1
|
Zhao F, Wang Y, Cheng W, Antwi-Boasiako A, Yan W, Zhang C, Gao X, Kong J, Liu W, Zhao T. Genome-Wide Association Study of Bacterial Blight Resistance in Soybean. PLANT DISEASE 2025; 109:341-351. [PMID: 39254851 DOI: 10.1094/pdis-01-24-0162-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Bacterial blight caused by Pseudomonas syringae pv. glycinea (Psg) is a widespread foliar disease. Although four Resistance to Pseudomonas syringae pv. glycinea (Rpg) 1 to 4 (Rpg1∼4) genes that have been observed to segregate in a Mendelian pattern have been reported to confer resistance to Psg in soybean, the genetic basis of quantitative resistance to bacterial blight in soybean remains unclear. In the present study, the Psg resistance of two soybean association panels consisting of 573 and 213 lines, respectively, was phenotyped in multiple environments in 2014 to 2016. Genome-wide association study was performed using two models, FarmCPU and BLINK, to identify Psg resistance loci. A total of 40 soybean varieties with high level of Psg resistance were identified, and 14 quantitative trait loci (QTLs) were detected on 12 soybean chromosomes. These QTLs were identified for the first time. The majority of the QTLs were detected only in one or the other association panels, while qRPG-18-1 was detected in both association panels for at least one growing season. A total of 46 candidate Psg resistance genes were identified from the qRpg_13_1, qRPG-15-1, and qRPG-18-1 loci based on gene function annotation. In addition, we found the genomic region covering rpg1-b and rpg1-r harbored the synteny with a genomic region on chromosome 15 and identified 16 nucleotide binding site-leucine-rich repeat (NBS-LRR) genes as the candidate Psg resistance genes from the synteny blocks. This study provides new information for dissecting the genetic control of Psg resistance in soybean.
Collapse
Affiliation(s)
- Fangzhou Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Institute of Industrial Crops, Shandong Academy of Agricultural Sciences, Jinan 250100, China
| | - Yanan Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Cheng
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Augustine Antwi-Boasiako
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
- Council for Scientific and Industrial Research - Crops Research Institute (CSIR-CRI), Kumasi AK000-AK911, Fumesua, Ghana
| | - Wenkai Yan
- Bioinformatics Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Chunting Zhang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiejie Kong
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, U.S.A
| | - Tuanjie Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture/Zhongshan Biological Breeding Laboratory (ZSBBL)/National Innovation Platform for Soybean Breeding and Industry-Education Integration/State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization/College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Taguchi-Shiobara F, Takahashi K, Yano R, Suzuki R, Yokota Y, Yamazaki T, Yamada T, Sayama T, Yamada N, Oki N, Anai T, Kaga A, Ishimoto M. A single-nucleotide insertion in Rxp confers durable resistance to bacterial pustule in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:254. [PMID: 39441215 DOI: 10.1007/s00122-024-04743-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 09/13/2024] [Indexed: 10/25/2024]
Abstract
KEY MESSAGE The soybean Rxp gene, encoding a bHLH transcription factor and an ACT-like domain, has an rxp allele producing a truncated protein that confers resistance to pustule-causing Xanthomonas axonopodis pv. glycines. In soybean, bacterial pustules caused by Xanthomonas axonopodis pv. glycines lead to premature defoliation and decreased yield in warm, wet climates. In the USA, approximately 70 years ago, bacterial pustules were eliminated by introducing a recessive resistance allele, rxp, of the Rxp gene, representing the first example of successful soybean breeding for durable disease resistance in North America. In this study, we isolated this historical Rxp gene from resistant soybean varieties using positional cloning. The 1.06 Mb region where Rxp was reported to reside was narrowed down to an 11.1 kb region containing a single gene, Glyma.17g090500. The resistance allele, rxp, contains a T insertion. A complementation test of the Rxp allele in resistant plants confirmed the identification of the Rxp gene. The product of the susceptible wild-type allele, Rxp, is presumed to be a basic helix-loop-helix (bHLH) transcription factor with an aspartate kinase, chorismate mutase, and TyrA (ACT)-like domain. This gene was mainly expressed in extended leaves, and its homologs were identified to be distributed in angiosperms. A total of six alleles were obtained: four from spontaneous variation, including the wild-type and three mutant alleles that encoded truncated proteins, and two from ethyl methanesulfonate mutants, including an allele that encoded a truncated protein and a missense allele. By evaluating the resistance of these six alleles, we found that the loss of function of RXP decreased the bacterial pustule lesions. This study provides important insights into the soybean rxp allele, which confers durable resistance to bacterial pustules.
