1
|
Kababji AM, Butt H, Mahfouz M. Synthetic directed evolution for targeted engineering of plant traits. FRONTIERS IN PLANT SCIENCE 2024; 15:1449579. [PMID: 39286837 PMCID: PMC11402689 DOI: 10.3389/fpls.2024.1449579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024]
Abstract
Improving crop traits requires genetic diversity, which allows breeders to select advantageous alleles of key genes. In species or loci that lack sufficient genetic diversity, synthetic directed evolution (SDE) can supplement natural variation, thus expanding the possibilities for trait engineering. In this review, we explore recent advances and applications of SDE for crop improvement, highlighting potential targets (coding sequences and cis-regulatory elements) and computational tools to enhance crop resilience and performance across diverse environments. Recent advancements in SDE approaches have streamlined the generation of variants and the selection processes; by leveraging these advanced technologies and principles, we can minimize concerns about host fitness and unintended effects, thus opening promising avenues for effectively enhancing crop traits.
Collapse
Affiliation(s)
- Ahad Moussa Kababji
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Haroon Butt
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Magdy Mahfouz
- Laboratory for Genome Engineering and Synthetic Biology, Division of Biological Sciences, 4700 King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
2
|
Dweikat IM, Gelli M, Bernards M, Martin A, Jhala A. Mutations in the acetolactate synthase (ALS) enzyme affect shattercane (Sorghum bicolor) response to ALS-inhibiting herbicides. Hereditas 2023; 160:28. [PMID: 37344897 DOI: 10.1186/s41065-023-00291-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 06/09/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND Shattercane [Sorghum bicolor (L.) Moench ssp. Arundinaceum (Desv.)] is a competitive weed in North America's corn, soybean, sorghum, and other agronomic crops. Control of shattercane with POST herbicides in corn became possible with the introduction of acetolactate synthase (ALS)-inhibiting herbicides in the 1980s, and their extensive use resulted in the evolution of ALS-inhibitors resistant shattercane. RESULTS Shattercane seeds were collected from 16 south-eastern and south-central Nebraska fields that were treated with primisulfuron for three consecutive years. Three resistant plants were found in greenhouse evaluations of more than 30,000 plants. Results from a greenhouse bioassay conducted to assess the response of each shattercane biotype to ALS-inhibiting herbicides showed a differential response to ALS inhibitors within and between chemical classes. Biotype P8-30 was resistant or partially resistant to all ALS-inhibiting herbicides applied and displayed a unique amino acid sequence substitution (Trp574 to Leu) relative to the other two resistant biotypes, P2-205 and P9-102. Whole plant dose-response studies confirmed a 4- to the 12-fold level of primisulfuron resistance in three shattercane biotypes compared with the known primisulfuron-susceptible shattercane biotype. The ALS gene was sequenced using primers designed from the corn ALS sequence to identify mutations in the ALS gene that confer resistance. A total of seven nucleotide substitutions were detected in the three herbicide-resistant biotypes P2-205, P8-30, and P9-102. These biotypes are being crossed to adapted sorghum lines (grain, sweet, and forage) to broaden germplasm with resistance to ALS-inhibiting herbicides. CONCLUSION The discovery of these mutants should accelerate the development of sorghum genotypes that tolerate ALS-based herbicides, which provide additional choices for sorghum farmers to control weeds, especially grasses, in their fields.
Collapse
Affiliation(s)
- Ismail M Dweikat
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA.
| | - Malleswari Gelli
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Mark Bernards
- Department of Agronomy, Crop Science and Weed Control, Western Illinois University, Macomb, IL, 61455, USA
| | - Alex Martin
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| | - Amit Jhala
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, 68583, USA
| |
Collapse
|
3
|
Panozzo S, Farinati S, Sattin M, Scarabel L. Can allele-specific loop-mediated isothermal amplification be used for rapid detection of target-site herbicide resistance in Lolium spp.? PLANT METHODS 2023; 19:14. [PMID: 36750938 PMCID: PMC9906911 DOI: 10.1186/s13007-023-00989-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Herbicide resistance is one of the threats to modern agriculture and its early detection is one of the most effective components for sustainable resistance management strategies. Many techniques have been used for target-site-resistance detection. Allele-Specific Loop-Mediated Isothermal Amplification (AS-LAMP) was evaluated as a possible rapid diagnostic method for acetyl-CoA carboxylase (ACCase) and acetolactate synthase (ALS) inhibiting herbicides resistance in Lolium spp. RESULTS AS-LAMP protocols were set up for the most frequent mutations responsible for herbicide resistance to ALS (positions 197, 376 and 574) and ACCase (positions 1781, 2041 and 2078) inhibitors in previously characterized and genotyped Lolium spp. POPULATIONS A validation step on new putative resistant populations gave the overview of a possible use of this tool for herbicide resistance diagnosis in Lolium spp. Regarding the ACCase inhibitor pinoxaden, in more than 65% of the analysed plants, the LAMP assay and genotyping were in keeping, whereas the results were not consistent when ALS inhibitors resistance was considered. Limitations on the use of this technique for herbicide resistance detection in the allogamous Lolium spp. are discussed. CONCLUSIONS The LAMP method used for the detection of target-site resistance in weed species could be applicable with target genes that do not have high genetic variability, such as ACCase gene in Lolium spp.
