1
|
Du H, Zhai Z, Pu J, Liang J, Wang R, Zhang Z, Wang P, Zhu Y, Huang L, Li D, Chen K, Zhu G, Zhang C. Two tandem R2R3 MYB transcription factor genes cooperatively regulate anthocyanin accumulation in potato tuber flesh. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:1521-1534. [PMID: 39887502 PMCID: PMC12018810 DOI: 10.1111/pbi.14602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/06/2025] [Accepted: 01/08/2025] [Indexed: 02/01/2025]
Abstract
Anthocyanin biosynthesis and accumulation determines the colour of tuber flesh in potato (Solanum tuberosum) and influences nutritional quality. However, the regulatory mechanism behind anthocyanin biosynthesis in potato tuber flesh remains unclear. In this study, we identified the Pigmented tuber flesh (Pf) locus through a genome-wide association study using 135 diploid potato landraces. Genome editing of two tandem R2R3 MYB transcription factor genes, StMYB200 and StMYB210, within the Pf locus demonstrated that both genes are involved in anthocyanin biosynthesis in tuber flesh. Molecular and biochemical assays revealed that StMYB200 promotes StMYB210 transcription by directly binding to a 1.7-kb insertion present in the StMYB210 promoter, while StMYB210 also regulates its own expression. Furthermore, StMYB200 and StMYB210 both activated the expression of the basic helix-loop-helix transcription factor gene StbHLH1 and interacted with StbHLH1 to regulate anthocyanin biosynthesis. An analysis of the StMYB210 promoter in different diploid potato accessions showed that the 1.7-kb insertion is associated with flesh colour in potato. These findings reveal the genetic and molecular mechanism by which the Pf locus regulates anthocyanin accumulation in tuber flesh and provide an important reference for breeding new potato varieties with colourful flesh.
Collapse
Affiliation(s)
- Hui Du
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Zefeng Zhai
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Jin Pu
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Jun Liang
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Rongyan Wang
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Zhong Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Pei Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Yanhui Zhu
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Lian Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Dawei Li
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Kaiyuan Chen
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| | - Guangtao Zhu
- Yunnan Key Laboratory of Potato BiologyThe AGISCAAS‐YNNU Joint Academy of Potato Sciences, Yunnan Normal UniversityKunmingChina
| | - Chunzhi Zhang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural AffairsAgricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural SciencesShenzhenChina
| |
Collapse
|
2
|
Li M, Xiong Y, Yang X, Gao Y, Li K. Transcriptomic and Metabolic Analysis Reveals Genes and Pathways Associated with Flesh Pigmentation in Potato ( Solanum tuberosum) Tubers. Curr Issues Mol Biol 2024; 46:10335-10350. [PMID: 39329967 PMCID: PMC11430057 DOI: 10.3390/cimb46090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 09/03/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Anthocyanins, flavonoid pigments, are responsible for the purple and red hues in potato tubers. This study analyzed tubers from four potato cultivars-red RR, purple HJG, yellow QS9, and white JZS8-to elucidate the genetic mechanisms underlying tuber pigmentation. Our transcriptomic analysis identified over 2400 differentially expressed genes between these varieties. Notably, genes within the flavonoid biosynthesis pathway were enriched in HJG and RR compared to the non-pigmented JZS8, correlating with their higher levels of anthocyanin precursors and related substances. Hierarchical clustering revealed inverse expression patterns for the key genes involved in anthocyanin metabolism between pigmented and non-pigmented varieties. Among these, several MYB transcription factors displayed strong co-expression with anthocyanin biosynthetic genes, suggesting a regulatory role. Specifically, the expression of 16 MYB genes was validated using qRT-PCR to be markedly higher in pigmented HJG and RR versus JZS8, suggesting that these MYB genes might be involved in tuber pigmentation. This study comprehensively analyzed the transcriptome of diverse potato cultivars, highlighting specific genes and metabolic pathways involved in tuber pigmentation. These findings provide potential molecular targets for breeding programs focused on enhancing tuber color.
Collapse
Affiliation(s)
- Man Li
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuting Xiong
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Xueying Yang
- Agricultural College, Yanbian University, Yanji 133002, China
| | - Yuliang Gao
- Yanbian Agricultural Sciences Academy, Longjing 133400, China
| | - Kuihua Li
- Agricultural College, Yanbian University, Yanji 133002, China
| |
Collapse
|
3
|
Sharma SK, McLean K, Hedley PE, Dale F, Daniels S, Bryan GJ. Genotyping-by-sequencing targets genic regions and improves resolution of genome-wide association studies in autotetraploid potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:180. [PMID: 38980417 PMCID: PMC11233353 DOI: 10.1007/s00122-024-04651-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 05/10/2024] [Indexed: 07/10/2024]
Abstract
KEY MESSAGE De novo genotyping in potato using methylation-sensitive GBS discovers SNPs largely confined to genic or gene-associated regions and displays enhanced effectiveness in estimating LD decay rates, population structure and detecting GWAS associations over 'fixed' SNP genotyping platform. Study also reports the genetic architectures including robust sequence-tagged marker-trait associations for sixteen important potato traits potentially carrying higher transferability across a wider range of germplasm. This study deploys recent advancements in polyploid analytical approaches to perform complex trait analyses in cultivated tetraploid potato. The study employs a 'fixed' SNP Infinium array platform and a 'flexible and open' genome complexity reduction-based sequencing method (GBS, genotyping-by-sequencing) to perform genome-wide association studies (GWAS) for several key potato traits including the assessment of population structure and linkage disequilibrium (LD) in the studied population. GBS SNPs discovered here were largely confined (~ 90%) to genic or gene-associated regions of the genome demonstrating the utility of using a methylation-sensitive restriction enzyme (PstI) for library construction. As compared to Infinium array SNPs, GBS SNPs displayed enhanced effectiveness in estimating LD decay rates and discriminating population subgroups. GWAS using a combined set of 30,363 SNPs identified 189 unique QTL marker-trait associations (QTL-MTAs) covering all studied traits. The majority of the QTL-MTAs were from GBS SNPs potentially illustrating the effectiveness of marker-dense de novo genotyping platforms in overcoming ascertainment bias and providing a more accurate correction for different levels of relatedness in GWAS models. GWAS also detected QTL 'hotspots' for several traits at previously known as well as newly identified genomic locations. Due to the current study exploiting genome-wide genotyping and de novo SNP discovery simultaneously on a large tetraploid panel representing a greater diversity of the cultivated potato gene pool, the reported sequence-tagged MTAs are likely to have higher transferability across a wider range of potato germplasm and increased utility for expediting genomics-assisted breeding for the several complex traits studied.