Collapse
Affiliation(s)
- Fumio Taguchi-Shiobara
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
- Headquarters, NARO, Tsukuba, Ibaraki, 305-8518, Japan.
| | - Koji Takahashi
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Ryoichi Yano
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Rintaro Suzuki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Yuko Yokota
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Toshimasa Yamazaki
- Research Center for Advanced Analysis, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Tetsuya Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Research Center for Agricultural Information Technology, NARO, Tsukuba, Ibaraki, 305-0856, Japan
| | - Takashi Sayama
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Tohoku Agricultural Research Center, NARO, Daisen, Akita, 019-2112, Japan
| | - Naohiro Yamada
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
- Nagano Agricultural Experiment Station, Suzaka, Nagano, 382-0072, Japan
| | - Nobuhiko Oki
- Kyushu Okinawa Agricultural Research Center, NARO, Koshi, Kumamoto, 861-1192, Japan
| | - Toyoaki Anai
- Faculty of Agriculture, Saga University, Saga, Saga, 840-8502, Japan
- Faculty of Agriculture, Kyushu University, Fukuoka, Fukuoka, 819-0395, Japan
| | - Akito Kaga
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan
| | - Masao Ishimoto
- Institute of Crop Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, 305-8518, Japan.
| |
Collapse
|
3
|
Cardoso-Sichieri R, Oliveira LS, Lopes-Caitar VS, Silva DCGD, Lopes IDON, Oliveira MFD, Arias CA, Abdelnoor RV, Marcelino-Guimarães FC. Genome-Wide Association Studies and QTL Mapping Reveal a New Locus Associated with Resistance to Bacterial Pustule Caused by Xanthomonas citri pv. glycines in Soybean. PLANTS (BASEL, SWITZERLAND) 2024; 13:2484. [PMID: 39273969 PMCID: PMC11397087 DOI: 10.3390/plants13172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/15/2024]
Abstract
Bacterial pustule (BP), caused by Xanthomonas citri pv. glycines, is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian X. citri isolates (IBS 333 and IBS 327). The panel was genotyped using a genotyping by sequencing (GBS) approach, and we identified two main new regions in soybeans associated with X. citri resistance on chromosomes 6 (IBS 333) and 18 (IBS 327), different from the traditional rxp gene located on chromosome 17. The region on chromosome 6 was also detected by QTL mapping using a biparental cross between Williams 82 (R) and PI 416937 (S), showing that Williams 82 has another recessive resistance gene besides rxp, which was also detected in nine BP-resistant ancestors of the Brazilian cultivars (including CNS, S-100), based on haplotype analysis. Furthermore, we identified additional SNPs in strong LD (0.8) with peak SNPs by exploring variation available in WGS (whole genome sequencing) data among 31 soybean accessions. In these regions in strong LD, two candidate resistance genes were identified (Glyma.06g311000 and Glyma.18g025100) for chromosomes 6 and 18, respectively. Therefore, our results allowed the identification of new chromosomal regions in soybeans associated with BP disease, which could be useful for marker-assisted selection and will enable a reduction in time and cost for the development of resistant cultivars.