Collapse
Affiliation(s)
- Silvia Panozzo
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy.
| | - Silvia Farinati
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Padova, Italy
| | - Maurizio Sattin
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| | - Laura Scarabel
- Institute for Sustainable Plant Protection (IPSP) - National Research Council (CNR), viale dell'Università 16, 35020, Legnaro, PD, Italy
| |
Collapse
|
4
|
Cao Y, Zhou X, Wei S, Huang H, Lan Y, Li W, Sun Y, Huang Z. Multiple resistance to ALS-inhibiting and PPO-inhibiting herbicides in Chenopodium album L. from China. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 186:105155. [PMID: 35973760 DOI: 10.1016/j.pestbp.2022.105155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/18/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Common lambsquarters (Chenopodium album L.) is a broadleaf weed that can severely damage soybean fields. Two C. album populations (1744 and 1731) suspected resistant to imazethapyr were investigated for resistance levels to imazethapyr, thifensulfuron-methyl, and fomesafen and their resistance mechanisms were investigated. Whole-plant dose-response assays revealed that, compared to the susceptible (S) population, the 1744 population was 16.5-fold resistant to imazethapyr, slightly resistant to thifensulfuron-methyl (resistance index [R/S], <3). The 1731 population was 18.8-fold resistant to imazethapyr, 2.9-fold resistant to thifensulfuron-methyl, and 5.1-fold resistant to fomesafen. In vitro acetolactate synthase (ALS) assays showed 17.1-fold and 19.3-fold resistance levels of 1744 and 1731 populations to imazethapyr respectively. ALS gene sequence analysis identified Ala122Thr amino acid substitution in the 1744 population and Ser653Thr amino acid substitution in the 1731 population. No mutations of the protoporphyrinogen oxidase (PPO) gene were detected. However, pre-treatment with malathion reversed fomesafen resistance, suggesting nontarget-site resistance mechanisms likely play a role in the 1731 population.
Collapse
Affiliation(s)
- Yi Cao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinxin Zhou
- Institute Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, PR China
| | - Shouhui Wei
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongjuan Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yuning Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenyu Li
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ying Sun
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaofeng Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.
| |
Collapse
|
5
|
Barco-Antoñanzas M, Gil-Monreal M, Eceiza MV, Royuela M, Zabalza A. Primary metabolism in an Amaranthus palmeri population with multiple resistance to glyphosate and pyrithiobac herbicides. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 318:111212. [PMID: 35351301 DOI: 10.1016/j.plantsci.2022.111212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/04/2022] [Accepted: 02/06/2022] [Indexed: 06/14/2023]
Abstract
The objective of this work was to characterize the resistance mechanisms and the primary metabolism of a multiple resistant (MR) population of Amaranthus palmeri to glyphosate and to the acetolactate synthase (ALS) inhibitor pyrithiobac. All MR plants analysed were glyphosate-resistant due to 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) gene amplification. Resistance to pyrithiobac was more variable among individuals and was related to point mutations at five positions in the ALS gene sequence: A122, A205, W574, S653 and G654. All MR plants were heterozygous for W574, the most abundant mutation. In nontreated plants, the presence of mutations did not affect ALS functionality, and plants with the W574L mutation showed the highest ALS resistance level to pyrithiobac. The accumulation of the transcripts corresponding to several genes of the aromatic amino acid (AAA) and branched-chain amino acid (BCAA) pathways detected in nontreated MR plants indicated additional effects of EPSPS gene amplification and ALS mutations. The physiological performance of the MR population after treatment with glyphosate and/or pyrithiobac was compared with that of a sensitive (S) population. The increase induced in total soluble sugars, AAA or BCAA content by both herbicides was higher in the S population than in the MR population. Physiological effects were not exacerbated after the mixture of both herbicides in S or in MR populations. This study provides new insights into the physiology of a multiple resistant A. palmeri, which could be very useful for achieving effective management of this weed.
Collapse
Affiliation(s)
- María Barco-Antoñanzas
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Miriam Gil-Monreal
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Mikel V Eceiza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Mercedes Royuela
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain
| | - Ana Zabalza
- Institute for Multidisciplinary Research in Applied Biology (IMAB), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, E-31006 Pamplona, Spain.
| |
Collapse
|
6
|
Alquézar B, Bennici S, Carmona L, Gentile A, Peña L. Generation of Transfer-DNA-Free Base-Edited Citrus Plants. FRONTIERS IN PLANT SCIENCE 2022; 13:835282. [PMID: 35371165 PMCID: PMC8965368 DOI: 10.3389/fpls.2022.835282] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
To recover transgenic citrus plants in the most efficient manner, the use of selection marker genes is essential. In this work, it was shown that the mutated forms of the acetolactate synthase (ALS) gene in combination with the herbicide selection agent imazapyr (IMZ) added to the selection medium may be used to achieve this goal. This approach enables the development of cisgenic regenerants, namely, plants without the incorporation of those bacterial genes currently employed for transgenic selection, and additionally it allows the generation of edited, non-transgenic plants with altered endogenous ALS genes leading to IMZ resistance. In this work, the citrus mutants, in which ALS has been converted into IMZ-resistant forms using a base editor system, were recovered after cocultivation of the explants with Agrobacterium tumefaciens carrying a cytidine deaminase fused to nSpCas9 in the T-DNA and selecting regenerants in the culture medium supplemented with IMZ. Analysis of transgene-free plants indicated that the transient expression of the T-DNA genes was sufficient to induce ALS mutations and thus generate IMZ-resistant shoots at 11.7% frequency. To our knowledge, this is the first report of T-DNA-free edited citrus plants. Although further optimization is required to increase edition efficiency, this methodology will allow generating new citrus varieties with improved organoleptic/agronomic features without the need to use foreign genes.
