1
|
Montesano V, Negro D, Sonnante G, Laghetti G, Urbano M. Polyphenolic Compound Variation in Globe Artichoke Cultivars as Affected by Fertilization and Biostimulants Application. PLANTS 2022; 11:plants11152067. [PMID: 35956545 PMCID: PMC9370648 DOI: 10.3390/plants11152067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/04/2022] [Indexed: 11/24/2022]
Abstract
Globe artichoke is an ancient herbaceous plant native to the Mediterranean Basin. The edible part of the plant is limited to the fleshy leaves (bracts) and receptacle of a large immature inflorescence (head) that has been shown to be a rich source of bioactive compounds. Nutritional and pharmacological properties of artichoke heads and leaves are attributed mainly to polyphenolic compounds and inulin present at high concentration. In this study, polyphenols were investigated in two artichoke cultivars (Opal and Madrigal) in response to four nitrogen rates and foliar applications of biostimulating products under drip irrigation. Field experiments were carried out over two growing seasons (2015–2016, 2016–2017) in Policoro (MT), Southern Italy, on a deep clay soil in sub-humid climate conditions. Phenolic compounds were isolated and characterized by means of high-performance liquid chromatography with photodiode array detection and electrospray ionization/mass spectrometry (HPLC-DAD-MS/MS) analysis. In both cultivars, caffeoylquinic acids were more abundant when a dose of 100 kg ha−1 of ammonium nitrate was provided, whereas apigenins were not affected by nitrogen fertilization. Luteolins increased in cv Opal and decreased in cv Madrigal following N fertilization. The application of biostimulants (3 L ha−1) favored the accumulation of polyphenols, in particular of caffeoylquinic acids and apigenin, in artichoke heads in both cultivars. The results obtained highlight some positive aspects related to the synergistic effect of nitrogen fertilization and biostimulant foliar application.
Collapse
Affiliation(s)
- Vincenzo Montesano
- URT-ALSIA, Institute for Sustainable Plant Protection (IPSP), National Research Council (CNR), S.S. 106 Km 448,000, 75012 Bernalda, Italy
| | - Donatella Negro
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Amendola, 165/A, 70126 Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Amendola, 165/A, 70126 Bari, Italy
| | - Gaetano Laghetti
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Amendola, 165/A, 70126 Bari, Italy
- Correspondence:
| | - Marcella Urbano
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
2
|
An Integrated Management of Vegetable Agro-Biodiversity: A Case Study in the Puglia Region (Italy) on the Artichoke Landrace ‘Carciofo di Lucera’. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8030238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The agro-biodiversity of vegetables is threatened, posing major concerns for the future of landraces, which are of fundamental importance both for food safety and for assuring an income to small-scale farmers. To counteract such a trend, the Puglia region (southern Italy) set up a plan to recover, characterize and preserve the resources at risk of genetic erosion. In our paper, we present a case study regarding an artichoke landrace, the ‘Carciofo di Lucera’ variety, that encompasses all activities foreseen in the Puglia region’s plan which is the result of the multi-actor project “BiodiverSO”. Such a project allowed us to recover and characterize crop genetic resources and to pave the way for further actions to preserve and valorize the agro-biodiversity of local vegetables that are still present in the Puglia region. Furthermore, we collected some evidence that allowed us to backdate the origin of artichoke cultivation in the Puglia region by about two centuries and, most important of all, to recover some populations of ‘Carciofo di Lucera’. These preliminary phases were followed by the characterization of this local variety, both from the morphological and the molecular point of view, so that we can discriminate this landrace from other artichoke varieties more accurately. Eventually, we collected all the information in electronic databases and data sheets, thus providing a tool for the public administration which will be useful in the in situ conservation phase.
Collapse
|
3
|
Castro MM, Rosa D, Ferro AM, Faustino A, Paulino A, Brás T, Machado E, Cruz CP, Belo ADF, Nozes P, Portugal J, Ramôa S, Mendonça D, Simões F, Duarte MF, Marum L. Genetic diversity and population structure of Cynara cardunculus L. in southern Portugal. PLoS One 2021; 16:e0252792. [PMID: 34106958 PMCID: PMC8189484 DOI: 10.1371/journal.pone.0252792] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
Cynara cardunculus L. is a cardoon species native to the Mediterranean region, which is composed of three botanical taxa, each having distinct biological characteristics. The aim of this study was to examine wild populations of C. cardunculus established in Portugal, in order to determine their genetic diversity, geographic distribution, and population structure. Based on SSR markers, 121 individuals of C. cardunculus from 17 wild populations of the Portuguese Alentejo region were identified and analysed. Ten SSRs were found to be efficient markers in the genetic diversity analysis. The total number of alleles ranged from 9 to 17 per locus. The expected and observed means in heterozygosity, by population analysed, were 0.591 and 0.577, respectively. The wild population exhibited a high level of genetic diversity at the species level. The highest proportion of genetic variation was identified within a geographic group, while variation was lower among groups. Geographic areas having highest genetic diversity were identified in Alvito, Herdade da Abóboda, Herdade da Revilheira and Herdade de São Romão populations. Moreover, significant genetic differentiation existed between wild populations from North-Alentejo geographic locations (Arraiolos, Évora, Monte da Chaminé) and Centro Hortofrutícola, compared with other populations. This study reports genetic diversity among a representative number of wild populations and genotypes of C. cardunculus from Portugal. These results will provide valuable information towards future management of C. cardunculus germplasm.