Collapse
Affiliation(s)
- Rafaella Cardoso-Sichieri
- Center for Biological Sciences, Londrina State University (UEL), Celso Garcia Cid Road, km 380, Londrina 86057-970, PR, Brazil
| | - Liliane Santana Oliveira
- Department of Computer Science, Federal University of Technology of Paraná (UTFPR), Alberto Carazzai Avenue, 1640, Cornélio Procópio 86300-000, PR, Brazil
| | | | | | - Ivani de O N Lopes
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Marcelo Fernandes de Oliveira
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Carlos Arrabal Arias
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | - Ricardo Vilela Abdelnoor
- Brazilian Agricultural Research Corporation (Embrapa Soja), Carlos João Strass Road, Warta County 86085-981, PR, Brazil
| | | |
Collapse
|
4
|
Moya YS, Medina C, Herrera B, Chamba F, Yu LX, Xu Z, Samac DA. Genetic Mapping of Tolerance to Bacterial Stem Blight Caused by Pseudomonas syringae pv. syringae in Alfalfa ( Medicago sativa L.). PLANTS (BASEL, SWITZERLAND) 2023; 13:110. [PMID: 38202418 PMCID: PMC10780931 DOI: 10.3390/plants13010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/01/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024]
Abstract
The bacterial stem blight of alfalfa (Medicago sativa L.), first reported in the United States in 1904, has emerged recently as a serious disease problem in the western states. The causal agent, Pseudomonas syringae pv. syringae, promotes frost damage and disease that can reduce first harvest yields by 50%. Resistant cultivars and an understanding of host-pathogen interactions are lacking in this pathosystem. With the goal of identifying DNA markers associated with disease resistance, we developed biparental F1 mapping populations using plants from the cultivar ZG9830. Leaflets of plants in the mapping populations were inoculated with a bacterial suspension using a needleless syringe and scored for disease symptoms. Bacterial populations were measured by culture plating and using a quantitative PCR assay. Surprisingly, leaflets with few to no symptoms had bacterial loads similar to leaflets with severe disease symptoms, indicating that plants without symptoms were tolerant to the bacterium. Genotyping-by-sequencing identified 11 significant SNP markers associated with the tolerance phenotype. This is the first study to identify DNA markers associated with tolerance to P. syringae. These results provide insight into host responses and provide markers that can be used in alfalfa breeding programs to develop improved cultivars to manage the bacterial stem blight of alfalfa.
Collapse
Affiliation(s)
- Yeidymar Sierra Moya
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | - Cesar Medina
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA;
| | - Bianca Herrera
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
| | | | - Long-Xi Yu
- USDA-ARS-Plant Germplasm Introduction and Testing Research Unit, Prosser, WA 99350, USA;
| | - Zhanyou Xu
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| | - Deborah A. Samac
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108, USA; (Y.S.M.); (B.H.)
- USDA-ARS-Plant Science Research Unit, St. Paul, MN 55108, USA;
| |
Collapse
|
5
|
Gilbert E, Merry R, Campbell BW, Stupar RM, Lorenz AJ. A genome-wide analysis of the USDA Soybean Isoline Collection. THE PLANT GENOME 2023; 16:e20310. [PMID: 36988044 DOI: 10.1002/tpg2.20310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 12/17/2022] [Indexed: 06/19/2023]
Abstract
The USDA Soybean Isoline Collection has been an invaluable resource for the soybean genetics and breeding community. This collection, established in 1972, consists of 611 near-isogenic lines (NILs) carrying one or multiple genes conferring traits that had been determined to exhibit Mendelian inheritance. It has been used in multiple studies on the genetic basis, physiology, and agronomy of these qualitative traits. Here, we used publicly available genotype (SoySNP50K), phenotype, and pedigree data on this collection to characterize the isogenicity of the NILs and identify chromosomal positions of unmapped genes. A total of 368 NILs had at least 80% identity to their recurrent parent and, thus, were useful for what can be called introgression mapping. Both on-target and off-target introgressions were evaluated. The size of on-target introgressions into individual NILs ranged from 61 kb to 8.4 Mb, whereas off-target introgressions ranged from 2.6 kb to 54.8 Mb. The observed large off-target introgressions indicated that some NILs carry introgressions nearly the size of an entire chromosome. By applying introgression mapping to genes that had never been mapped, we identified the likely chromosomal positions of six such genes: ab, im, lo, Np, pc, and Rpm. The size of mapping intervals was large in some cases (10.28 Mb for im) but small in others (0.21 Mb for Np). The results reported herein will provide future researchers with a resource to help select informative NILs for future studies, and provide a starting point to further fine map, and ultimately clone and functionally characterize these six soybean genes.