Collapse
Affiliation(s)
- Berta Alquézar
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Stefania Bennici
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Lourdes Carmona
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| | - Alessandra Gentile
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| | - Leandro Peña
- Laboratório de Biotecnologia Vegetal, Pesquisa, and Desenvolvimento, Fundo de Defesa da Citricultura (Fundecitrus), Araraquara, Brazil
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas, Universidad Politécnica de Valencia, Valencia, Spain
| |
Collapse
|
7
|
Cao Y, Zhou X, Huang Z. Amino acid substitution (Gly-654-Tyr) in acetolactate synthase (ALS) confers broad spectrum resistance to ALS-inhibiting herbicides. PEST MANAGEMENT SCIENCE 2022; 78:541-549. [PMID: 34558160 DOI: 10.1002/ps.6658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Amaranthus retroflexus L. is a problematic weed in agricultural fields. In China, the repeated use of acetolactate synthase (ALS) inhibiting herbicides has led to the evolution of many A. retroflexus resistant populations. The objective of this research was to investigate the physiological and molecular basis for resistance to ALS-inhibiting herbicides in A. retroflexus. RESULTS Sequence analysis of the ALS revealed a Trp to Leu substitution at amino acid position 574 (Trp-574-Leu), and a previously unreported substitution of Gly to Tyr substitution at 654 (Gly-654-Tyr) in the resistant A. retroflexus population. A purified R-Tyr654 subpopulation homozygous for the Gly-654-Tyr mutation was generated and characterized in response to five different classes of ALS-inhibiting herbicides. Dose-response analysis revealed that the R-Tyr654 population was highly resistant to two imidazolinones (imazethapyr, >42-fold; imazamox, 48.3-fold), one triazolopyrimidine (flumetsulam, 57.4-fold), and one sulfonylamino-carbonyltriazolinone (flucarbazone, 17.3-fold). Moreover, it was moderately resistant to two sulfonylureas (thifensulfuron-methyl, 4.9-fold; nicosulfuron, 9.1-fold), and one pyrimidinylthio-benzoate (bispyribac-sodium, 3.1-fold). An in vitro ALS activity assay showed that ALS with the Gly-654-Tyr substitution was resistant to all the tested ALS-inhibiting herbicides. However, the field rate of herbicides binding other sites of action demonstrated effective control of the R-Tyr654 population. CONCLUSION These results indicate that the molecular basis of ALS-inhibiting herbicide resistance in A. retroflexus was caused by the Trp-574-Leu and Gly-654-Tyr substitutions in the ALS. This is the first report of Gly-654-Tyr substitution in ALS, and this substitution confers broad spectrum resistance to ALS-inhibiting herbicides. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yi Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinxin Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture and Rural Affairs, Beijing, China
| | - Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
8
|
Palmieri VE, Alvarez CE, Permingeat HR, Perotti VE. A122S, A205V, D376E, W574L and S653N substitutions in acetolactate synthase (ALS) from Amaranthus palmeri show different functional impacts on herbicide resistance. PEST MANAGEMENT SCIENCE 2022; 78:749-757. [PMID: 34693637 DOI: 10.1002/ps.6688] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Amaranthus palmeri S. Watson, a problematic weed infesting summer crops in Argentina, has developed multiple herbicide resistance. Resistance to acetolactate synthase (ALS)-inhibiting herbicides is particularly common, with high-level resistance mostly caused by different mutations in the ALS enzyme. Six versions of the enzyme were identified from a resistant A. palmeri population, carrying substitutions D376E, A205V, A122S, A282D, W574L and S653N. This work aims to provide a comparative analysis of these mutants and the wild-type (WT) enzyme to fully understand the herbicide resistance. Thus, all the versions of the ALS gene from A. palmeri were heterologously expressed and purified to evaluate their kinetics and inhibitory response against imazethapyr, diclosulam, chlorimuron-ethyl, flucarbazone-sodium and bispyribac-sodium. RESULTS A decrease in catalytic efficiency was detected in the A205V, A122S-A282D, W574L and S653N ApALS enzymes, whereas only A205V and W574L substitutions also produced a decrease in the substrate affinity. In vitro ALS inhibition assays confirmed cross-resistance to almost all the herbicides tested, with the exception of A282D ApALS, which was as susceptible as WT ApALS. Moreover, the results confirmed that the novel substitution A122S provides cross-resistance to at least one herbicide within each of the five families of ALS inhibitors, and this property could be explained by a lower number of hydrophobic interactions between the herbicides and the mutant enzyme. CONCLUSION This is the first report to compare various mutations in vitro from A. palmeri ALS. Our data contribute to understanding the impacts of herbicide resistance in this species. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valeria E Palmieri
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| | - Clarisa E Alvarez
- Centro de Estudios Fotosintéticos y Bioquímicos, Universidad Nacional de Rosario, Rosario, Argentina
| | - Hugo R Permingeat
- Instituto de Investigaciones en Ciencias Agrarias de Rosario (IICAR-CONICET-UNR), Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
- Laboratorio de Biología Molecular, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| | - Valeria E Perotti
- Laboratorio de Biología Molecular, Universidad Nacional de Rosario, Campo Experimental Villarino, Zavalla, Argentina
| |
Collapse
|
9
|
Huang Z, Lu Z, Huang H, Li W, Cao Y, Wei S. Target site mutations and cytochrome P450s-involved metabolism confer resistance to nicosulfuron in green foxtail (Setaria viridis). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104956. [PMID: 34802535 DOI: 10.1016/j.pestbp.2021.104956] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Green foxtail [Setaria viridis (L.) P.Beauv.] is a troublesome grass weed that is widely distributed in maize (Zea mays L.) fields across China. Many populations of S. viridis have evolved resistance to the acetolactate synthase (ALS)-inhibiting herbicide nicosulfuron. The objectives of this research were to confirm nicosulfuron resistance in these populations and to investigate the basis of nicosulfuron resistance. Whole-plant dose-response experiments showed 6 out of 13 S. viridis populations were highly resistance (20-30 times) to nicosulfuron. Sequencing of the ALS gene revealed two amino acid mutations, Asp-376-Glu and Pro-197-Ala, in the nicosulfuron-resistant populations. A malathion pretreatment study revealed that the R376 and R197 subpopulations might have cytochrome P450s-mediated herbicide metabolic resistance. The resistant populations were cross-resistant to imazethapyr but sensitive to topramezone and quizalofop-p-ethyl. This is the first report of resistance to ALS inhibitors conferred by target site mutations (Asp-376-Glu or Pro-197-Ser) and possible cytochrome P450s-involved metabolism in S. viridis.
