestry from their geographical origin across Southeast Asia to New Guinea. This revealed that further diversification occurred in different Southeast Asian regions through hybridization with other Musa (sub)species, including two unknown ancestors that we propose to be M. acuminata ssp. halabanensis and a yet to be characterized M. acuminata subspecies. These results highlighted a dynamic crop formation process that was initiated in New Guinea, with subsequent diversification throughout Southeast Asia.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Aurélien Cottin
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Karine Labadie
- Genoscope, Institut François Jacob, CEA, Université Paris-Saclay, Evry, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Frédéric Salmon
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, F-97130 Capesterre-Belle-Eau, Guadeloupe, France
| | - Nilda Paulo-de-la-Reberdiere
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, CRB-PT, F-97170 Roujol Petit-Bourg, Guadeloupe, France
| | - Ines Van den Houwe
- Bioversity International, Willem De Croylaan 42, B-3001, Leuven, Belgium
| | - Julie Sardos
- Bioversity International, Parc Scientifique Agropolis II, 34397, Montpellier, France
| | - Jean-Marc Aury
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP Institut, Montpellier, F-34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
4
|
Cenci A, Sardos J, Hueber Y, Martin G, Breton C, Roux N, Swennen R, Carpentier SC, Rouard M. Unravelling the complex story of intergenomic recombination in ABB allotriploid bananas. ANNALS OF BOTANY 2021; 127:7-20. [PMID: 32104882 PMCID: PMC7750727 DOI: 10.1093/aob/mcaa032] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Bananas (Musa spp.) are a major staple food for hundreds of millions of people in developing countries. The cultivated varieties are seedless and parthenocarpic clones of which the ancestral origin remains to be clarified. The most important cultivars are triploids with an AAA, AAB or ABB genome constitution, with A and B genomes provided by M. acuminata and M. balbisiana, respectively. Previous studies suggested that inter-genome recombinations were relatively common in banana cultivars and that triploids were more likely to have passed through an intermediate hybrid. In this study, we investigated the chromosome structure within the ABB group, composed of starchy cooking bananas that play an important role in food security. METHODS Using SNP markers called from RADSeq data, we studied the chromosome structure of 36 ABB genotypes spanning defined taxonomic subgroups. To complement our understanding, we searched for similar events within nine AB hybrid genotypes. KEY RESULTS Recurrent homologous exchanges (HEs), i.e. chromatin exchanges between A and B subgenomes, were unravelled with at least nine founding events (HE patterns) at the origin of ABB bananas prior to clonal diversification. Two independent founding events were found for Pisang Awak genotypes. Two HE patterns, corresponding to genotypes Pelipita and Klue Teparod, show an over-representation of B genome contribution. Three HE patterns mainly found in Indian accessions shared some recombined regions and two additional patterns did not correspond to any known subgroups. CONCLUSIONS The discovery of the nine founding events allowed an investigation of the possible routes that led to the creation of the different subgroups, which resulted in new hypotheses. Based on our observations, we suggest different routes that gave rise to the current diversity in the ABB cultivars, routes involving primary AB hybrids, routes leading to shared HEs and routes leading to a B excess ratio. Genetic fluxes took place between M. acuminata and M. balbisiana, particularly in India, where these unbalanced AB hybrids and ABB allotriploids originated, and where cultivated M. balbisiana are abundant. The result of this study clarifies the classification of ABB cultivars, possibly leading to the revision of the classification of this subgroup.