Collapse
Affiliation(s)
- Erin Gilbert
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Ryan Merry
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Benjamin W Campbell
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Robert M Stupar
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| | - Aaron J Lorenz
- Department of Agronomy and Plant Genetics, University of Minnesota, Saint Paul, MN, USA
| |
Collapse
|
6
|
Identifications of QTLs and Candidate Genes Associated with Pseudomonas syringae Responses in Cultivated Soybean ( Glycine max) and Wild Soybean ( Glycine soja). Int J Mol Sci 2023; 24:ijms24054618. [PMID: 36902050 PMCID: PMC10003559 DOI: 10.3390/ijms24054618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Soybeans (Glycine max) are a key food crop, serving as a valuable source of both oil and plant-derived protein. Pseudomonas syringae pv. glycinea (Psg) is among the most aggressive and prevalent pathogens affecting soybean production, causing a form of bacterial spot disease that impacts soybean leaves and thereby reduces crop yields. In this study, 310 natural soybean varieties were screened for Psg resistance and susceptibility. The identified susceptible and resistant varieties were then used for linkage mapping, BSA-seq, and whole genome sequencing (WGS) analyses aimed at identifying key QTLs associated with Psg responses. Candidate Psg-related genes were further confirmed through WGS and qPCR analyses. Candidate gene haplotype analyses were used to explore the associations between haplotypes and soybean Psg resistance. In addition, landrace and wild soybean plants were found to exhibit a higher degree of Psg resistance as compared to cultivated soybean varieties. In total, 10 QTLs were identified using chromosome segment substitution lines derived from Suinong14 (cultivated soybean) and ZYD00006 (wild soybean). Glyma.10g230200 was found to be induced in response to Psg, with the Glyma.10g230200 haplotype corresponding to soybean disease resistance. The QTLs identified herein can be leveraged to guide the marker-assisted breeding of soybean cultivars that exhibit partial resistance to Psg. Moreover, further functional and molecular studies of Glyma.10g230200 have the potential to offer insight into the mechanistic basis for soybean Psg resistance.
Collapse
|
7
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
8
|
Molecular Breeding to Overcome Biotic Stresses in Soybean: Update. PLANTS 2022; 11:plants11151967. [PMID: 35956444 PMCID: PMC9370206 DOI: 10.3390/plants11151967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/16/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022]
Abstract
Soybean (Glycine max (L.) Merr.) is an important leguminous crop and biotic stresses are a global concern for soybean growers. In recent decades, significant development has been carried outtowards identification of the diseases caused by pathogens, sources of resistance and determination of loci conferring resistance to different diseases on linkage maps of soybean. Host-plant resistance is generally accepted as the bestsolution because of its role in the management of environmental and economic conditions of farmers owing to low input in terms of chemicals. The main objectives of soybean crop improvement are based on the identification of sources of resistance or tolerance against various biotic as well as abiotic stresses and utilization of these sources for further hybridization and transgenic processes for development of new cultivars for stress management. The focus of the present review is to summarize genetic aspects of various diseases caused by pathogens in soybean and molecular breeding research work conducted to date.