Collapse
Affiliation(s)
- Zhaofeng Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zongzhi Lu
- Institute of Plant Protection, Jilin Academy of Agricultural Sciences, Changchun 130033, China
| | - Hongjuan Huang
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wenyu Li
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yi Cao
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shouhui Wei
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
10
|
Wang J, Li S, Lan L, Xie M, Cheng S, Gan X, Huang G, Du G, Yu K, Ni X, Liu B, Peng G. De novo genome assembly of a foxtail millet cultivar Huagu11 uncovered the genetic difference to the cultivar Yugu1, and the genetic mechanism of imazethapyr tolerance. BMC PLANT BIOLOGY 2021; 21:271. [PMID: 34118890 PMCID: PMC8196518 DOI: 10.1186/s12870-021-03003-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 05/04/2021] [Indexed: 05/12/2023]
Abstract
BACKGROUND Setaria italica is the second-most widely planted species of millets in the world and an important model grain crop for the research of C4 photosynthesis and abiotic stress tolerance. Through three genomes assembly and annotation efforts, all genomes were based on next generation sequencing technology, which limited the genome continuity. RESULTS Here we report a high-quality whole-genome of new cultivar Huagu11, using single-molecule real-time sequencing and High-throughput chromosome conformation capture (Hi-C) mapping technologies. The total assembly size of the Huagu11 genome was 408.37 Mb with a scaffold N50 size of 45.89 Mb. Compared with the other three reported millet genomes based on the next generation sequencing technology, the Huagu11 genome had the highest genomic continuity. Intraspecies comparison showed about 94.97 and 94.66% of the Yugu1 and Huagu11 genomes, respectively, were able to be aligned as one-to-one blocks with four chromosome inversion. The Huagu11 genome contained approximately 19.43 Mb Presence/absence Variation (PAV) with 627 protein-coding transcripts, while Yugu1 genomes had 20.53 Mb PAV sequences encoding 737 proteins. Overall, 969,596 Single-nucleotide polymorphism (SNPs) and 156,282 insertion-deletion (InDels) were identified between these two genomes. The genome comparison between Huagu11 and Yugu1 should reflect the genetic identity and variation between the cultivars of foxtail millet to a certain extent. The Ser-626-Aln substitution in acetohydroxy acid synthase (AHAS) was found to be relative to the imazethapyr tolerance in Huagu11. CONCLUSIONS A new improved high-quality reference genome sequence of Setaria italica was assembled, and intraspecies genome comparison determined the genetic identity and variation between the cultivars of foxtail millet. Based on the genome sequence, it was inferred that the Ser-626-Aln substitution in AHAS was responsible for the imazethapyr tolerance in Huagu11. The new improved reference genome of Setaria italica will promote the genic and genomic studies of this species and be beneficial for cultivar improvement.
Collapse
Affiliation(s)
- Jie Wang
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Shiming Li
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Lei Lan
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Mushan Xie
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China
| | - Shu Cheng
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Xiaolong Gan
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China
- Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China
| | - Gang Huang
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Guohua Du
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
| | - Kang Yu
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China
- BGI-Agro Seed Service (Wuhan) Co., Ltd, BGI-Shenzhen, Wuhan, 430090, China
| | - Xuemei Ni
- BGI Institute of Applied Agriculture, BGI-Shenzhen, Shenzhen, 518120, China.
| | - Baolong Liu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, 810008, Qinghai, China.
- Key Laboratory of Crop Molecular Breeding, Xining, 810008, Qinghai, China.