Collapse
Affiliation(s)
- Alberto Cenci
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Julie Sardos
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Yann Hueber
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Guillaume Martin
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CIRAD, UMR AGAP, Montpellier, France
| | | | - Nicolas Roux
- Alliance Bioversity International - CIAT, Montpellier, France
| | - Rony Swennen
- Alliance Bioversity International - CIAT, Leuven, Belgium
- Laboratory of Tropical Crop Improvement, Division of Crop Biotechnics, KU Leuven, Leuven, Belgium
- International Institute of Tropical Agriculture, c/o The Nelson Mandela African Institution of Science and Technology (NM-AIST), Arusha, Tanzania
| | | | - Mathieu Rouard
- Alliance Bioversity International - CIAT, Montpellier, France
| |
Collapse
|
5
|
Abstract
Size, structure, and sequence content lability of plant mitochondrial genome (mtDNA) across species has sharply limited its use in taxonomic studies. Historically, mtDNA variation has been first investigated with RFLPs, while the development of universal primers then allowed studying sequence polymorphisms within short genomic regions (<3 kb). The recent advent of NGS technologies now offers new opportunities by greatly facilitating the assembly of longer mtDNA regions, and even full mitogenomes. Phylogenetic works aiming at comparing signals from different genomic compartments (i.e., nucleus, chloroplast, and mitochondria) have been developed on a few plant lineages, and have been shown especially relevant in groups with contrasted inheritance of organelle genomes. This chapter first reviews the main characteristics of mtDNA and the application offered in taxonomic studies. It then presents tips for best sequencing protocol based on NGS data to be routinely used in mtDNA-based phylogenetic studies.
Collapse
Affiliation(s)
- Jérôme Duminil
- DIADE, University of Montpellier, IRD, Montpellier, France.
| | - Guillaume Besnard
- CNRS-UPS-IRD, UMR5174, EDB, Université Paul Sabatier, Toulouse, France
| |
Collapse
|
6
|
Wu CS, Sudianto E, Chiu HL, Chao CP, Chaw SM. Reassessing Banana Phylogeny and Organelle Inheritance Modes Using Genome Skimming Data. FRONTIERS IN PLANT SCIENCE 2021; 12:713216. [PMID: 34456952 PMCID: PMC8385209 DOI: 10.3389/fpls.2021.713216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/16/2021] [Indexed: 05/10/2023]
Abstract
Bananas (Musa spp.) are some of the most important fruit crops in the world, contributing up to US$10 billion in export values annually. In this study, we use high-throughput sequencing to obtain genomic resources of high-copy DNA molecules in bananas. We sampled 13 wild species and eight cultivars that represent the three genera (Ensete, Musa, and Musella) of the banana family (Musaceae). Their plastomic, 45S rDNA, and mitochondrial scaffolds were recovered from genome skimming data. Two major clades (Clades I & II) within Musa are strongly supported by the three genomic compartment data. We document, for the first time, that the plastomes of Musaceae have expanded inverted repeats (IR) after they diverged from their two close relatives, Heliconiaceae (the lobster-claws) and Strelitziaceae (the traveler's bananas). The presence/absence of rps19 within IR regions reinforces the two intra-generic clades within Musa. Our comparisons of the bananas' plastomic and mitochondrial DNA sequence trees aid in identifying hybrid bananas' parentage. As the mitochondrial genes of Musa have elevated substitution rates, paternal inheritance likely plays an influential role on the Musa mitogenome evolution. We propose genome skimming as a useful method for reliable genealogy tracing and phylogenetics in bananas.
Collapse
Affiliation(s)
- Chung-Shien Wu
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Edi Sudianto
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Hui-Lung Chiu
- Plant Germplasm Division, Taiwan Agricultural Research Institute, Taichung, Taiwan
| | | | - Shu-Miaw Chaw
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- *Correspondence: Shu-Miaw Chaw
| |
Collapse
|
7
|
Martin G, Cardi C, Sarah G, Ricci S, Jenny C, Fondi E, Perrier X, Glaszmann JC, D'Hont A, Yahiaoui N. Genome ancestry mosaics reveal multiple and cryptic contributors to cultivated banana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1008-1025. [PMID: 31930580 PMCID: PMC7317953 DOI: 10.1111/tpj.14683] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/18/2019] [Accepted: 01/02/2020] [Indexed: 05/24/2023]