Collapse
Affiliation(s)
- Sanjeev Kumar Sharma
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Karen McLean
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Peter E Hedley
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Finlay Dale
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | - Glenn J Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| |
Collapse
|
4
|
Sonsungsan P, Nganga ML, Lieberman MC, Amundson KR, Stewart V, Plaimas K, Comai L, Henry IM. A k-mer-based bulked segregant analysis approach to map seed traits in unphased heterozygous potato genomes. G3 (BETHESDA, MD.) 2024; 14:jkae035. [PMID: 38366577 PMCID: PMC10989861 DOI: 10.1093/g3journal/jkae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/06/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
High-throughput sequencing-based methods for bulked segregant analysis (BSA) allow for the rapid identification of genetic markers associated with traits of interest. BSA studies have successfully identified qualitative (binary) and quantitative trait loci (QTLs) using QTL mapping. However, most require population structures that fit the models available and a reference genome. Instead, high-throughput short-read sequencing can be combined with BSA of k-mers (BSA-k-mer) to map traits that appear refractory to standard approaches. This method can be applied to any organism and is particularly useful for species with genomes diverged from the closest sequenced genome. It is also instrumental when dealing with highly heterozygous and potentially polyploid genomes without phased haplotype assemblies and for which a single haplotype can control a trait. Finally, it is flexible in terms of population structure. Here, we apply the BSA-k-mer method for the rapid identification of candidate regions related to seed spot and seed size in diploid potato. Using a mixture of F1 and F2 individuals from a cross between 2 highly heterozygous parents, candidate sequences were identified for each trait using the BSA-k-mer approach. Using parental reads, we were able to determine the parental origin of the loci. Finally, we mapped the identified k-mers to a closely related potato genome to validate the method and determine the genomic loci underlying these sequences. The location identified for the seed spot matches with previously identified loci associated with pigmentation in potato. The loci associated with seed size are novel. Both loci are relevant in future breeding toward true seeds in potato.
Collapse
Affiliation(s)
- Pajaree Sonsungsan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mwaura Livingstone Nganga
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Meric C Lieberman
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kirk R Amundson
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Victoria Stewart
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Kitiporn Plaimas
- Omics Science and Bioinformatics Center, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
- Advanced Virtual and Intelligent Computing (AVIC) Center, Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Luca Comai
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Isabelle M Henry
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
5
|
Liu Y, Li Y, Liu Z, Wang L, Lin-Wang K, Zhu J, Bi Z, Sun C, Zhang J, Bai J. Integrative analysis of metabolome and transcriptome reveals a dynamic regulatory network of potato tuber pigmentation. iScience 2023; 26:105903. [PMID: 36818280 PMCID: PMC9932491 DOI: 10.1016/j.isci.2022.105903] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/12/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Potatoes consist of flavonoids that provide health benefits for human consumers. To learn more about how potato tuber flavonoid accumulation and flesh pigmentation are controlled, we analyzed the transcriptomic and metabolomic profile of potato tubers from three colored potato clones at three developmental phases using an integrated approach. From the 72 flavonoids identified in pigmented flesh, differential abundance was noted for anthocyanins, flavonols, and flavones. Weighted gene co-expression network analysis further allowed modules and candidate genes that positively or negatively regulate flavonoid biosynthesis to be identified. Furthermore, an R2R3-MYB repressor StMYB3 and an R3-MYB repressor StMYBATV involved in the modulation of anthocyanin biosynthesis during tuber development were identified. Both StMYB3 and StMYBATV could interact with the cofactor StbHLH1 and repress anthocyanin biosynthesis. Our results indicate a feedback regulatory mechanism of a coordinated MYB activator-repressor network on fine-tuning of potato tuber pigmentation during tuber development.
Collapse
Affiliation(s)
- Yuhui Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Lei Wang
- Potato Research Center, Hebei North University, Zhangjiakou 075000, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant and Food Research Limited, Mt Albert, Private Bag 92169, Auckland Mail Centre, Auckland 1142, New Zealand
| | - Jinyong Zhu
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| | - Junlian Zhang
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science/Agronomy College, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
6
|
Berdugo-Cely JA, Céron-Lasso MDS, Yockteng R. Phenotypic and molecular analyses in diploid and tetraploid genotypes of Solanum tuberosum L. reveal promising genotypes and candidate genes associated with phenolic compounds, ascorbic acid contents, and antioxidant activity. FRONTIERS IN PLANT SCIENCE 2023; 13:1007104. [PMID: 36743552 PMCID: PMC9889998 DOI: 10.3389/fpls.2022.1007104] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 12/08/2022] [Indexed: 06/18/2023]
Abstract
Potato tubers contain biochemical compounds with antioxidant properties that benefit human health. However, the genomic basis of the production of antioxidant compounds in potatoes has largely remained unexplored. Therefore, we report the first genome-wide association study (GWAS) based on 4488 single nucleotide polymorphism (SNP) markers and the phenotypic evaluation of Total Phenols Content (TPC), Ascorbic Acid Content (AAC), and Antioxidant Activity (AA) traits in 404 diverse potato genotypes (84 diploids and 320 tetraploids) conserved at the Colombian germplasm bank that administers AGROSAVIA. The concentration of antioxidant compounds correlated to the skin tuber color and ploidy level. Especially, purple-blackish tetraploid tubers had the highest TPC (2062.41 ± 547.37 mg GAE), while diploid pink-red tubers presented the highest AA (DDPH: 14967.1 ± 4687.79 μmol TE; FRAP: 2208.63 ± 797.35 mg AAE) and AAC (4.52 mg ± 0.68 AA). The index selection allowed us to choose 20 promising genotypes with the highest values for the antioxidant compounds. Genome Association mapping identified 58 SNP-Trait Associations (STAs) with single-locus models and 28 Quantitative Trait Nucleotide (QTNs) with multi-locus models associated with the evaluated traits. Among models, eight STAs/QTNs related to TPC, AAC, and AA were detected in common, flanking seven candidate genes, from which four were pleiotropic. The combination in one population of diploid and tetraploid genotypes enabled the identification of more genetic associations. However, the GWAS analysis implemented independently in populations detected some regions in common between diploids and tetraploids not detected in the mixed population. Candidate genes have molecular functions involved in phenolic compounds, ascorbic acid biosynthesis, and antioxidant responses concerning plant abiotic stress. All candidate genes identified in this study can be used for further expression analysis validation and future implementation in marker-assisted selection pre-breeding platforms targeting fortified materials. Our study further revealed the importance of potato germplasm conserved in national genebanks, such as AGROSAVIA's, as a valuable genetic resource to improve existing potato varieties.