Collapse
|
9
|
Zhao F, Cheng W, Wang Y, Gao X, Huang D, Kong J, Antwi-Boasiako A, Zheng L, Yan W, Chang F, Kong K, Liao YY, Huerta AI, Liu W, Zhang M, Zhao T. Identification of Novel Genomic Regions for Bacterial Leaf Pustule (BLP) Resistance in Soybean ( Glycine max L.) via Integrating Linkage Mapping and Association Analysis. Int J Mol Sci 2022; 23:2113. [PMID: 35216225 PMCID: PMC8876204 DOI: 10.3390/ijms23042113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 01/20/2023] Open
Abstract
Bacterial leaf pustule (BLP), caused by Xanthornonas axonopodis pv. glycines (Xag), is a worldwide disease of soybean, particularly in warm and humid regions. To date, little is known about the underlying molecular mechanisms of BLP resistance. The only single recessive resistance gene rxp has not been functionally identified yet, even though the genotypes carrying the gene have been widely used for BLP resistance breeding. Using a linkage mapping in a recombinant inbred line (RIL) population against the Xag strain Chinese C5, we identified that quantitative trait locus (QTL) qrxp-17-2 accounted for 74.33% of the total phenotypic variations. We also identified two minor QTLs, qrxp-05-1 and qrxp-17-1, that accounted for 7.26% and 22.26% of the total phenotypic variations, respectively, for the first time. Using a genome-wide association study (GWAS) in 476 cultivars of a soybean breeding germplasm population, we identified a total of 38 quantitative trait nucleotides (QTNs) on chromosomes (Chr) 5, 7, 8, 9,15, 17, 19, and 20 under artificial infection with C5, and 34 QTNs on Chr 4, 5, 6, 9, 13, 16, 17, 18, and 20 under natural morbidity condition. Taken together, three QTLs and 11 stable QTNs were detected in both linkage mapping and GWAS analysis, and located in three genomic regions with the major genomic region containing qrxp_17_2. Real-time RT-PCR analysis of the relative expression levels of five potential candidate genes in the resistant soybean cultivar W82 following Xag treatment showed that of Glyma.17G086300, which is located in qrxp-17-2, significantly increased in W82 at 24 and 72 h post-inoculation (hpi) when compared to that in the susceptible cultivar Jack. These results indicate that Glyma.17G086300 is a potential candidate gene for rxp and the QTLs and QTNs identified in this study will be useful for marker development for the breeding of Xag-resistant soybean cultivars.
Collapse
Affiliation(s)
- Fangzhou Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wei Cheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Yanan Wang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Xuewen Gao
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China;
| | - Debao Huang
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Jiejie Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Augustine Antwi-Boasiako
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
- CSIR-Crops Research Institute, Kumasi AK420, Ghana
| | - Lingyi Zheng
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Wenliang Yan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Keke Kong
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| | - Ying-Yu Liao
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Alejandra I. Huerta
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC 27607, USA; (Y.-Y.L.); (A.I.H.)
| | - Wusheng Liu
- Department of Horticultural Science, North Carolina State University, Raleigh, NC 27607, USA; (D.H.); (W.L.)
| | - Mengchen Zhang
- National Soybean Improvement Center Shijiazhuang Sub-Center, North China Key Laboratory of Biology and Genetic Improvement of Soybean, Ministry of Agriculture, Laboratory of Crop Genetics and Breeding of Hebei, Cereal & Oil Crop Institute, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang 050000, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China; (F.Z.); (W.C.); (Y.W.); (J.K.); (A.A.-B.); (L.Z.); (W.Y.); (F.C.); (K.K.)
| |
Collapse
|
10
|
Ferreira EGC, Marcelino-Guimarães FC. Mapping Major Disease Resistance Genes in Soybean by Genome-Wide Association Studies. Methods Mol Biol 2022; 2481:313-340. [PMID: 35641772 DOI: 10.1007/978-1-0716-2237-7_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Soybean is one of the most valuable agricultural crops in the world. Besides, this legume is constantly attacked by a wide range of pathogens (fungi, bacteria, viruses, and nematodes) compromising yield and increasing production costs. One of the major disease management strategies is the genetic resistance provided by single genes and quantitative trait loci (QTL). Identifying the genomic regions underlying the resistance against these pathogens on soybean is one of the first steps performed by molecular breeders. In the past, genetic mapping studies have been widely used to discover these genomic regions. However, over the last decade, advances in next-generation sequencing technologies and their subsequent cost decreasing led to the development of cost-effective approaches to high-throughput genotyping. Thus, genome-wide association studies applying thousands of SNPs in large sets composed of diverse soybean accessions have been successfully done. In this chapter, a comprehensive review of the majority of GWAS for soybean diseases published since this approach was developed is provided. Important diseases caused by Heterodera glycines, Phytophthora sojae, and Sclerotinia sclerotiorum have been the focus of the several GWAS. However, other bacterial and fungi diseases also have been targets of GWAS. As such, this GWAS summary can serve as a guide for future studies of these diseases. The protocol begins by describing several considerations about the pathogens and bringing different procedures of molecular characterization of them. Advice to choose the best isolate/race to maximize the discovery of multiple R genes or to directly map an effective R gene is provided. A summary of protocols, methods, and tools to phenotyping the soybean panel is given to several diseases. We also give details of options of DNA extraction protocols and genotyping methods, and we describe parameters of SNP quality to soybean data. Websites and their online tools to obtain genotypic and phenotypic data for thousands of soybean accessions are highlighted. Finally, we report several tricks and tips in Subheading 4, especially related to composing the soybean panel as well as generating and analyzing the phenotype data. We hope this protocol will be helpful to achieve GWAS success in identifying resistance genes on soybean.