Abstract
Hybridizations between closely related species commonly occur in the domestication process of many crops. Banana cultivars are derived from such hybridizations between species and subspecies of the Musa genus that have diverged in various tropical Southeast Asian regions and archipelagos. Among the diploid and triploid hybrids generated, those with seedless parthenocarpic fruits were selected by humans and thereafter dispersed through vegetative propagation. Musa acuminata subspecies contribute to most of these cultivars. We analyzed sequence data from 14 M. acuminata wild accessions and 10 M. acuminata-based cultivars, including diploids and one triploid, to characterize the ancestral origins along their chromosomes. We used multivariate analysis and single nucleotide polymorphism clustering and identified five ancestral groups as contributors to these cultivars. Four of these corresponded to known M. acuminata subspecies. A fifth group, found only in cultivars, was defined based on the 'Pisang Madu' cultivar and represented two uncharacterized genetic pools. Diverse ancestral contributions along cultivar chromosomes were found, resulting in mosaics with at least three and up to five ancestries. The commercially important triploid Cavendish banana cultivar had contributions from at least one of the uncharacterized genetic pools and three known M. acuminata subspecies. Our results highlighted that cultivated banana origins are more complex than expected - involving multiple hybridization steps - and also that major wild banana ancestors have yet to be identified. This study revealed the extent to which admixture has framed the evolution and domestication of a crop plant.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Céline Cardi
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Gautier Sarah
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Sébastien Ricci
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
- CARBAP, Rue Dinde, No. 110, Bonanjo, BP 832, Douala, Cameroon
- CIRAD, UMR AGAP, F-97130, Capesterre Belle Eau, France
| | - Christophe Jenny
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Emmanuel Fondi
- CARBAP, Rue Dinde, No. 110, Bonanjo, BP 832, Douala, Cameroon
| | - Xavier Perrier
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Christophe Glaszmann
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, F-34398, Montpellier, France
- AGAP, Univ. Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
8
|
Baurens FC, Martin G, Hervouet C, Salmon F, Yohomé D, Ricci S, Rouard M, Habas R, Lemainque A, Yahiaoui N, D'Hont A. Recombination and Large Structural Variations Shape Interspecific Edible Bananas Genomes. Mol Biol Evol 2019; 36:97-111. [PMID: 30403808 PMCID: PMC6340459 DOI: 10.1093/molbev/msy199] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Admixture and polyploidization are major recognized eukaryotic genome evolutionary processes. Their impacts on genome dynamics vary among systems and are still partially deciphered. Many banana cultivars are triploid (sometimes diploid) interspecific hybrids between Musa acuminata (A genome) and M. balbisiana (B genome). They have no or very low fertility, are vegetatively propagated and have been classified as “AB,” “AAB,” or “ABB” based on morphological characters. We used NGS sequence data to characterize the A versus B chromosome composition of nine diploid and triploid interspecific cultivars, to compare the chromosome structures of A and B genomes and analyze A/B chromosome segregations in a polyploid context. We showed that interspecific recombination occurred frequently between A and B chromosomes. We identified two large structural variations between A and B genomes, a reciprocal translocation and an inversion that locally affected recombination and led to segregation distortion and aneuploidy in a triploid progeny. Interspecific recombination and large structural variations explained the mosaic genomes observed in edible bananas. The unprecedented resolution in deciphering their genome structure allowed us to start revisiting the origins of banana cultivars and provided new information to gain insight into the impact of interspecificity on genome evolution. It will also facilitate much more effective assessment of breeding strategies.