Collapse
Affiliation(s)
- Jhon A. Berdugo-Cely
- Corporación Colombiana de Investigación Agropecuaria-AGROSAVIA, Centro de Investigación Turipaná, Km 13 vía Montería-Cereté, Montería, Córdoba, Colombia
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - María del Socorro Céron-Lasso
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
| | - Roxana Yockteng
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Centro de Investigación Tibaitatá, Km 13 vía Mosquera-Bogotá, Mosquera, Cundinamarca, Colombia
- Institut de Systématique, Evolution, Biodiversité-UMR-CNRS 7205, National Museum of Natural History, Paris, France
| |
Collapse
|
7
|
Late Blight Resistance Conferred by Rpi-Smira2/R8 in Potato Genotypes In Vitro Depends on the Genetic Background. PLANTS 2022; 11:plants11101319. [PMID: 35631743 PMCID: PMC9145795 DOI: 10.3390/plants11101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 11/28/2022]
Abstract
Potato production worldwide is threatened by late blight, caused by the oomycete Phytophthora infestans (Mont.) de Bary. Highly resistant potato cultivars were developed in breeding programs, using resistance gene pyramiding methods. In Sárpo Mira potatoes, five resistance genes (R3a, R3b, R4, Rpi-Smira1, and Rpi-Smira2/R8) are reported, with the latter gene assumed to be the major contributor. To study the level of late blight resistance conferred by the Rpi-Smira2/R8 gene, potato genotypes with only the Rpi-Smira2/R8 gene were selected from progeny population in which susceptible cultivars were crossed with Sárpo Mira. Ten R8 potato genotypes were obtained using stepwise marker-assisted selection, and agroinfiltration of the avirulence effector gene Avr4. Nine of these R8 genotypes were infected with both Slovenian P. infestans isolates and aggressive foreign isolates. All the progeny R8 genotypes are resistant to the Slovenian P. infestans isolate 02_07, and several show milder late blight symptoms than the corresponding susceptible parent after inoculation with other isolates. When inoculated with foreign P. infestans isolates, the genotype C571 shows intermediate resistance, similar to that of Sárpo Mira. These results suggest that Rpi-Smira2/R8 contributes to late blight resistance, although this resistance is not guaranteed solely by the presence of the R8 in the genome.
Collapse
|
8
|
Pigmented Potatoes: A Potential Panacea for Food and Nutrition Security and Health? Foods 2022; 11:foods11020175. [PMID: 35053906 PMCID: PMC8774573 DOI: 10.3390/foods11020175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 02/05/2023] Open
Abstract
Although there are over 4000 potato cultivars in the world, only a few have been commercialized due to their marketability and shelf-life. Most noncommercialized cultivars are pigmented and found in remote regions of the world. White-fleshed potatoes are well known for their energy-enhancing complex carbohydrates; however, pigmented cultivars are potentially high in health-promoting polyphenolic compounds. Therefore, we reveal the comprehensive compositions of pigmented cultivars and associated potential health benefits, including their potential role in ameliorating hunger, food, and nutrition insecurity, and their prospects. The underutilization of such resources is a direct threat to plant-biodiversity and local traditions and cultures.
Collapse
|
9
|
Parra-Galindo MA, Soto-Sedano JC, Mosquera-Vásquez T, Roda F. Pathway-based analysis of anthocyanin diversity in diploid potato. PLoS One 2021; 16:e0250861. [PMID: 33914830 PMCID: PMC8084248 DOI: 10.1371/journal.pone.0250861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/14/2021] [Indexed: 12/21/2022] Open
Abstract
Anthocyanin biosynthesis is one of the most studied pathways in plants due to the important ecological role played by these compounds and the potential health benefits of anthocyanin consumption. Given the interest in identifying new genetic factors underlying anthocyanin content we studied a diverse collection of diploid potatoes by combining a genome-wide association study and pathway-based analyses. By using an expanded SNP dataset, we identified candidate genes that had not been associated with anthocyanin variation in potatoes, namely a Myb transcription factor, a Leucoanthocyanidin dioxygenase gene and a vacuolar membrane protein. Importantly, a genomic region in chromosome 10 harbored the SNPs with strongest associations with anthocyanin content in GWAS. Some of these SNPs were associated with multiple anthocyanin compounds and therefore could underline the existence of pleiotropic genes or anthocyanin biosynthetic clusters. We identified multiple anthocyanin homologs in this genomic region, including four transcription factors and five enzymes that could be governing anthocyanin variation. For instance, a SNP linked to the phenylalanine ammonia-lyase gene, encoding the first enzyme in the phenylpropanoid biosynthetic pathway, was associated with all of the five anthocyanins measured. Finally, we combined a pathway analysis and GWAS of other agronomic traits to identify pathways related to anthocyanin biosynthesis in potatoes. We found that methionine metabolism and the production of sugars and hydroxycinnamic acids are genetically correlated to anthocyanin biosynthesis. The results contribute to the understanding of anthocyanins regulation in potatoes and can be used in future breeding programs focused on nutraceutical food.
Collapse
Affiliation(s)
| | - Johana Carolina Soto-Sedano
- Departamento de Biología, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Teresa Mosquera-Vásquez
- Facultad de Ciencias Agrarias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| | - Federico Roda
- Max Planck Tandem Group, Facultad de Ciencias, Universidad Nacional de Colombia, Sede Bogotá, Bogotá, Colombia
| |
Collapse
|
10
|
Laimbeer FPE, Bargmann BOR, Holt SH, Pratt T, Peterson B, Doulis AG, Buell CR, Veilleux RE. Characterization of the F Locus Responsible for Floral Anthocyanin Production in Potato. G3 (BETHESDA, MD.) 2020; 10:3871-3879. [PMID: 32855168 PMCID: PMC7534420 DOI: 10.1534/g3.120.401684] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023]
Abstract
Anthocyanins are pigmented secondary metabolites produced via the flavonoid biosynthetic pathway and play important roles in plant stress responses, pollinator attraction, and consumer preference. Using RNA-sequencing analysis of a cross between diploid potato (Solanum tuberosum L.) lines segregating for flower color, we identified a homolog of the ANTHOCYANIN 2 (AN2) gene family that encodes a MYB transcription factor, herein termed StFlAN2, as the regulator of anthocyanin production in potato corollas. Transgenic introduction of StFlAN2 in white-flowered homozygous doubled-monoploid plants resulted in a recovery of purple flowers. RNA-sequencing revealed the specific anthocyanin biosynthetic genes activated by StFlAN2 as well as expression differences in genes within pathways involved in fruit ripening, senescence, and primary metabolism. Closer examination of the locus using genomic sequence analysis revealed a duplication in the StFlAN2 locus closely associated with gene expression that is likely attributable to nearby genetic elements. Taken together, this research provides insight into the regulation of anthocyanin biosynthesis in potato while also highlighting how the dynamic nature of the StFlAN2 locus may affect expression.