| | - Guoxiong Peng
- Genetic, Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
11
|
Délye C, Michel S, Pernin F, Gautier V, Gislard M, Poncet C, Le Corre V. Harnessing the power of next-generation sequencing technologies to the purpose of high-throughput pesticide resistance diagnosis. PEST MANAGEMENT SCIENCE 2020; 76:543-552. [PMID: 31270924 DOI: 10.1002/ps.5543] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/28/2019] [Accepted: 07/01/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Next Generation Sequencing (NGS) technologies offer tremendous possibilities for high-throughput pesticide resistance diagnosis via massive genotyping-by-sequencing. Herein, we used Illumina sequencing combined with a simple, non-commercial bioinformatics pipe-line to seek mutations involved in herbicide resistance in two weeds. RESULTS DNA was extracted from 96 pools of 50 plants for each species. Three amplicons encompassing 15 ALS (acetolactate-synthase) codons crucial for herbicide resistance were amplified from each DNA extract. Above 18 and 20 million quality 250-nucleotide sequence reads were obtained for groundsel (Senecio vulgaris, tetraploid) and ragweed (Ambrosia artemisiifolia, diploid), respectively. Herbicide resistance-endowing mutations were identified in 45 groundsel and in eight ragweed field populations. The mutations detected and their frequencies assessed by NGS were checked by individual plant genotyping or Sanger sequencing. NGS results were fully confirmed, except in three instances out of 12 where mutations present at a frequency of 1% were detected below the threshold set for reliable mutation detection. CONCLUSION Analyzing 9600 plants requested 192 DNA extractions followed by 1728 PCRs and two Illumina runs. Equivalent results obtained by individual analysis would have necessitated 9600 individual DNA extractions followed by 216 000 genotyping PCRs, or by 121 500 PCRs and 40 500 Sanger sequence runs. This clearly demonstrates the interest and power of NGS-based detection of pesticide resistance from pools of individuals for diagnosing resistance in massive numbers of individuals. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Véronique Gautier
- INRA, UMR1095 Génétique, Diversité et Écophysiologie des Céréales, Clermont-Ferrand, France
| | | | - Charles Poncet
- INRA, UMR1095 Génétique, Diversité et Écophysiologie des Céréales, Clermont-Ferrand, France
| | | |
Collapse
|
12
|
Rojano-Delgado AM, Portugal JM, Palma-Bautista C, Alcántara-de la Cruz R, Torra J, Alcántara E, De Prado R. Target site as the main mechanism of resistance to imazamox in a Euphorbia heterophylla biotype. Sci Rep 2019; 9:15423. [PMID: 31659241 PMCID: PMC6817884 DOI: 10.1038/s41598-019-51682-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Accepted: 10/04/2019] [Indexed: 12/15/2022] Open
Abstract
Euphorbia heterophylla is a weed species that invades extensive crop areas in subtropical regions of Brazil. This species was previously controlled by imazamox, but the continuous use of this herbicide has selected for resistant biotypes. Two biotypes of E. heterophylla from southern Brazil, one resistant (R) and one susceptible (S) to imazamox, were compared. The resistance of the R biotype was confirmed by dose-response assays since it required 1250.2 g ai ha-1 to reduce the fresh weight by 50% versus 7.4 g ai ha-1 for the S biotype. The acetolactate synthase (ALS) enzyme activity was studied using ALS-inhibiting herbicides from five different chemical families. The R biotype required the highest concentrations to reduce this enzyme activity by 50%. A Ser653Asn mutation was found in the ALS gene of the R biotype. The experiments carried out showed that imazamox absorption and metabolism were not involved in resistance. However, greater 14C-imazamox root exudation was found in the R biotype (~70% of the total absorbed imazamox). Target site mutation in the ALS gene is the principal mechanism that explains the imazamox resistance of the R biotype, but root exudation seems to also contribute to the resistance of this biotype.
Collapse
Affiliation(s)
| | - João M Portugal
- Department of Biosciences, Valoriza-Research Center for Endogenous Resources Valorization, Polytechnic Institute of Beja, Beja, Portugal
| | | | | | - Joel Torra
- Department d'Hortofructicultura, Botànica i Jardineria, Agrotecnio, Universitat de Lleida, Lleida, Spain
| | | | - Rafael De Prado
- Department of Agricultural Chemistry and Edaphology, University of Córdoba, Córdoba, Spain
| |
Collapse
|
13
|
Küpper A, Manmathan HK, Giacomini D, Patterson EL, McCloskey WB, Gaines TA. Population Genetic Structure in Glyphosate-Resistant and -Susceptible Palmer Amaranth ( Amaranthus palmeri) Populations Using Genotyping-by-sequencing (GBS). FRONTIERS IN PLANT SCIENCE 2018; 9:29. [PMID: 29422910 PMCID: PMC5788914 DOI: 10.3389/fpls.2018.00029] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 05/25/2023]
Abstract
Palmer amaranth (Amaranthus palmeri) is a major weed in United States cotton and soybean production systems. Originally native to the Southwest, the species has spread throughout the country. In 2004 a population of A. palmeri was identified with resistance to glyphosate, a herbicide heavily relied on in modern no-tillage and transgenic glyphosate-resistant (GR) crop systems. This project aims to determine the degree of genetic relatedness among eight different populations of GR and glyphosate-susceptible (GS) A. palmeri from various geographic regions in the United States by analyzing patterns of phylogeography and diversity to ascertain whether resistance evolved independently or spread from outside to an Arizona locality (AZ-R). Shikimic acid accumulation and EPSPS genomic copy assays confirmed resistance or susceptibility. With a set of 1,351 single nucleotide polymorphisms (SNPs), discovered by genotyping-by-sequencing (GBS), UPGMA phylogenetic analysis, principal component analysis, Bayesian model-based clustering, and pairwise comparisons of genetic distances were conducted. A GR population from Tennessee and two GS populations from Georgia and Arizona were identified as genetically distinct while the remaining GS populations from Kansas, Arizona, and Nebraska clustered together with two GR populations from Arizona and Georgia. Within the latter group, AZ-R was most closely related to the GS populations from Kansas and Arizona followed by the GR population from Georgia. GR populations from Georgia and Tennessee were genetically distinct from each other. No isolation by distance was detected and A. palmeri was revealed to be a species with high genetic diversity. The data suggest the following two possible scenarios: either glyphosate resistance was introduced to the Arizona locality from the east, or resistance evolved independently in Arizona. Glyphosate resistance in the Georgia and Tennessee localities most likely evolved separately. Thus, modern farmers need to continue to diversify weed management practices and prevent seed dispersal to mitigate herbicide resistance evolution in A. palmeri.