Collapse
Affiliation(s)
- Franc-Christophe Baurens
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Guillaume Martin
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Catherine Hervouet
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Frédéric Salmon
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,CIRAD, UMR AGAP, F-97130 Capesterre Belle Eau, Guadeloupe, France
| | | | - Sébastien Ricci
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.,CIRAD, UMR AGAP, F-97130 Capesterre Belle Eau, Guadeloupe, France.,CARBAP, Bonanjo, Douala, Cameroon
| | - Mathieu Rouard
- Bioversity International, Parc Scientifique Agropolis II, Montpellier, Cedex 5, France
| | - Remy Habas
- CIRAD, UMR BGPI, F-34398 Montpellier, France.,BGPI, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Arnaud Lemainque
- Commissariat à l'énergie atomique et aux énergies alternatives (CEA), Institut de Biologie François-Jacob, Genoscope, Evry, France
| | - Nabila Yahiaoui
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Angélique D'Hont
- CIRAD, UMR AGAP, F-34398 Montpellier, France.,AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| |
Collapse
|
9
|
Muiruri KS, Britt A, Amugune NO, Nguu E, Chan S, Tripathi L. Dominant Allele Phylogeny and Constitutive Subgenome Haplotype Inference in Bananas Using Mitochondrial and Nuclear Markers. Genome Biol Evol 2017; 9:2510-2521. [PMID: 28992303 PMCID: PMC5629815 DOI: 10.1093/gbe/evx167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/27/2017] [Indexed: 12/22/2022] Open
Abstract
Cultivated bananas (Musa spp.) have undergone domestication patterns involving crosses of wild progenitors followed by long periods of clonal propagation. Majority of cultivated bananas are polyploids with different constitutive subgenomes and knowledge on phylogenies to their progenitors at the species and subspecies levels is essential. Here, the mitochondrial (NAD1) and nuclear (CENH3) markers were used to phylogenetically position cultivated banana genotypes to diploid progenitors. The CENH3 nuclear marker was used to identify a minimum representative haplotype number in polyploids and diploid bananas based on single nucleotide polymorphisms. The mitochondrial marker NAD1 was observed to be ideal in differentiating bananas of different genomic constitutions based on size of amplicons as well as sequence. The genotypes phylogenetically segregated based on the dominant genome; AAB genotypes grouped with AA and AAA, and the ABB together with BB. Both markers differentiated banana sections, but could not differentiate subspecies within the A genomic group. On the basis of CENH3 marker, a total of 13 haplotypes (five in both diploid and triploid, three in diploids, and rest unique to triploids) were identified from the genotypes tested. The presence of haplotypes, which were common in diploids and triploids, stipulate possibility of a shared ancestry in the genotypes involved in this study. Furthermore, the presence of multiple haplotypes in some diploid bananas indicates their being heterozygous. The haplotypes identified in this study are of importance because they can be used to check the level of homozygozity in breeding lines as well as to track segregation in progenies.
Collapse
Affiliation(s)
- Kariuki Samwel Muiruri
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
- School of Biological Sciences, University of Nairobi, Kenya
| | - Anne Britt
- Department of Plant Biology, University of California, Davis
| | | | - Edward Nguu
- Department of Biochemistry, University of Nairobi, Kenya
| | - Simon Chan
- Department of Plant Biology, University of California, Davis
| | - Leena Tripathi
- International Institute of Tropical Agriculture (IITA), Nairobi, Kenya
| |
Collapse
|
10
|
Sardos J, Perrier X, Doležel J, Hřibová E, Christelová P, Van den Houwe I, Kilian A, Roux N. DArT whole genome profiling provides insights on the evolution and taxonomy of edible Banana (Musa spp.). ANNALS OF BOTANY 2016; 118:1269-1278. [PMID: 27590334 PMCID: PMC5155597 DOI: 10.1093/aob/mcw170] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 05/24/2023]
Abstract
BACKGROUND AND AIMS Dessert and cooking bananas are vegetatively propagated crops of great importance for both the subsistence and the livelihood of people in developing countries. A wide diversity of diploid and triploid cultivars including AA, AB, AS, AT, AAA, AAB, ABB, AAS and AAT genomic constitutions exists. Within each of this genome groups, cultivars are classified into subgroups that are reported to correspond to varieties clonally derived from each other after a single sexual event. The number of those founding events at the basis of the diversity of bananas is a matter of debate. METHODS We analysed a large panel of 575 accessions, 94 wild relatives and 481 cultivated accessions belonging to the section Musa with a set of 498 DArT markers previously developed. KEY RESULTS DArT appeared successful and accurate to describe Musa diversity and help in the resolution of cultivated banana genome constitution and taxonomy, and highlighted discrepancies in the acknowledged classification of some accessions. This study also argues for at least two centres of domestication corresponding to South-East Asia and New Guinea, respectively. Banana domestication in New Guinea probably followed different schemes that those previously reported where hybridization underpins the emergence of edible banana. In addition, our results suggest that not all wild ancestors of bananas are known, especially in M. acuminata subspecies. We also estimate the extent of the two consecutive bottlenecks in edible bananas by evaluating the number of sexual founding events underlying our sets of edible diploids and triploids, respectively. CONCLUSIONS The attribution of clone identity to each sample of the sets allowed the detection of subgroups represented by several sets of clones. Although morphological characterization of some of the accessions is needed to correct potentially erroneous classifications, some of the subgroups seem polyclonal.