Collapse
|
11
|
Zou J, Zhang Z, Yu S, Kang Q, Shi Y, Wang J, Zhu R, Ma C, Chen L, Wang J, Li J, Li Q, Liu X, Zhu J, Wu X, Hu Z, Qi Z, Liu C, Chen Q, Xin D. Responses of Soybean Genes in the Substituted Segments of Segment Substitution Lines Following a Xanthomonas Infection. FRONTIERS IN PLANT SCIENCE 2020; 11:972. [PMID: 32719700 PMCID: PMC7351525 DOI: 10.3389/fpls.2020.00972] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 06/15/2020] [Indexed: 06/11/2023]
Abstract
Bacterial blight, which is one of the most common soybean diseases, is responsible for considerable yield losses. In this study, a novel Xanthomonas vasicola strain was isolated from the leaves of soybean plants infected with bacterial blight under field conditions. Sequencing the X. vasicola genome revealed type-III effector-coding genes. Moreover, the hrpG deletion mutant was constructed. To identify the soybean genes responsive to HrpG, two chromosome segment substitution lines (CSSLs) carrying the wild soybean genome, but with opposite phenotypes following Xanthomonas inoculations, were used to analyze gene expression networks based on RNA sequencing at three time points after inoculations with wild-type Xanthomonas or the hrpG deletion mutant. To further identify the hub genes underlying soybean responses to HrpG, the genes located on the substituted chromosome segments were examined. Finally, a combined analysis with the QTLs for resistance to Xanthomonas identified 35 hub genes in the substituted chromosomal segments that may help regulate soybean responses to Xanthomonas and HrpG. Furthermore, two candidate genes in the CSSLs might play pivotal roles in response to Xanthomonas.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Zhaoming Qi
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Chunyan Liu
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Qingshan Chen
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| | - Dawei Xin
- *Correspondence: Zhaoming Qi, ; Chunyan Liu, ; Qingshan Chen, ; Dawei Xin,
| |
Collapse
|
12
|
Carpenter SCD, Kladsuwan L, Han SW, Prathuangwong S, Bogdanove AJ. Complete Genome Sequences of Xanthomonas axonopodis pv. glycines Isolates from the United States and Thailand Reveal Conserved Transcription Activator-Like Effectors. Genome Biol Evol 2019; 11:1380-1384. [PMID: 31028379 PMCID: PMC6505444 DOI: 10.1093/gbe/evz085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2019] [Indexed: 12/20/2022] Open
Abstract
To compare overall genome structure and transcription activator-like effector content, we completely sequenced Xanthomonas axonopodis pv. glycines strain 12-2, isolated in 1992 in Thailand, and strain EB08, isolated in 2008 in the United States (Iowa) using PacBio technology. We reassembled the genome sequence for a second US strain, 8ra, derived from a 1980 Iowa isolate, from existing PacBio reads. Despite geographic and temporal separation, the three genomes are highly syntenous, and their transcription activator-like effector repertoires are highly conserved.