Collapse
Affiliation(s)
- Anita Küpper
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | - Harish K. Manmathan
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, United States
| | - Darci Giacomini
- Department of Crop Sciences, University of Illinois at Urbana–Champaign, Urbana, IL, United States
| | - Eric L. Patterson
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| | | | - Todd A. Gaines
- Department of Bioagricultural Sciences and Pest Management, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
14
|
Kumar V, Jha P. First report of Ser653Asn mutation endowing high-level resistance to imazamox in downy brome (Bromus tectorum L.). PEST MANAGEMENT SCIENCE 2017; 73:2585-2591. [PMID: 28734097 DOI: 10.1002/ps.4673] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 07/06/2017] [Accepted: 07/14/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND Bromus tectorum L. is one of the most troublesome grass weed species in cropland and non-cropland areas of the northwestern USA. In summer 2016, a B. tectroum accession (R) that survived imazamox at the field-use rate (44 g ha-1 ) in an imidazolinone-tolerant (IMI-tolerant or Clearfield™) winter wheat field was collected from a wheat field in Carter County, MT, USA. The aim of this study was to determine the resistance profile of the B. tectroum R accession to imazamox and other ALS inhibitors, and investigate the mechanism of resistance to imazamox. RESULTS The R B. tectorum accession had a high-level resistance (110.1-fold) to imazamox (IMI) and low to moderate-levels cross-resistance to pyroxsulam (TP) (4.6-fold) and propoxycarbazone (SCT) (13.9-fold). The R accession was susceptible to sulfosulfuron (SU) and quizalofop and clethodim (ACCase inhibitors), paraquat (PS I inhibitor), glyphosate (EPSPS inhibitor) and glufosinate (GS inhibitor). Sequence analysis of the ALS gene revealed a single, target-site Ser653Asn mutation in R plants. Pretreatment of malathion followed by imazamox at 44 or 88 g ha-1 did not reverse the resistance phenotype. CONCLUSION This is the first report of evolution of cross-resistance to ALS-inhibiting herbicides in B. tectorum. A single-point mutation, Ser653Asn, was identified, conferring the high-level resistance to imazamox. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Vipan Kumar
- Montana State University-Bozeman, Department of Research Centers, Southern Agricultural Research Center, Huntley, MT, USA
| | - Prashant Jha
- Montana State University-Bozeman, Department of Research Centers, Southern Agricultural Research Center, Huntley, MT, USA
| |
Collapse
|
15
|
Satchivi NM, deBoer GJ, Bell JL. Understanding the Differential Response of Setaria viridis L. (green foxtail) and Setaria pumila Poir. (yellow foxtail) to Pyroxsulam. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:7328-7336. [PMID: 28771349 DOI: 10.1021/acs.jafc.7b01453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Green foxtail [Setaria viridis (L) Beauv.] and yellow foxtail [Setaria pumila (Poir.) Roem. & Schult.] are among the most abundant and troublesome annual grass weeds in cereal crops in the Northern Plains of the United States and the Prairie Provinces of Canada. Greenhouse and laboratory experiments were conducted to examine the differential responses of both weed species to foliar applications of the new triazolopyrimidine sulfonamide acetolactate synthase-inhibiting herbicide, pyroxsulam, and to determine the mechanism(s) of differential weed control. Foliar applications of pyroxsulam resulted in >90% control of yellow foxtail at rates between 7.5 and 15 g ai ha-1, whereas the same rates resulted in a reduced efficacy on green foxtail (≤81%). The absorption and translocation of [14C]pyroxsulam in green and yellow foxtail were similar and could not explain the differential whole-plant efficacy. Studies with [14C]pyroxsulam revealed a higher percentage of absorbed pyroxsulam was metabolized into an inactive metabolite in the treated leaf of green foxtail than in the treated leaf of yellow foxtail. Metabolism studies demonstrated that, 48 h after application, 50 and 35% of pyroxsulam in the treated leaf was converted to 5-hydroxy-pyroxsulam in green and yellow foxtail, respectively. The acetolactate synthase (ALS) inhibition assay showed that ALS extracted from green foxtail was more tolerant to pyroxsulam than the enzyme extracted from yellow foxtail was. The in vitro ALS assay showed IC50 values of 8.39 and 0.26 μM pyroxsulam for green and yellow foxtail, respectively. The ALS genes from both green and yellow foxtail were sequenced and revealed amino acid differences; however, the changes are not associated with known resistance-inducing mutations. The differential control of green and yellow foxtail following foliar applications of pyroxsulam was attributed to differences in both metabolism and ALS sensitivity.
Collapse
Affiliation(s)
- Norbert M Satchivi
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Gerrit J deBoer
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| | - Jared L Bell
- Dow AgroSciences LLC , 9330 Zionsville Road, Indianapolis, Indiana 46268, United States
| |
Collapse
|
16
|
Comprehensive understanding of acetohydroxyacid synthase inhibition by different herbicide families. Proc Natl Acad Sci U S A 2017; 114:E1091-E1100. [PMID: 28137884 PMCID: PMC5321015 DOI: 10.1073/pnas.1616142114] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Five commercial herbicide families inhibit acetohydroxyacid synthase (AHAS, E.C. 2.2.1.6), which is the first enzyme in the branched-chain amino acid biosynthesis pathway. The popularity of these herbicides is due to their low application rates, high crop vs. weed selectivity, and low toxicity in animals. Here, we have determined the crystal structures of Arabidopsis thaliana AHAS in complex with two members of the pyrimidinyl-benzoate (PYB) and two members of the sulfonylamino-carbonyl-triazolinone (SCT) herbicide families, revealing the structural basis for their inhibitory activity. Bispyribac, a member of the PYBs, possesses three aromatic rings and these adopt a twisted "S"-shaped conformation when bound to A. thaliana AHAS (AtAHAS) with the pyrimidinyl group inserted deepest into the herbicide binding site. The SCTs bind such that the triazolinone ring is inserted deepest into the herbicide binding site. Both compound classes fill the channel that leads to the active site, thus preventing substrate binding. The crystal structures and mass spectrometry also show that when these herbicides bind, thiamine diphosphate (ThDP) is modified. When the PYBs bind, the thiazolium ring is cleaved, but when the SCTs bind, ThDP is modified to thiamine 2-thiazolone diphosphate. Kinetic studies show that these compounds not only trigger reversible accumulative inhibition of AHAS, but also can induce inhibition linked with ThDP degradation. Here, we describe the features that contribute to the extraordinarily powerful herbicidal activity exhibited by four classes of AHAS inhibitors.