Collapse
Affiliation(s)
- J Sardos
- Bioversity International, Parc Scientifique Agropolis II, 1990 boulevard de la Lironde, 34397 Montpellier Cedex 5, France
| | - X Perrier
- CIRAD, UMR AGAP, 34398 Montpellier, France
| | - J Doležel
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - E Hřibová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - P Christelová
- Institute of Experimental Botany, Centre of the Region Haná for Biotechnological and Agricultural Research, Šlechtitelů 31, 78371 Olomouc, Czech Republic
| | - I Van den Houwe
- Bioversity International, Willem De Croylaan 42, 3001 Leuven, Belgium
| | - A Kilian
- Diversity Arrays Technology Pty Ltd, Building 3, University of Canberra, Bruce, ACT 2617, Australia
| | - N Roux
- Bioversity International, Parc Scientifique Agropolis II, 1990 boulevard de la Lironde, 34397 Montpellier Cedex 5, France
| |
Collapse
|
11
|
Abstract
The lability in size, structure, and sequence content of mitochondrial genome (mtDNA) across plant species has sharply limited its use in taxonomic studies. However, due to the new opportunities offered by the availability of complete mtDNA sequence in plant species and the subsequent development of universal primers, the number of mtDNA-based molecular studies has recently increased. Historically, universal primers have enabled to characterize mtDNA polymorphism mainly by the RFLP technique. This methodology has been progressively replaced by Sanger DNA sequencing, which actually provides the full phylogenetic information content of a DNA fragment (single nucleotide, insertion/deletion, and single sequence repeat length polymorphism). This chapter presents a sequencing working protocol to be routinely used in mtDNA-based phylogenetic studies.
Collapse
|
12
|
Ortiz R, Swennen R. From crossbreeding to biotechnology-facilitated improvement of banana and plantain. Biotechnol Adv 2014; 32:158-69. [DOI: 10.1016/j.biotechadv.2013.09.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 09/16/2013] [Accepted: 09/24/2013] [Indexed: 12/30/2022]
|
13
|
Davey MW, Gudimella R, Harikrishna JA, Sin LW, Khalid N, Keulemans J. "A draft Musa balbisiana genome sequence for molecular genetics in polyploid, inter- and intra-specific Musa hybrids". BMC Genomics 2013; 14:683. [PMID: 24094114 PMCID: PMC3852598 DOI: 10.1186/1471-2164-14-683] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2013] [Accepted: 09/24/2013] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Modern banana cultivars are primarily interspecific triploid hybrids of two species, Musa acuminata and Musa balbisiana, which respectively contribute the A- and B-genomes. The M. balbisiana genome has been associated with improved vigour and tolerance to biotic and abiotic stresses and is thus a target for Musa breeding programs. However, while a reference M. acuminata genome has recently been released (Nature 488:213-217, 2012), little sequence data is available for the corresponding B-genome.To address these problems we carried out Next Generation gDNA sequencing of the wild diploid M. balbisiana variety 'Pisang Klutuk Wulung' (PKW). Our strategy was to align PKW gDNA reads against the published A-genome and to extract the mapped consensus sequences for subsequent rounds of evaluation and gene annotation. RESULTS The resulting B-genome is 79% the size of the A-genome, and contains 36,638 predicted functional gene sequences which is nearly identical to the 36,542 of the A-genome. There is substantial sequence divergence from the A-genome at a frequency of 1 homozygous SNP per 23.1 bp, and a high degree of heterozygosity corresponding to one heterozygous SNP per 55.9 bp. Using expressed small RNA data, a similar number of microRNA sequences were predicted in both A- and B-genomes, but additional novel miRNAs were detected, including some that are unique to each genome. The usefulness of this B-genome sequence was evaluated by mapping RNA-seq data from a set of triploid AAA and AAB hybrids simultaneously to both genomes. Results for the plantains demonstrated the expected 2:1 distribution of reads across the A- and B-genomes, but for the AAA genomes, results show they contain regions of significant homology to the B-genome supporting proposals that there has been a history of interspecific recombination between homeologous A and B chromosomes in Musa hybrids. CONCLUSIONS We have generated and annotated a draft reference Musa B-genome and demonstrate that this can be used for molecular genetic mapping of gene transcripts and small RNA expression data from several allopolyploid banana cultivars. This draft therefore represents a valuable resource to support the study of metabolism in inter- and intraspecific triploid Musa hybrids and to help direct breeding programs.