Collapse
Affiliation(s)
- F Parker E Laimbeer
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | | | - Sarah H Holt
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | - Trenton Pratt
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| | - Brenda Peterson
- Department of Biology, University of North Carolina, Chapel Hill NC 27599
| | - Andreas G Doulis
- Hellenic Agricultural Organization DEMETER (ex. NAGREF), Heraklion, Greece
| | - C Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing MI 48824
| | - Richard E Veilleux
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg VA 24061
| |
Collapse
|
11
|
Liu Y, Lin-Wang K, Espley RV, Wang L, Li Y, Liu Z, Zhou P, Zeng L, Zhang X, Zhang J, Allan AC. StMYB44 negatively regulates anthocyanin biosynthesis at high temperatures in tuber flesh of potato. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3809-3824. [PMID: 31020330 PMCID: PMC6685667 DOI: 10.1093/jxb/erz194] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Accepted: 04/11/2019] [Indexed: 05/23/2023]
Abstract
High temperatures are known to reduce anthocyanin accumulation in a number of diverse plant species. In potato (Solanum tuberosum L.), high temperature significantly reduces tuber anthocyanin pigment content. However, the mechanism of anthocyanin biosynthesis in potato tuber under heat stress remains unknown. Here we show that high temperature causes reduction of anthocyanin biosynthesis in both potato tuber skin and flesh, with white areas forming between the vasculature and periderm. Heat stress reduced the expression of the R2R3 MYB transcription factors (TFs) StAN1 and StbHLH1, members of the transcriptional complex responsible for coordinated regulation of the skin and flesh pigmentation, as well as anthocyanin biosynthetic pathway genes in white regions. However, the core phenylpropanoid pathway, lignin, and chlorogenic acid (CGA) pathway genes were up-regulated in white areas, suggesting that suppression of the anthocyanin branch may result in re-routing phenylpropanoid flux into the CGA or lignin biosynthesis branches. Two R2R3 MYB TFs, StMYB44-1 and StMYB44-2, were highly expressed in white regions under high temperature. In transient assays, StMYB44 represses anthocyanin accumulation in leaves of Nicotiana tabacum and N. benthamiana by directly suppressing the activity of the dihydroflavonol reductase (DFR) promoter. StMYB44-1 showed stronger repressive capacity than StMYB44-2, with both predicted proteins containing the repression-associated EAR motif with some variation. StMYB44-1 conferred repression without a requirement for a basic helix-loop-helix (bHLH) partner, suggesting a different repression mechanism from that of reported anthocyanin repressors. We propose that temperature-induced reduction of anthocyanin accumulation in potato flesh is caused by down-regulation of the activating anthocyanin regulatory complex, by enhancing the expression of flesh-specific StMYB44 and alteration of phenylpropanoid flux.
Collapse
Affiliation(s)
- Yuhui Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Richard V Espley
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Li Wang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Yuanming Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Zhen Liu
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Ping Zhou
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lihui Zeng
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Junlian Zhang
- Gansu Provincial Key Laboratory of Aridland Crop Science, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Andrew C Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
12
|
Tengkun N, Dongdong W, Xiaohui M, Yue C, Qin C. Analysis of Key Genes Involved in Potato Anthocyanin Biosynthesis Based on Genomics and Transcriptomics Data. FRONTIERS IN PLANT SCIENCE 2019; 10:603. [PMID: 31156673 PMCID: PMC6527903 DOI: 10.3389/fpls.2019.00603] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 04/24/2019] [Indexed: 05/18/2023]
Abstract
The accumulation of secondary metabolites, such as anthocyanins, in cells plays an important role in colored plants. The synthesis and accumulation of anthocyanins are regulated by multiple genes, of which the R2R3-MYB transcription factor gene family plays an important role. Based on the genomic data in the Potato Genome Sequencing Consortium database (PGSC) and the transcriptome data in the SRA, this study used potato as a model plant to comprehensively analyze the plant anthocyanin accumulation process. The results indicated that the most critical step in the synthesis of potato anthocyanins was the formation of p-coumaroyl-CoA to enter the flavonoid biosynthetic pathway. The up-regulated expression of the CHS gene and the down-regulated expression of HCT significantly promoted this process. At the same time, the anthocyanins in the potato were gradually synthesized during the process from leaf transport to tubers. New transcripts of stAN1 and PAL were cloned and named stAN1-like and PAL-like, respectively, but the functions of these two new transcripts still need further study. In addition, the sequence characteristics of amino acids in the R2-MYB and R3-MYB domains of potato were preliminarily identified. The aims of this study are to identify the crucial major genes that affect anthocyanin biosynthesis through multi-omics joint analysis and to transform quantitative traits into quality traits, which provides a basis and reference for the regulation of plant anthocyanin biosynthesis. Simultaneously, this study provides the basis for improving the anthocyanin content in potato tubers and the cultivation of new potato varieties with high anthocyanin content.
Collapse
Affiliation(s)
- Nie Tengkun
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| | - Wang Dongdong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Ma Xiaohui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
| | - Chen Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| | - Chen Qin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Food Science and Engineering, Northwest A&F University, Yangling, China
- *Correspondence: Nie Tengkun, Chen Yue, Chen Qin,
| |
Collapse
|
13
|
Okeke UG, Akdemir D, Rabbi I, Kulakow P, Jannink JL. Regional Heritability Mapping Provides Insights into Dry Matter Content in African White and Yellow Cassava Populations. THE PLANT GENOME 2018; 11:10.3835/plantgenome2017.06.0050. [PMID: 29505634 PMCID: PMC7822058 DOI: 10.3835/plantgenome2017.06.0050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/20/2017] [Indexed: 05/21/2023]
Abstract
The HarvestPlus program for cassava ( Crantz) fortifies cassava with β-carotene by breeding for carotene-rich tubers (yellow cassava). However, a negative correlation between yellowness and dry matter (DM) content has been identified. We investigated the genetic control of DM in white and yellow cassava. We used regional heritability mapping (RHM) to associate DM with genomic segments in both subpopulations. Significant segments were subjected to candidate gene analysis and candidates were validated with prediction accuracies. The RHM procedure was validated via a simulation approach and revealed significant hits for white cassava on chromosomes 1, 4, 5, 10, 17, and 18, whereas hits for the yellow were on chromosome 1. Candidate gene analysis revealed genes in the carbohydrate biosynthesis pathway including plant serine-threonine protein kinases (SnRKs), UDP (uridine diphosphate)-glycosyltransferases, UDP-sugar transporters, invertases, pectinases, and regulons. Validation using 1252 unique identifiers from the SnRK gene family genome-wide recovered 50% of the predictive accuracy of whole-genome single nucleotide polymorphisms for DM, whereas validation using 53 likely genes (extracted from the literature) from significant segments recovered 32%. Genes including an acid invertase, a neutral or alkaline invertase, and a glucose-6-phosphate isomerase were validated on the basis of an a priori list for the cassava starch pathway, and also a fructose-biphosphate aldolase from the Calvin cycle pathway. The power of the RHM procedure was estimated as 47% when the causal quantitative trait loci generated 10% of the phenotypic variance (sample size = 451). Cassava DM genetics are complex and RHM may be useful for complex traits.