Collapse
|
17
|
Huang Z, Chen J, Zhang C, Huang H, Wei S, Zhou X, Chen J, Wang X. Target-site basis for resistance to imazethapyr in redroot amaranth (Amaranthus retroflexus L.). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2016; 128:10-15. [PMID: 26969434 DOI: 10.1016/j.pestbp.2015.10.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/12/2015] [Accepted: 10/13/2015] [Indexed: 06/05/2023]
Abstract
Experiments were conducted to confirm imazethapyr resistance in redroot amaranth (Amaranthus retroflexus L.) and study the target-site based mechanism for the resistance. Whole-plant response experiments revealed that the resistant (R) population exhibited 19.16 fold resistance to imazethapyr compared with the susceptible (S) population. In vitro ALS activity assay demonstrated that the imazethapyr I50 value of the R population was 21.33 times greater than that of the S population. However, qRT-PCR analysis revealed that there is no difference in ALS gene expression between the R and S populations. Sequence analysis revealed an Asp-376-Glu substitution in ALS in the R population. In order to verify that the imazethapyr resistance was conferred by Asp-376-Glu mutation, the ALS-R and ALS-S genes were fused to the CaMV 35S promoter and introduced into Arabidopsis respectively. The expression of ALS-R in transgenic Arabidopsis plants exhibited 13.79 fold resistance to imazethapyr compared to ALS-S transgenic Arabidopsis.
Collapse
Affiliation(s)
- Zhaofeng Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| | - Jinyi Chen
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| | - Chaoxian Zhang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China.
| | - Hongjuan Huang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| | - Shouhui Wei
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| | - Xinxin Zhou
- Institute for the Control of Agrochemicals, Ministry of Agriculture, China
| | - Jingchao Chen
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| | - Xu Wang
- Key Laboratory of Weed and Rodent Biology and Management, Institute of Plant Protection (IPP), Chinese Academy of Agricultural Sciences (CAAS), China
| |
Collapse
|
18
|
Mestanza C, Riegel R, Silva H, Vásquez SC. Characterization of the acetohydroxyacid synthase multigene family in the tetraploide plant Chenopodium quinoa. ELECTRON J BIOTECHN 2015. [DOI: 10.1016/j.ejbt.2015.07.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
19
|
van der Vyver C, Conradie T, Kossmann J, Lloyd J. In vitro selection of transgenic sugarcane callus utilizing a plant gene encoding a mutant form of acetolactate synthase. IN VITRO CELLULAR & DEVELOPMENTAL BIOLOGY. PLANT : JOURNAL OF THE TISSUE CULTURE ASSOCIATION 2013; 49:198-206. [PMID: 23543883 PMCID: PMC3607717 DOI: 10.1007/s11627-013-9493-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 01/18/2013] [Indexed: 05/11/2023]
Abstract
Selection genes are routinely used in plant genetic transformation protocols to ensure the survival of transformed cells by limiting the regeneration of non-transgenic cells. In order to find alternatives to the use of antibiotics as selection agents, we followed a targeted approach utilizing a plant gene, encoding a mutant form of the enzyme acetolactate synthase, to convey resistance to herbicides. The sensitivity of sugarcane callus (Saccharum spp. hybrids, cv. NCo310) to a number of herbicides from the sulfonylurea and imidazolinone classes was tested. Callus growth was most affected by sulfonylurea herbicides, particularly 3.6 μg/l chlorsulfuron. Herbicide-resistant transgenic sugarcane plants containing mutant forms of a tobacco acetolactate synthase (als) gene were obtained following biolistic transformation. Post-bombardment, putative transgenic callus was selectively proliferated on MS medium containing 3 mg/l 2,4-dichlorophenoxyacetic acid (2,4-D), 20 g/l sucrose, 0.5 g/l casein, and 3.6 μg/l chlorsulfuron. Plant regeneration and rooting was done on MS medium lacking 2,4-D under similar selection conditions. Thirty vigorously growing putative transgenic plants were successfully ex vitro-acclimatized and established under glasshouse conditions. Glasshouse spraying of putative transgenic plants with 100 mg/l chlorsulfuron dramatically decreased the amount of non-transgenic plants that had escaped the in vitro selection regime. PCR analysis showed that six surviving plants were als-positive and that five of these expressed the mutant als gene. This report is the first to describe a selection system for sugarcane transformation that uses a selectable marker gene of plant origin targeted by a sulfonylurea herbicide.