Collapse
Affiliation(s)
- Mark W Davey
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| | - Ranganath Gudimella
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Lee Wan Sin
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Norzulaani Khalid
- Centre for Research in Biotechnology for Agriculture and Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Johan Keulemans
- Laboratory of Fruit Breeding and Biotechnology, Division of Crop Biotechnics, Department of Biosystems, Katholieke Universiteit Leuven, Willem de Croylaan 42, box 2427B-3001, Heverlee, Leuven, Belgium
| |
Collapse
|
14
|
Martin G, Baurens FC, Cardi C, Aury JM, D’Hont A. The complete chloroplast genome of banana (Musa acuminata, Zingiberales): insight into plastid monocotyledon evolution. PLoS One 2013; 8:e67350. [PMID: 23840670 PMCID: PMC3696114 DOI: 10.1371/journal.pone.0067350] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Accepted: 05/16/2013] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Banana (genus Musa) is a crop of major economic importance worldwide. It is a monocotyledonous member of the Zingiberales, a sister group of the widely studied Poales. Most cultivated bananas are natural Musa inter-(sub-)specific triploid hybrids. A Musa acuminata reference nuclear genome sequence was recently produced based on sequencing of genomic DNA enriched in nucleus. METHODOLOGY/PRINCIPAL FINDINGS The Musa acuminata chloroplast genome was assembled with chloroplast reads extracted from whole-genome-shotgun sequence data. The Musa chloroplast genome is a circular molecule of 169,972 bp with a quadripartite structure containing two single copy regions, a Large Single Copy region (LSC, 88,338 bp) and a Small Single Copy region (SSC, 10,768 bp) separated by Inverted Repeat regions (IRs, 35,433 bp). Two forms of the chloroplast genome relative to the orientation of SSC versus LSC were found. The Musa chloroplast genome shows an extreme IR expansion at the IR/SSC boundary relative to the most common structures found in angiosperms. This expansion consists of the integration of three additional complete genes (rps15, ndhH and ycf1) and part of the ndhA gene. No such expansion has been observed in monocots so far. Simple Sequence Repeats were identified in the Musa chloroplast genome and a new set of Musa chloroplastic markers was designed. CONCLUSION The complete sequence of M. acuminata ssp malaccensis chloroplast we reported here is the first one for the Zingiberales order. As such it provides new insight in the evolution of the chloroplast of monocotyledons. In particular, it reinforces that IR/SSC expansion has occurred independently several times within monocotyledons. The discovery of new polymorphic markers within Musa chloroplast opens new perspectives to better understand the origin of cultivated triploid bananas.