Collapse
Affiliation(s)
- Uche Godfrey Okeke
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
| | - Deniz Akdemir
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- current address, Statgen Consulting, Ithaca, NY 14850
| | | | | | - Jean-Luc Jannink
- Section of Plant Breeding and Genetics, School of Integrative
Plant Sci., College of Agriculture and Life Sci., Cornell Univ., 14853, Ithaca,
NY
- USDAARS, Robert W. Holley Centre for Agriculture and Health, Tower
Road, Ithaca, NY 14853
| |
Collapse
|
14
|
A comparative transcriptome analysis of a wild purple potato and its red mutant provides insight into the mechanism of anthocyanin transformation. PLoS One 2018; 13:e0191406. [PMID: 29360842 PMCID: PMC5779664 DOI: 10.1371/journal.pone.0191406] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 01/04/2018] [Indexed: 12/14/2022] Open
Abstract
In this study, a red mutant was obtained through in vitro regeneration of a wild purple potato. High-performance liquid chromatography and Mass spectrometry analysis revealed that pelargonidin-3-O-glucoside and petunidin-3-O-glucoside were main anthocyanins in the mutant and wild type tubers, respectively. In order to thoroughly understand the mechanism of anthocyanin transformation in two materials, a comparative transcriptome analysis of the mutant and wild type was carried out through high-throughput RNA sequencing, and 295 differentially expressed genes (DEGs) were obtained. Real-time qRT-PCR validation of DEGs was consistent with the transcriptome date. The DEGs mainly influenced biological and metabolic pathways, including phenylpropanoid biosynthesis and translation, and biosynthesis of flavone and flavonol. In anthocyanin biosynthetic pathway, the analysis of structural genes expressions showed that three genes, one encoding phenylalanine ammonia-lyase, one encoding 4-coumarate-CoA ligase and one encoding flavonoid 3′,5′-hydroxylasem were significantly down-regulated in the mutant; one gene encoding phenylalanine ammonia-lyase was significantly up-regulated. Moreover, the transcription factors, such as bZIP family, MYB family, LOB family, MADS family, zf-HD family and C2H2 family, were significantly regulated in anthocyanin transformation. Response proteins of hormone, such as gibberellin, abscisic acid and brassinosteroid, were also significantly regulated in anthocyanin transformation. The information contributes to discovering the candidate genes in anthocyanin transformation, which can serve as a comprehensive resource for molecular mechanism research of anthocyanin transformation in potatoes.
Collapse
|
15
|
Wang R, Zhao P, Kong N, Lu R, Pei Y, Huang C, Ma H, Chen Q. Genome-Wide Identification and Characterization of the Potato bHLH Transcription Factor Family. Genes (Basel) 2018; 9:genes9010054. [PMID: 29361801 PMCID: PMC5793205 DOI: 10.3390/genes9010054] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 01/09/2018] [Accepted: 01/18/2018] [Indexed: 11/24/2022] Open
Abstract
Plant basic/helix–loop–helix (bHLH) transcription factors participate in a number of biological processes, such as growth, development and abiotic stress responses. The bHLH family has been identified in many plants, and several bHLH transcription factors have been functionally characterized in Arabidopsis. However, no systematic identification of bHLH family members has been reported in potato (Solanum tuberosum). Here, 124 StbHLH genes were identified and named according to their chromosomal locations. The intron numbers varied from zero to seven. Most StbHLH proteins had the highly conserved intron phase 0, which accounted for 86.2% of the introns. According to the Neighbor-joining phylogenetic tree, 259 bHLH proteins acquired from Arabidopsis and potato were divided into 15 groups. All of the StbHLH genes were randomly distributed on 12 chromosomes, and 20 tandem duplicated genes and four pairs of duplicated gene segments were detected in the StbHLH family. The gene ontology (GO) analysis revealed that StbHLH mainly function in protein and DNA binding. Through the RNA-seq and quantitative real time PCR (qRT-PCR) analyses, StbHLH were found to be expressed in various tissues and to respond to abiotic stresses, including salt, drought and heat. StbHLH1, 41 and 60 were highly expressed in flower tissues, and were predicted to be involved in flower development by GO annotation. StbHLH45 was highly expressed in salt, drought and heat stress, which suggested its important role in abiotic stress response. The results provide comprehensive information for further analyses of the molecular functions of the StbHLH gene family.
Collapse
Affiliation(s)
- Ruoqiu Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Peng Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Nana Kong
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Ruize Lu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Yue Pei
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chenxi Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Haoli Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Qin Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
16
|
Bonar N, Liney M, Zhang R, Austin C, Dessoly J, Davidson D, Stephens J, McDougall G, Taylor M, Bryan GJ, Hornyik C. Potato miR828 Is Associated With Purple Tuber Skin and Flesh Color. FRONTIERS IN PLANT SCIENCE 2018; 9:1742. [PMID: 30619382 PMCID: PMC6297172 DOI: 10.3389/fpls.2018.01742] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/08/2018] [Indexed: 05/10/2023]
Abstract
Anthocyanins are plant pigments responsible for the colors of many flowers, fruits and storage organs and have roles in abiotic and biotic stress resistance. Anthocyanins and polyphenols are bioactive compounds in plants including potato (Solanum tuberosum L.) which is the most important non-cereal crop in the world, cultivated for its tubers rich in starch and nutrients. The genetic regulation of the flavonoid biosynthetic pathway is relatively well known leading to the formation of anthocyanins. However, our knowledge of post-transcriptional regulation of anthocyanin biosynthesis is limited. There is increasing evidence that micro RNAs (miRNAs) and other small RNAs can regulate the expression level of key factors in anthocyanin production. In this study we have found strong associations between the high levels of miR828, TAS4 D4(-) and purple/red color of tuber skin and flesh. This was confirmed not only in different cultivars but in pigmented and non-pigmented sectors of the same tuber. Phytochemical analyses verified the levels of anthocyanins and polyphenols in different tissues. We showed that miR828 is able to direct cleavage of the RNA originating from Trans-acting siRNA gene 4 (TAS4) and initiate the production of phased small interfering RNAs (siRNAs) whose production depends on RNA-dependent RNA polymerase 6 (RDR6). MYB transcription factors were predicted as potential targets of miR828 and TAS4 D4(-) and their expression was characterized. MYB12 and R2R3-MYB genes showed decreased expression levels in purple skin and flesh in contrast with high levels of small RNAs in the same tissues. Moreover, we confirmed that R2R3-MYB and MYB-36284 are direct targets of the small RNAs. Overall, this study sheds light on the small RNA directed anthocyanin regulation in potato, which is an important member of the Solanaceae family.
Collapse
Affiliation(s)
- Nicola Bonar
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Michele Liney
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Runxuan Zhang
- Information and Computational Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Ceri Austin
- Environmental and Biochemical Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jimmy Dessoly
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Diane Davidson
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Jennifer Stephens
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Gordon McDougall
- Environmental and Biochemical Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Mark Taylor
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Glenn J. Bryan
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
| | - Csaba Hornyik
- Cell and Molecular Sciences, The James Hutton Institute, Dundee, United Kingdom
- *Correspondence: Csaba Hornyik,
| |
Collapse
|
17
|
Endelman JB, Jansky SH. Genetic mapping with an inbred line-derived F2 population in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:935-43. [PMID: 26849236 DOI: 10.1007/s00122-016-2673-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/09/2016] [Indexed: 05/14/2023]
Abstract
This is the first report of the production and use of a diploid inbred line-based F2 population for genetic mapping in potato. Potato (Solanum tuberosum L.) is an important global food crop, for which tetrasomic inheritance and self-incompatibility have limited both genetic discovery and breeding gains. We report here on the creation of the first diploid inbred line-derived F2 population in potato, and demonstrate its utility for genetic mapping. To create the population, the doubled monoploid potato DM1-3 was crossed as a female to M6, an S7 inbred line derived from the wild relative S. chacoense, and a single F1 plant was then self-pollinated. A genetic linkage map with 2264 single nucleotide polymorphisms was constructed and used to improve the physical anchoring of superscaffolds in the potato reference genome, which is based on DM1-3. Segregation was observed for skin and flesh color, skin and flesh pigment intensity, tuber shape, anther development, jelly end, and the presence of eye tubers instead of normal sprouts. Using the R/qtl software, we detected 10 genes, 7 of which have been previously mapped and 3 for which this is the first publication. The latter category includes tightly linked genes for the jelly end and eye tuber traits on chromosome 5. The development of recombinant inbred lines from this F2 population by single-seed descent is underway and should facilitate even better resolution of these and other loci.