Collapse
Affiliation(s)
- Maria Miguel Castro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Daniela Rosa
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development – CEBAL, Beja, Portugal
| | - Ana M. Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development – CEBAL, Beja, Portugal
| | - Ana Faustino
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development – CEBAL, Beja, Portugal
| | - Ana Paulino
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- Centre for Ecology, Faculdade de Ciência, Evolution and Environmental Changes (cE3c), Universidade de Lisboa, Lisboa, Portugal
| | - Teresa Brás
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- LAQV/ REQUIMTE, FCT, Universidade Nova de Lisboa, Caparica, Portugal
| | - Eliana Machado
- MED-Instituto Mediterrâneo para a Agricultura, Ambiente e Desenvolvimento, Universidade de Évora, Ap 94, Évora, Portugal
| | - Carla Pinto Cruz
- Ambiente e Desenvolvimento & Departamento de Biologia, MED - Instituto Mediterrâneo para a Agricultura, Escola de Ciências e Tecnologia, Universidade de Évora, Ap 94, Évora, Portugal
| | - Anabela D. F. Belo
- Ambiente e Desenvolvimento & Departamento de Biologia, MED - Instituto Mediterrâneo para a Agricultura, Escola de Ciências e Tecnologia, Universidade de Évora, Ap 94, Évora, Portugal
| | - Paula Nozes
- Departamento de Biociências/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - João Portugal
- Departamento de Biociências/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- VALORIZA – Centro de Investigação para a Valorização dos Recursos Endógenos, Instituto Politécnico de Portalegre, Portalegre, Portugal
| | - Sofia Ramôa
- Departamento de Biociências/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
| | - Diogo Mendonça
- Instituto Nacional de Investigação Agrária e Veterinária I.P. (INIAV IP), Unidade Estratégica de Biotecnologia e Recursos Genéticos, I.P., Oeiras, Portugal
| | - Fernanda Simões
- Instituto Nacional de Investigação Agrária e Veterinária I.P. (INIAV IP), Unidade Estratégica de Biotecnologia e Recursos Genéticos, I.P., Oeiras, Portugal
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development – CEBAL, Beja, Portugal
| | - Liliana Marum
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), Beja, Portugal
- MED – Mediterranean Institute for Agriculture, Environment and Development – CEBAL, Beja, Portugal
- * E-mail:
| |
Collapse
|
4
|
Pancaldi F, Trindade LM. Marginal Lands to Grow Novel Bio-Based Crops: A Plant Breeding Perspective. FRONTIERS IN PLANT SCIENCE 2020; 11:227. [PMID: 32194604 PMCID: PMC7062921 DOI: 10.3389/fpls.2020.00227] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 02/13/2020] [Indexed: 05/09/2023]
Abstract
The biomass demand to fuel a growing global bio-based economy is expected to tremendously increase over the next decades, and projections indicate that dedicated biomass crops will satisfy a large portion of it. The establishment of dedicated biomass crops raises huge concerns, as they can subtract land that is required for food production, undermining food security. In this context, perennial biomass crops suitable for cultivation on marginal lands (MALs) raise attraction, as they could supply biomass without competing for land with food supply. While these crops withstand marginal conditions well, their biomass yield and quality do not ensure acceptable economic returns to farmers and cost-effective biomass conversion into bio-based products, claiming genetic improvement. However, this is constrained by the lack of genetic resources for most of these crops. Here we first review the advantages of cultivating novel perennial biomass crops on MALs, highlighting management practices to enhance the environmental and economic sustainability of these agro-systems. Subsequently, we discuss the preeminent breeding targets to improve the yield and quality of the biomass obtainable from these crops, as well as the stability of biomass production under MALs conditions. These targets include crop architecture and phenology, efficiency in the use of resources, lignocellulose composition in relation to bio-based applications, and tolerance to abiotic stresses. For each target trait, we outline optimal ideotypes, discuss the available breeding resources in the context of (orphan) biomass crops, and provide meaningful examples of genetic improvement. Finally, we discuss the available tools to breed novel perennial biomass crops. These comprise conventional breeding methods (recurrent selection and hybridization), molecular techniques to dissect the genetics of complex traits, speed up selection, and perform transgenic modification (genetic mapping, QTL and GWAS analysis, marker-assisted selection, genomic selection, transformation protocols), and novel high-throughput phenotyping platforms. Furthermore, novel tools to transfer genetic knowledge from model to orphan crops (i.e., universal markers) are also conceptualized, with the belief that their development will enhance the efficiency of plant breeding in orphan biomass crops, enabling a sustainable use of MALs for biomass provision.