Collapse
Affiliation(s)
- Guillaume Martin
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, Montpellier, France
| | - Franc-Christophe Baurens
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, Montpellier, France
| | - Céline Cardi
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, Montpellier, France
| | | | - Angélique D’Hont
- CIRAD (Centre de coopération Internationale en Recherche Agronomique pour le Développement), UMR AGAP, Montpellier, France
| |
Collapse
|
15
|
de Jesus ON, Silva SDOE, Amorim EP, Ferreira CF, de Campos JMS, Silva GDG, Figueira A. Genetic diversity and population structure of Musa accessions in ex situ conservation. BMC PLANT BIOLOGY 2013; 13:41. [PMID: 23497122 PMCID: PMC3636076 DOI: 10.1186/1471-2229-13-41] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 02/22/2013] [Indexed: 05/06/2023]
Abstract
BACKGROUND Banana cultivars are mostly derived from hybridization between wild diploid subspecies of Musa acuminata (A genome) and M. balbisiana (B genome), and they exhibit various levels of ploidy and genomic constitution. The Embrapa ex situ Musa collection contains over 220 accessions, of which only a few have been genetically characterized. Knowledge regarding the genetic relationships and diversity between modern cultivars and wild relatives would assist in conservation and breeding strategies. Our objectives were to determine the genomic constitution based on Internal Transcribed Spacer (ITS) regions polymorphism and the ploidy of all accessions by flow cytometry and to investigate the population structure of the collection using Simple Sequence Repeat (SSR) loci as co-dominant markers based on Structure software, not previously performed in Musa. RESULTS From the 221 accessions analyzed by flow cytometry, the correct ploidy was confirmed or established for 212 (95.9%), whereas digestion of the ITS region confirmed the genomic constitution of 209 (94.6%). Neighbor-joining clustering analysis derived from SSR binary data allowed the detection of two major groups, essentially distinguished by the presence or absence of the B genome, while subgroups were formed according to the genomic composition and commercial classification. The co-dominant nature of SSR was explored to analyze the structure of the population based on a Bayesian approach, detecting 21 subpopulations. Most of the subpopulations were in agreement with the clustering analysis. CONCLUSIONS The data generated by flow cytometry, ITS and SSR supported the hypothesis about the occurrence of homeologue recombination between A and B genomes, leading to discrepancies in the number of sets or portions from each parental genome. These phenomenons have been largely disregarded in the evolution of banana, as the "single-step domestication" hypothesis had long predominated. These findings will have an impact in future breeding approaches. Structure analysis enabled the efficient detection of ancestry of recently developed tetraploid hybrids by breeding programs, and for some triploids. However, for the main commercial subgroups, Structure appeared to be less efficient to detect the ancestry in diploid groups, possibly due to sampling restrictions. The possibility of inferring the membership among accessions to correct the effects of genetic structure opens possibilities for its use in marker-assisted selection by association mapping.
Collapse
Affiliation(s)
- Onildo Nunes de Jesus
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Av. Pádua Dias, 11, Piracicaba, SP, 13418-900, Brazil
- EMBRAPA Mandioca Fruticultura, R. Embrapa s/n, Cruz das Almas, BA, 44380-000, Brazil
| | | | - Edson Perito Amorim
- EMBRAPA Mandioca Fruticultura, R. Embrapa s/n, Cruz das Almas, BA, 44380-000, Brazil
| | | | | | - Gabriela de Gaspari Silva
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| | - Antonio Figueira
- Centro de Energia Nuclear na Agricultura, Universidade de São Paulo, Av. Centenário, 303, CP 96, Piracicaba, SP, 13400-970, Brazil
| |
Collapse
|
16
|
Carpentier SC, Panis B, Renaut J, Samyn B, Vertommen A, Vanhove AC, Swennen R, Sergeant K. The use of 2D-electrophoresis and de novo sequencing to characterize inter- and intra-cultivar protein polymorphisms in an allopolyploid crop. PHYTOCHEMISTRY 2011; 72:1243-1250. [PMID: 21109271 DOI: 10.1016/j.phytochem.2010.10.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/27/2010] [Accepted: 10/26/2010] [Indexed: 05/30/2023]
Abstract
Polyploidy and allopolyploidy have played an important role in the evolution of many plants and crops. Several techniques exist to characterize allopolyploid varieties. Analyzing the consequences of genomic reorganization at the gDNA level is a prerequisite but a better insight into the consequences for the phenotype is also primordial. As such, protein polymorphism analysis is important in understanding plant and crop biodiversity and is a driving force behind crop improvement. Our strategy to analyze protein isoforms and to detect possible gene silencing or deletion in bananas was based on protein analysis. Bananas are a good representative of a complex allopolyploid and important crop. We combined two-dimensional electrophoresis (2DE) and 2D DIGE with de novo MS/MS sequence determination to characterize a range of triploid varieties. Via Principal Component Analysis (PCA) and hierarchical clustering we were able to blindly classify the different varieties according to their presumed genome constitution. We report for the first time the application of an automated approach for the derivatization of peptides for facilitated MS/MS de novo sequence determination. We conclude that the proteome does not always correspond to the presumed genome formulae and that proteomics is a powerful tool to characterize varieties. The observations at the protein level provide good indications for a more complex genome structure and genomic rearrangement in some banana varieties.