Collapse
Affiliation(s)
- Jeffrey B Endelman
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA
| | - Shelley H Jansky
- Department of Horticulture, University of Wisconsin, Madison, WI, 53706, USA.
- USDA Agricultural Research Service, Madison, WI, 53706, USA.
| |
Collapse
|
18
|
Liu Y, Lin-Wang K, Deng C, Warran B, Wang L, Yu B, Yang H, Wang J, Espley RV, Zhang J, Wang D, Allan AC. Comparative Transcriptome Analysis of White and Purple Potato to Identify Genes Involved in Anthocyanin Biosynthesis. PLoS One 2015; 10:e0129148. [PMID: 26053878 PMCID: PMC4459980 DOI: 10.1371/journal.pone.0129148] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 05/05/2015] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION The potato (Solanum tuberosum) cultivar 'Xin Daping' is tetraploid with white skin and white flesh, while the cultivar 'Hei Meiren' is also tetraploid with purple skin and purple flesh. Comparative transcriptome analysis of white and purple cultivars was carried out using high-throughput RNA sequencing in order to further understand the mechanism of anthocyanin biosynthesis in potato. METHODS AND RESULTS By aligning transcript reads to the recently published diploid potato genome and de novo assembly, 209 million paired-end Illumina RNA-seq reads from these tetraploid cultivars were assembled on to 60,930 transcripts, of which 27,754 (45.55%) are novel transcripts and 9393 alternative transcripts. Using a comparison of the RNA-sequence datasets, multiple versions of the genes encoding anthocyanin biosynthetic steps and regulatory transcription factors were identified. Other novel genes potentially involved in anthocyanin biosynthesis in potato tubers were also discovered. Real-time qPCR validation of candidate genes revealed good correlation with the transcriptome data. SNPs (Single Nucleotide Polymorphism) and indels were predicted and validated for the transcription factors MYB AN1 and bHLH1 and the biosynthetic gene anthocyanidin 3-O-glucosyltransferase (UFGT). CONCLUSIONS These results contribute to our understanding of the molecular mechanism of white and purple potato development, by identifying differential responses of biosynthetic gene family members together with the variation in structural genes and transcription factors in this highly heterozygous crop. This provides an excellent platform and resource for future genetic and functional genomic research.
Collapse
Affiliation(s)
- Yuhui Liu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Kui Lin-Wang
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Ben Warran
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Li Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Bin Yu
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Hongyu Yang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jing Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou, China
| | - Richard V. Espley
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
| | - Junlian Zhang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Di Wang
- Gansu Key Laboratory of Crop Improvement and Germplasm Enhancement, Gansu Agricultural University, Lanzhou, China
| | - Andrew C. Allan
- The New Zealand Institute for Plant & Food Research Limited (Plant & Food Research) Mt Albert, Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
19
|
Slater AT, Cogan NOI, Hayes BJ, Schultz L, Dale MFB, Bryan GJ, Forster JW. Improving breeding efficiency in potato using molecular and quantitative genetics. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:2279-92. [PMID: 25186170 DOI: 10.1007/s00122-014-2386-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 08/23/2014] [Indexed: 05/24/2023]
Abstract
Potatoes are highly heterozygous and the conventional breeding of superior germplasm is challenging, but use of a combination of MAS and EBVs can accelerate genetic gain. Cultivated potatoes are highly heterozygous due to their outbreeding nature, and suffer acute inbreeding depression. Modern potato cultivars also exhibit tetrasomic inheritance. Due to this genetic heterogeneity, the large number of target traits and the specific requirements of commercial cultivars, potato breeding is challenging. A conventional breeding strategy applies phenotypic recurrent selection over a number of generations, a process which can take over 10 years. Recently, major advances in genetics and molecular biology have provided breeders with molecular tools to accelerate gains for some traits. Marker-assisted selection (MAS) can be effectively used for the identification of major genes and quantitative trait loci that exhibit large effects. There are also a number of complex traits of interest, such as yield, that are influenced by a large number of genes of individual small effect where MAS will be difficult to deploy. Progeny testing and the use of pedigree in the analysis can provide effective identification of the superior genetic factors that underpin these complex traits. Recently, it has been shown that estimated breeding values (EBVs) can be developed for complex potato traits. Using a combination of MAS and EBVs for simple and complex traits can lead to a significant reduction in the length of the breeding cycle for the identification of superior germplasm.
Collapse
Affiliation(s)
- Anthony T Slater
- Department of Environment and Primary Industries, Biosciences Research Division, AgriBio, Centre for AgriBioscience, Bundoora, Melbourne, VIC, 3083, Australia,
| | | | | | | | | | | | | |
Collapse
|
20
|
D'Amelia V, Aversano R, Batelli G, Caruso I, Castellano Moreno M, Castro-Sanz AB, Chiaiese P, Fasano C, Palomba F, Carputo D. High AN1 variability and interaction with basic helix-loop-helix co-factors related to anthocyanin biosynthesis in potato leaves. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:527-40. [PMID: 25159050 DOI: 10.1111/tpj.12653] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/19/2014] [Indexed: 06/03/2023]
Abstract
AN1 is a regulatory gene that promotes anthocyanin biosynthesis in potato tubers and encodes a R2R3 MYB transcription factor. However, no clear evidence implicates AN1 in anthocyanin production in leaves, where these pigments might enhance environmental stress tolerance. In our study we found that AN1 displays intraspecific sequence variability in both coding/non-coding regions and in the promoter, and that its expression is associated with high anthocyanin content in leaves of commercial potatoes. Expression analysis provided evidence that leaf pigmentation is associated to AN1 expression and that StJAF13 acts as putative AN1 co-regulator for anthocyanin gene expression in leaves of the red leaf variety 'Magenta Love,' while a concomitant expression of StbHLH1 may contribute to anthocyanin accumulation in leaves of 'Double Fun.' Yeast two-hybrid experiments confirmed that AN1 interacts with StbHLH1 and StJAF13 and the latter interaction was verified and localized in the cell nucleus by bimolecular fluorescence complementation assays. In addition, transgenic tobacco (Nicotiana tabacum) overexpressing a combination of either AN1 with StJAF13 or AN1 with StbHLH1 showed deeper purple pigmentation with respect to AN1 alone. This further confirmed AN1/StJAF13 and AN1/StbHLH1 interactions. Our findings demonstrate that the classical loci identified for potato leaf anthocyanin accumulation correspond to AN1 and may represent an important step to expand our knowledge on the molecular mechanisms underlying anthocyanin biosynthesis in different plant tissues.