Collapse
Affiliation(s)
- Sara C D Carpenter
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University
| | - Lawan Kladsuwan
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sutruedee Prathuangwong
- Department of Plant Pathology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | - Adam J Bogdanove
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University
| |
Collapse
|
13
|
Park HJ, Bae N, Park H, Kim DW, Han SW. Comparative Proteomic Analysis of Three Xanthomonas spp. Cultured in Minimal and Rich Media. Proteomics 2017; 17. [PMID: 29044975 DOI: 10.1002/pmic.201700142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 09/27/2017] [Indexed: 11/09/2022]
Abstract
Bacteria change their gene expression when exposed to different nutrient conditions. The levels of proteins do not always correlate with those of RNAs, hence proteomic analysis is required for understanding how bacteria adapt to different conditions. Herein, differentially abundant proteins from Xanthomonas oryzae pv. oryzae (Xoo), X. campestris pv. vesicatoria (Xcv), and X. axonopodis pv. glycines (Xag), which were cultured in rich media and in minimal media, were determined using label-free shotgun proteomic analysis and clusters of orthologous groups classification. The detected proteins from all three species ranged from 1190 to 1187. Among them, 702, 584, and 529 proteins from Xoo, Xcv, and Xag, respectively, were more (> twofold) abundant depending on the media, indicating that about 11.4-13.8% of proteins from the three species were differentially expressed. The levels of abundant proteins in minimal media were significantly higher than those in rich media for all three species, demonstrating how Xanthomonas species actively change their protein expression in different nutrient conditions. These results will lead to new insights in elucidation of cellular mechanisms involved in virulence and adaption of bacteria to harsh environments for further studies. The MS proteomics data have been deposited to the ProteomeXchange Consortium with the dataset identifier PXD006310.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Nahee Bae
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Hanbi Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| | - Dae-Wi Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
14
|
Sedivy EJ, Wu F, Hanzawa Y. Soybean domestication: the origin, genetic architecture and molecular bases. THE NEW PHYTOLOGIST 2017; 214:539-553. [PMID: 28134435 DOI: 10.1111/nph.14418] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 11/28/2016] [Indexed: 05/20/2023]
Abstract
Domestication provides an important model for the study of evolution, and information learned from domestication research aids in the continued improvement of crop species. Recent progress in de novo assembly and whole-genome resequencing of wild and cultivated soybean genomes, in addition to new archeological discoveries, sheds light on the origin of this important crop and provides a clearer view on the modes of artificial selection that drove soybean domestication and diversification. This novel genomic information enables the search for polymorphisms that underlie variation in agronomic traits and highlights genes that exhibit a signature of selection, leading to the identification of a number of candidate genes that may have played important roles in soybean domestication, diversification and improvement. These discoveries provide a novel point of comparison on the evolutionary bases of important agronomic traits among different crop species.
Collapse
Affiliation(s)
- Eric J Sedivy
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Faqiang Wu
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoshie Hanzawa
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
15
|
Kumawat G, Gupta S, Ratnaparkhe MB, Maranna S, Satpute GK. QTLomics in Soybean: A Way Forward for Translational Genomics and Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1852. [PMID: 28066449 PMCID: PMC5174554 DOI: 10.3389/fpls.2016.01852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops.
Collapse
Affiliation(s)
- Giriraj Kumawat
- Crop Improvement Section, ICAR—Indian Institute of Soybean ResearchIndore, India
| | | | | | | | | |
Collapse
|
16
|
Chang HX, Lipka AE, Domier LL, Hartman GL. Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. PHYTOPATHOLOGY 2016; 106:1139-1151. [PMID: 27135674 DOI: 10.1094/phyto-01-16-0042-fi] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.