Collapse
|
17
|
Christelová P, Valárik M, Hřibová E, De Langhe E, Doležel J. A multi gene sequence-based phylogeny of the Musaceae (banana) family. BMC Evol Biol 2011; 11:103. [PMID: 21496296 PMCID: PMC3102628 DOI: 10.1186/1471-2148-11-103] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 04/16/2011] [Indexed: 11/12/2022] Open
Abstract
Background The classification of the Musaceae (banana) family species and their phylogenetic inter-relationships remain controversial, in part due to limited nucleotide information to complement the morphological and physiological characters. In this work the evolutionary relationships within the Musaceae family were studied using 13 species and DNA sequences obtained from a set of 19 unlinked nuclear genes. Results The 19 gene sequences represented a sample of ~16 kb of genome sequence (~73% intronic). The sequence data were also used to obtain estimates for the divergence times of the Musaceae genera and Musa sections. Nucleotide variation within the sample confirmed the close relationship of Australimusa and Callimusa sections and showed that Eumusa and Rhodochlamys sections are not reciprocally monophyletic, which supports the previous claims for the merger between the two latter sections. Divergence time analysis supported the previous dating of the Musaceae crown age to the Cretaceous/Tertiary boundary (~ 69 Mya), and the evolution of Musa to ~50 Mya. The first estimates for the divergence times of the four Musa sections were also obtained. Conclusions The gene sequence-based phylogeny presented here provides a substantial insight into the course of speciation within the Musaceae. An understanding of the main phylogenetic relationships between banana species will help to fine-tune the taxonomy of Musaceae.
Collapse
Affiliation(s)
- Pavla Christelová
- Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, 772 00 Olomouc, Czech Republic
| | | | | | | | | |
Collapse
|
18
|
De Langhe E, Hribová E, Carpentier S, Dolezel J, Swennen R. Did backcrossing contribute to the origin of hybrid edible bananas? ANNALS OF BOTANY 2010; 106:849-57. [PMID: 20858591 PMCID: PMC2990659 DOI: 10.1093/aob/mcq187] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Revised: 05/21/2010] [Accepted: 08/25/2010] [Indexed: 05/20/2023]
Abstract
BACKGROUND Bananas and plantains (Musa spp.) provide a staple food for many millions of people living in the humid tropics. The cultivated varieties (cultivars) are seedless parthenocarpic clones of which the origin remains unclear. Many are believed to be diploid and polyploid hybrids involving the A genome diploid M. acuminata and the B genome M. balbisiana, with the hybrid genomes consisting of a simple combination of the parental ones. Thus the genomic constitution of the diploids has been classified as AB, and that of the triploids as AAB or ABB. However, the morphology of many accessions is biased towards either the A or B phenotype and does not conform to predictions based on these genomic formulae. SCOPE On the basis of published cytotypes (mitochondrial and chloroplast genomes), we speculate here that the hybrid banana genomes are unbalanced with respect to the parental ones, and/or that inter-genome translocation chromosomes are relatively common. We hypothesize that the evolution under domestication of cultivated banana hybrids is more likely to have passed through an intermediate hybrid, which was then involved in a variety of backcrossing events. We present experimental data supporting our hypothesis and we propose a set of experimental approaches to test it, thereby indicating other possibilities for explaining some of the unbalanced genome expressions. Progress in this area would not only throw more light on the origin of one of the most important crops, but provide data of general relevance for the evolution under domestication of many other important clonal crops. At the same time, a complex origin of the cultivated banana hybrids would imply a reconsideration of current breeding strategies.
Collapse
Affiliation(s)
- Edmond De Langhe
- Laboratory of Tropical Crop Improvement, Katholieke Universiteit Leuven, Kasteelpark Arenberg 13 bus 2455, 3001 Leuven, Belgium.
| | | | | | | | | |
Collapse
|