Collapse
Affiliation(s)
- Vincenzo D'Amelia
- Department of Agricultural Sciences, University of Naples Federico II, Via Università 100, 80055, Portici, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tejeda L, Alvarado JA, Dębiec M, Peñarrieta JM, Cárdenas O, Alvarez MT, Chawade A, Nilsson L, Bergenståhl B. Relating genes in the biosynthesis of the polyphenol composition of Andean colored potato collection. Food Sci Nutr 2014; 2:46-57. [PMID: 24804064 PMCID: PMC3951550 DOI: 10.1002/fsn3.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 08/15/2013] [Accepted: 08/27/2013] [Indexed: 11/15/2022] Open
Abstract
The objective of this study was to evaluate total antioxidant capacity (TAC), total phenolic content (TPH), and the identification of anthocyanidin and polyphenolic compounds in 13 colored potatoes collected from the Andean region of Bolivia, and understand how the chemical composition correlated with the botanical classification and molecular characterization of genes, ans (anthocyanidin synthase) and stan1 (Solanum tuberosum anthocyanidin synthase), associated with the synthesis of anthocyanidins. The results show the existence of a limited correlation between botanical classification, based on morphological identification and polyphenol composition. No association between genetic grouping of the ans and stan genes and botanical classification was found. However, it was possible to identify a correlation between the ans gene clades and the levels of anthocyanidins as well as of other polyphenols. Thus, this result confirms the concept that potato color can be used in the search for high polyphenol potato cultivars.
Collapse
Affiliation(s)
- Leslie Tejeda
- School of Chemistry Faculty of Pure and Natural Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia ; Food Colloids Group Department of Food Technology, Engineering and Nutrition, Lund University P.O. Box 124, S-221 00, Lund, Sweden
| | - Juan Antonio Alvarado
- School of Chemistry Faculty of Pure and Natural Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia
| | - Magdalena Dębiec
- School of Chemistry Faculty of Pure and Natural Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia
| | - José Mauricio Peñarrieta
- School of Chemistry Faculty of Pure and Natural Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia
| | - Oscar Cárdenas
- School of Chemistry Faculty of Pure and Natural Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia
| | - Maria Teresa Alvarez
- Drug Research Institute and Biochemical Faculty of Pharmaceutical and Biochemical Sciences, San Andrés University P.O. Box 303, La Paz, Bolivia
| | - Aakash Chawade
- Department of Immunotechnology, Lund University BMC D13, SE-22184, Lund, Sweden
| | - Lars Nilsson
- Food Colloids Group Department of Food Technology, Engineering and Nutrition, Lund University P.O. Box 124, S-221 00, Lund, Sweden
| | - Björn Bergenståhl
- Food Colloids Group Department of Food Technology, Engineering and Nutrition, Lund University P.O. Box 124, S-221 00, Lund, Sweden
| |
Collapse
|
22
|
Payyavula RS, Singh RK, Navarre DA. Transcription factors, sucrose, and sucrose metabolic genes interact to regulate potato phenylpropanoid metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5115-31. [PMID: 24098049 PMCID: PMC3830490 DOI: 10.1093/jxb/ert303] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Much remains unknown about how transcription factors and sugars regulate phenylpropanoid metabolism in tuber crops like potato (Solanum tuberosum). Based on phylogeny and protein similarity to known regulators of phenylpropanoid metabolism, 15 transcription factors were selected and their expression was compared in white, yellow, red, and purple genotypes with contrasting phenolic and anthocyanin profiles. Red and purple genotypes had increased phenylalanine ammonia lyase (PAL) enzyme activity, markedly higher levels of phenylpropanoids, and elevated expression of most phenylpropanoid structural genes, including a novel anthocyanin O-methyltransferase. The transcription factors Anthocyanin1 (StAN1), basic Helix Loop Helix1 (StbHLH1), and StWD40 were more strongly expressed in red and purple potatoes. Expression of 12 other transcription factors was not associated with phenylpropanoid content, except for StMYB12B, which showed a negative relationship. Increased expression of AN1, bHLH1, and WD40 was also associated with environmentally mediated increases in tuber phenylpropanoids. Treatment of potato plantlets with sucrose induced hydroxycinnamic acids, flavonols, anthocyanins, structural genes, AN1, bHLH1, WD40, and genes encoding the sucrose-hydrolysing enzymes SUSY1, SUSY4, and INV2. Transient expression of StAN1 in tobacco leaves induced bHLH1, structural genes, SUSY1, SUSY4, and INV1, and increased phenylpropanoid amounts. StAN1 infiltration into tobacco leaves decreased sucrose and glucose concentrations. In silico promoter analysis revealed the presence of MYB and bHLH regulatory elements on sucrolytic gene promoters and sucrose-responsive elements on the AN1 promoter. These findings reveal an interesting dynamic between AN1, sucrose, and sucrose metabolic genes in modulating potato phenylpropanoids.
Collapse
Affiliation(s)
- Raja S. Payyavula
- Irrigated Agricultural Research and Extension Center, Washington State
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
- * Present address: Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Rajesh K. Singh
- Irrigated Agricultural Research and Extension Center, Washington State
- Department of Horticulture and Landscape Architecture, Washington State University, Pullman, WA 99164, USA
| | - Duroy A. Navarre
- Irrigated Agricultural Research and Extension Center, Washington State
- USDA-Agricultural Research Service 24106 North Bunn Road, Prosser, WA 99350, USA
- † To whom correspondence should be addressed. E-mail:
| |
Collapse
|
23
|
Gebhardt C. Bridging the gap between genome analysis and precision breeding in potato. Trends Genet 2013; 29:248-56. [DOI: 10.1016/j.tig.2012.11.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 11/01/2012] [Accepted: 11/15/2012] [Indexed: 12/16/2022]
|
24
|
Borovsky Y, Paran I. Characterization of fs10.1, a major QTL controlling fruit elongation in Capsicum. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2011; 123:657-65. [PMID: 21603875 DOI: 10.1007/s00122-011-1615-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Accepted: 05/09/2011] [Indexed: 05/20/2023]
Abstract
We previously identified fs10.1 as a major QTL controlling fruit shape (index of length to width) in an interspecific F(2) cross of Capsicum annuum (round fruit) × C. chinense (elongated fruit) in pepper. To more precisely map and characterize the QTL, we constructed near-isogenic lines for fs10.1 and mapped it in a BC(4)F(2) population. In this population, fs10.1 segregated as a Mendelian locus and mapped 0.3 cM away from the closest molecular marker. We further verified the effect of fs10.1 in an F(2) population from an independent cross between elongated- and conical-fruited parents. To identify additional allelic variation at fruit shape loci, we screened an EMS-mutagenized population of the blocky-fruited cv. Maor and identified the mutant E-1654 with elongated fruit. This fruit shape mutation was mapped to the fs10.1 region and was determined to be allelic to the QTL. By measuring fruit shape of near-isogenic lines for fs10.1 during fruit development, we found that the shape of the fruit is determined primarily in the first 2 weeks after anthesis. Histological measurements of cell size and cell shape in pericarp sections of fruits of the isogenic lines throughout fruit development indicated that the shape of the fruit is determined primarily by cell shape and that the development of fruit shape is correlated with cell shape.