Collapse
Affiliation(s)
- Christell van der Vyver
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602 South Africa
| | - Tobie Conradie
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602 South Africa
| | - Jens Kossmann
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602 South Africa
| | - James Lloyd
- Institute for Plant Biotechnology, Department of Genetics, University of Stellenbosch, Stellenbosch, 7602 South Africa
| |
Collapse
|
20
|
Riar DS, Norsworthy JK, Srivastava V, Nandula V, Bond JA, Scott RC. Physiological and molecular basis of acetolactate synthase-inhibiting herbicide resistance in barnyardgrass (Echinochloa crus-galli). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:278-89. [PMID: 23237199 DOI: 10.1021/jf304675j] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Barnyardgrass biotypes from Arkansas (AR1 and AR2) and Mississippi (MS1) have evolved cross-resistance to imazamox, imazethapyr, and penoxsulam. Additionally, AR1 and MS1 have evolved cross-resistance to bispyribac-sodium. Studies were conducted to determine if resistance to acetolactate synthase (ALS)-inhibiting herbicides in these biotypes is target-site or non-target-site based. Sequencing and analysis of a 1701 base pair ALS coding sequence revealed Ala₁₂₂ to Val and Ala₁₂₂ to Thr substitutions in AR1 and AR2, respectively. The imazamox concentrations required for 50% inhibition of ALS enzyme activity in vitro of AR1 and AR2 were 2.0 and 5.8 times, respectively, greater than the susceptible biotype. Absorption of ¹⁴C-bispyribac-sodium, -imazamox, and -penoxsulam was similar in all biotypes. ¹⁴C-Penoxsulam translocation out of the treated leaf (≤2%) was similar among all biotypes. ¹⁴C-Bispyribac-treated AR1 and MS1 translocated 31- 43% less radioactivity to aboveground tissue below the treated leaf compared to the susceptible biotype. ¹⁴C-Imazamox-treated AR1 plants translocated 39% less radioactivity above the treated leaf and aboveground tissue below the treated leaf, and MS1 translocated 54 and 18% less radioactivity to aboveground tissue above and below the treated leaf, respectively, compared to the susceptible biotype. Phosphorimaging results further corroborated the above results. This study shows that altered target site is a mechanism of resistance to imazamox in AR2 and probably in AR1. Additionally, reduced translocation, which may be a result of metabolism, could contribute to imazamox and bispyribac-sodium resistance in AR1 and MS1.
Collapse
Affiliation(s)
- Dilpreet S Riar
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, Arkansas 72704, USA.
| | | | | | | | | | | |
Collapse
|
21
|
Qian H, Lu T, Peng X, Han X, Fu Z, Liu W. Enantioselective phytotoxicity of the herbicide imazethapyr on the response of the antioxidant system and starch metabolism in Arabidopsis thaliana. PLoS One 2011; 6:e19451. [PMID: 21573119 PMCID: PMC3089624 DOI: 10.1371/journal.pone.0019451] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 03/29/2011] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND The enantiomers of a chiral compound possess different biological activities, and one of the enantiomers usually shows a higher level of toxicity. Therefore, the exploration of the causative mechanism of enantioselective toxicity is regarded as one of primary goals of biological chemistry. Imazethapyr (IM) is an acetolactate synthase (ALS)-inhibiting chiral herbicide that has been widely used in recent years with racemate. We investigated the enantioselectivity between R- and S-IM to form reactive oxygen species (ROS) and to regulate antioxidant gene transcription and enzyme activity. RESULTS Dramatic differences between the enantiomers were observed: the enantiomer of R-IM powerfully induced ROS formation, yet drastically reduced antioxidant gene transcription and enzyme activity, which led to an oxidative stress. The mechanism by which IM affects carbohydrate metabolism in chloroplasts has long remained a mystery. Here we report evidence that enantioselectivity also exists in starch metabolism. The enantiomer of R-IM resulted in the accumulation of glucose, maltose and sucrose in the cytoplasm or the chloroplast and disturbed carbohydrates utilization. CONCLUSION The study suggests that R-IM more strongly retarded plant growth than S-IM not only by acting on ALS, but also by causing an imbalance in the antioxidant system and the disturbance of carbohydrate metabolism with enantioselective manner.
Collapse
Affiliation(s)
- HaiFeng Qian
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| | - Tao Lu
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| | - XiaoFeng Peng
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| | - Xiao Han
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| | - ZhengWei Fu
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| | - WeiPing Liu
- College of Biological and Environmental Engineering, Zhejiang University
of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Abstract
Modern herbicides make major contributions to global food production by easily removing weeds and substituting for destructive soil cultivation. However, persistent herbicide selection of huge weed numbers across vast areas can result in the rapid evolution of herbicide resistance. Herbicides target specific enzymes, and mutations are selected that confer resistance-endowing amino acid substitutions, decreasing herbicide binding. Where herbicides bind within an enzyme catalytic site very few mutations give resistance while conserving enzyme functionality. Where herbicides bind away from a catalytic site many resistance-endowing mutations may evolve. Increasingly, resistance evolves due to mechanisms limiting herbicide reaching target sites. Especially threatening are herbicide-degrading cytochrome P450 enzymes able to detoxify existing, new, and even herbicides yet to be discovered. Global weed species are accumulating resistance mechanisms, displaying multiple resistance across many herbicides and posing a great challenge to herbicide sustainability in world agriculture. Fascinating genetic issues associated with resistance evolution remain to be investigated, especially the possibility of herbicide stress unleashing epigenetic gene expression. Understanding resistance and building sustainable solutions to herbicide resistance evolution are necessary and worthy challenges.
Collapse
Affiliation(s)
- Stephen B Powles
- Western Australian Herbicide Resistance Initiative, School of Plant Biology, University of Western Australia, Crawley, WA, Australia.
| | | |
Collapse
|