Collapse
Affiliation(s)
- Hao-Xun Chang
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Alexander E Lipka
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Leslie L Domier
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Glen L Hartman
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| |
Collapse
|
17
|
Zhang J, Xia C, Duan C, Sun S, Wang X, Wu X, Zhu Z. Identification and candidate gene analysis of a novel phytophthora resistance gene Rps10 in a Chinese soybean cultivar. PLoS One 2013; 8:e69799. [PMID: 23936102 PMCID: PMC3723638 DOI: 10.1371/journal.pone.0069799] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 06/12/2013] [Indexed: 12/03/2022] Open
Abstract
Resistance to Phytophthora sojae isolate PsMC1 was evaluated in 102 F2∶3 families derived from a cross between the resistant soybean cultivar Wandou 15 and the susceptible cultivar Williams and genotyped using simple sequence repeat (SSR) markers. The segregation ratio of resistant, segregating, and susceptible phenotypes in the population suggested that the resistance in Wandou 15 was dominant and monogenic. Twenty-six polymorphic SSR markers were identified on soybean chromosome 17 (Molecular linkage group D2; MLG D2), which were linked to the resistance gene based on bulked segregation analysis (BSA). Markers Sattwd15-24/25 and Sattwd15-47 flanked the resistance gene at a distance of 0.5 cM and 0.8 cM, respectively. Two cosegregating markers, Sattwd15-28 and Sattwd15-32, were also screened in this region. This is the first Rps resistance gene mapped on chromosome 17, which is designated as Rps10. Eight putative genes were found in the mapped region between markers Sattwd15-24/25 and Sattwd15-47. Among them, two candidate genes encoding serine/threonine (Ser/Thr) protein kinases in Wandou 15 and Williams were identified and sequenced. And the differences in genomic sequence and the putative amino acid sequence, respectively, were identified within each candidate gene between Wandou 15 and Williams. This novel gene Rps10 and the linked markers should be useful in developing soybean cultivars with durable resistance to P. sojae.
Collapse
Affiliation(s)
- Jiqing Zhang
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Changjian Xia
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Canxing Duan
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Suli Sun
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaoming Wang
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Xiaofei Wu
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Zhendong Zhu
- MOA Key Lab of Soybean Biology (Beijing), the National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| |
Collapse
|
18
|
Kim KH, Kang YJ, Kim DH, Yoon MY, Moon JK, Kim MY, Van K, Lee SH. RNA-Seq analysis of a soybean near-isogenic line carrying bacterial leaf pustule-resistant and -susceptible alleles. DNA Res 2011; 18:483-97. [PMID: 21987089 PMCID: PMC3223079 DOI: 10.1093/dnares/dsr033] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Accepted: 08/30/2011] [Indexed: 01/19/2023] Open
Abstract
Bacterial leaf pustule (BLP) disease is caused by Xanthomonas axonopodis pv. glycines (Xag). To investigate the plant basal defence mechanisms induced in response to Xag, differential gene expression in near-isogenic lines (NILs) of BLP-susceptible and BLP-resistant soybean was analysed by RNA-Seq. Of a total of 46 367 genes that were mapped to soybean genome reference sequences, 1978 and 783 genes were found to be up- and down-regulated, respectively, in the BLP-resistant NIL relative to the BLP-susceptible NIL at 0, 6, and 12h after inoculation (hai). Clustering analysis revealed that these genes could be grouped into 10 clusters with different expression patterns. Functional annotation based on gene ontology (GO) categories was carried out. Among the putative soybean defence response genes identified (GO:0006952), 134 exhibited significant differences in expression between the BLP-resistant and -susceptible NILs. In particular, pathogen-associated molecular pattern (PAMP) and damage-associated molecular pattern (DAMP) receptors and the genes induced by these receptors were highly expressed at 0 hai in the BLP-resistant NIL. Additionally, pathogenesis-related (PR)-1 and -14 were highly expressed at 0 hai, and PR-3, -6, and -12 were highly expressed at 12 hai. There were also significant differences in the expression of the core JA-signalling components MYC2 and JASMONATE ZIM-motif. These results indicate that powerful basal defence mechanisms involved in the recognition of PAMPs or DAMPs and a high level of accumulation of defence-related gene products may contribute to BLP resistance in soybean.
Collapse
Affiliation(s)
- Kil Hyun Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Yang Jae Kang
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Dong Hyun Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Min Young Yoon
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Jung-Kyung Moon
- Rural Development Administration, Gyeonggi 441-770, Republic of Korea
| | - Moon Young Kim
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Kyujung Van
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
| | - Suk-Ha Lee
- Department of Plant Science and Research Institute for Agriculture and Life Sciences, Seoul National University, San 56-1, Sillim-dong, Gwanak-gu, Seoul 151-921, Republic of Korea
- Plant Genomic and Breeding Research Institute, Seoul National University, Seoul 151-921, Republic of Korea
| |
Collapse
|