Collapse
Affiliation(s)
- Yelena Borovsky
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, 50250 Bet Dagan, Israel
| | | |
Collapse
|
25
|
Stushnoff C, Ducreux LJM, Hancock RD, Hedley PE, Holm DG, McDougall GJ, McNicol JW, Morris J, Morris WL, Sungurtas JA, Verrall SR, Zuber T, Taylor MA. Flavonoid profiling and transcriptome analysis reveals new gene-metabolite correlations in tubers of Solanum tuberosum L. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1225-38. [PMID: 20110266 PMCID: PMC2826661 DOI: 10.1093/jxb/erp394] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2009] [Revised: 12/15/2009] [Accepted: 12/21/2009] [Indexed: 05/21/2023]
Abstract
Anthocyanin content of potato tubers is a trait that is attracting increasing attention as the potential nutritional benefits of this class of compound become apparent. However, our understanding of potato tuber anthocyanin accumulation is not complete. The aim of this study was to use a potato microarray to investigate gene expression patterns associated with the accumulation of purple tuber anthocyanins. The advanced potato selections, CO97216-3P/PW and CO97227-2P/PW, developed by conventional breeding procedures, produced tubers with incomplete expression of tuber flesh pigmentation. This feature permits sampling pigmented and non-pigmented tissues from the same tubers, in essence, isolating the factors responsible for pigmentation from confounding genetic, environmental, and developmental effects. An examination of the transcriptome, coupled with metabolite data from purple pigmented sectors and from non-pigmented sectors of the same tuber, was undertaken to identify these genes whose expression correlated with elevated or altered polyphenol composition. Combined with a similar study using eight other conventional cultivars and advanced selections with different pigmentation, it was possible to produce a refined list of only 27 genes that were consistently differentially expressed in purple tuber tissues compared with white. Within this list are several new candidate genes that are likely to impact on tuber anthocyanin accumulation, including a gene encoding a novel single domain MYB transcription factor.
Collapse
Affiliation(s)
- Cecil Stushnoff
- Colorado State University, Department of Horticulture and Landscape Architecture, 113B Shepardson Building, Fort Collins, CO 80523-1173, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Jung CS, Griffiths HM, De Jong DM, Cheng S, Bodis M, Kim TS, De Jong WS. The potato developer (D) locus encodes an R2R3 MYB transcription factor that regulates expression of multiple anthocyanin structural genes in tuber skin. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2009; 120:45-57. [PMID: 19779693 PMCID: PMC2778721 DOI: 10.1007/s00122-009-1158-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Accepted: 09/11/2009] [Indexed: 05/20/2023]
Abstract
A dominant allele at the D locus (also known as I in diploid potato) is required for the synthesis of red and purple anthocyanin pigments in tuber skin. It has previously been reported that D maps to a region of chromosome 10 that harbors one or more homologs of Petunia an2, an R2R3 MYB transcription factor that coordinately regulates the expression of multiple anthocyanin biosynthetic genes in the floral limb. To test whether D acts similarly in tuber skin, RT-PCR was used to evaluate the expression of flavanone 3-hydroxylase (f3h), dihydroflavonol 4-reductase (dfr) and flavonoid 3',5'-hydroxylase (f3'5'h). All three genes were expressed in the periderm of red- and purple-skinned clones, while dfr and f3'5'h were not expressed, and f3h was only weakly expressed, in white-skinned clones. A potato cDNA clone with similarity to an2 was isolated from an expression library prepared from red tuber skin, and an assay developed to distinguish the two alleles of this gene in a diploid potato clone known to be heterozygous Dd. One allele was observed to cosegregate with pigmented skin in an F(1) population of 136 individuals. This allele was expressed in tuber skin of red- and purple-colored progeny, but not in white tubers, while other parental alleles were not expressed in white or colored tubers. The allele was placed under the control of a doubled 35S promoter and transformed into the light red-colored cultivar Désirée, the white-skinned cultivar Bintje, and two white diploid clones known to lack the functional allele of D. Transformants accumulated pigment in tuber skin, as well as in other tissues, including young foliage, flower petals, and tuber flesh.
Collapse
Affiliation(s)
- Chun Suk Jung
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Helen M. Griffiths
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Darlene M. De Jong
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Shuping Cheng
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Mary Bodis
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Tae Sung Kim
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| | - Walter S. De Jong
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14853-1901 USA
| |
Collapse
|
27
|
André CM, Schafleitner R, Legay S, Lefèvre I, Aliaga CAA, Nomberto G, Hoffmann L, Hausman JF, Larondelle Y, Evers D. Gene expression changes related to the production of phenolic compounds in potato tubers grown under drought stress. PHYTOCHEMISTRY 2009; 70:1107-1116. [PMID: 19664789 DOI: 10.1016/j.phytochem.2009.07.008] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Revised: 07/06/2009] [Accepted: 07/07/2009] [Indexed: 05/05/2023]
Abstract
Polyphenols represent a large family of plant secondary metabolites implicated in the prevention of various diseases such as cancers and cardiovascular diseases. The potato is a significant source of polyphenols in the human diet. In this study, we examined the expression of thirteen genes involved in the biosynthesis of polyphenols in potato tubers using real-time RT-PCR. A selection of five field grown native Andean cultivars, presenting contrasting polyphenol profiles, was used. Moreover, we investigated the expression of the genes after a drought exposure. We concluded that the diverse polyphenolic profiles are correlated to variations in gene expression profiles. The drought-induced variations of the gene expression was highly cultivar-specific. In the three anthocyanin-containing cultivars, gene expression was coordinated and reflected at the metabolite level supporting a hypothesis that regulation of gene expression plays an essential role in the potato polyphenol production. We proposed that the altered sucrose flux induced by the drought stress is partly responsible for the changes in gene expression. This study provides information on key polyphenol biosynthetic and regulatory genes, which could be useful in the development of potato varieties with enhanced health and nutritional benefits.
Collapse
Affiliation(s)
- Christelle M André
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg; Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2/8, B-1348 Louvain-La-Neuve, Belgium
| | - Roland Schafleitner
- Germplasm Enhancement and Crop Improvement Division, International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
| | - Sylvain Legay
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg
| | - Isabelle Lefèvre
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg
| | - Carlos A Alvarado Aliaga
- Germplasm Enhancement and Crop Improvement Division, International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
| | - Giannina Nomberto
- Germplasm Enhancement and Crop Improvement Division, International Potato Center, Avenida La Molina 1895, Apartado 1558, La Molina, Lima 12, Peru
| | - Lucien Hoffmann
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg
| | - Jean-François Hausman
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg
| | - Yvan Larondelle
- Institut des Sciences de la Vie, Université Catholique de Louvain, Croix du Sud 2/8, B-1348 Louvain-La-Neuve, Belgium
| | - Danièle Evers
- Department 'Environment and Agro-Biotechnologies', Centre de Recherche Public-Gabriel Lippmann, Rue du Brill, 41, L-4422 Belvaux, Luxembourg.
| |
Collapse
|