Collapse
Affiliation(s)
| | - Luisa M. Trindade
- Plant Breeding, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
5
|
Haplotype analysis of the germacrene A synthase gene and association with cynaropicrin content and biological activities in Cynara cardunculus. Mol Genet Genomics 2017; 293:417-433. [PMID: 29143866 DOI: 10.1007/s00438-017-1388-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/27/2017] [Indexed: 12/13/2022]
Abstract
Cynara cardunculus: L. represents a natural source of terpenic compounds, with the predominant molecule being cynaropicrin. Cynaropicrin is gaining interest since it has been correlated to anti-hyperlipidaemia, antispasmodic and cytotoxicity activity against leukocyte cancer cells. The objective of this work was to screen a collection of C. cardunculus, from different origins, for new allelic variants in germacrene A synthase (GAS) gene involved in the cynaropicrin biosynthesis and correlate them with improved cynaropicrin content and biological activities. Using high-resolution melting, nine haplotypes were identified. The putative impact of the identified allelic variants in GAS protein was evaluated by bioinformatic tools and polymorphisms that putatively lead to protein conformational changes were described. Additionally, cynaropicrin and main pentacyclic triterpenes contents, and antithrombin, antimicrobial and antiproliferative activities were also determined in C. cardunculus leaf lipophilic-derived extracts. In this work we identified allelic variants with putative impact on GAS protein, which are significantly associated with cynaropicrin content and antiproliferative activity. The results obtained suggest that the identified polymorphisms should be explored as putative genetic markers correlated with biological properties in Cynara cardunculus.
Collapse
|
6
|
Genome reconstruction in Cynara cardunculus taxa gains access to chromosome-scale DNA variation. Sci Rep 2017; 7:5617. [PMID: 28717205 PMCID: PMC5514137 DOI: 10.1038/s41598-017-05085-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 05/24/2017] [Indexed: 11/12/2022] Open
Abstract
The genome sequence of globe artichoke (Cynara cardunculus L. var. scolymus, 2n = 2x = 34) is now available for use. A survey of C. cardunculus genetic resources is essential for understanding the evolution of the species, carrying out genetic studies and for application of breeding strategies. We report on the resequencing analyses (~35×) of four globe artichoke genotypes, representative of the core varietal types, as well as a genotype of the related taxa cultivated cardoon. The genomes were reconstructed at a chromosomal scale and structurally/functionally annotated. Gene prediction indicated a similar number of genes, while distinctive variations in miRNAs and resistance gene analogues (RGAs) were detected. Overall, 23,5 M SNP/indel were discovered (range 6,34 M –14,50 M). The impact of some missense SNPs on the biological functions of genes involved in the biosynthesis of phenylpropanoid and sesquiterpene lactone secondary metabolites was predicted. The identified variants contribute to infer on globe artichoke domestication of the different varietal types, and represent key tools for dissecting the path from sequence variation to phenotype. The new genomic sequences are fully searchable through independent Jbrowse interfaces (www.artichokegenome.unito.it), which allow the analysis of collinearity and the discovery of genomic variants, thus representing a one-stop resource for C. cardunculus genomics.
Collapse
|
7
|
Genetic diversity and accession structure in European Cynara cardunculus collections. PLoS One 2017; 12:e0178770. [PMID: 28570688 PMCID: PMC5453587 DOI: 10.1371/journal.pone.0178770] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 05/18/2017] [Indexed: 11/19/2022] Open
Abstract
Understanding the distribution of genetic variations and accession structures is an important factor for managing genetic resources, but also for using proper germplasm in association map analyses and breeding programs. The globe artichoke is the fourth most important horticultural crop in Europe. Here, we report the results of a molecular analysis of a collection including globe artichoke and leafy cardoon germplasm present in the Italian, French and Spanish gene banks. The aims of this study were to: (i) assess the diversity present in European collections, (ii) determine the population structure, (iii) measure the genetic distance between accessions; (iv) cluster the accessions; (v) properly distinguish accessions present in the different national collections carrying the same name; and (vi) understand the diversity distribution in relation to the gene bank and the geographic origin of the germplasm. A total of 556 individuals grouped into 174 accessions of distinct typologies were analyzed by different types of molecular markers, i.e. dominant (ISSR and AFLP) and co-dominant (SSR). The data of the two crops (globe artichoke and leafy cardoon) were analyzed jointly and separately to compute, among other aims, the gene diversity, heterozygosity (He, Ho), fixation indexes, AMOVA, genetic distance and structure. The findings underline the huge diversity present in the analyzed material, and the existence of alleles that are able to discriminate among accessions. The accessions were clustered not only on the basis of their typology, but also on the basis of the gene bank they come from. Probably, the environmental conditions of the different field gene banks affected germplasm conservation. These outcomes will be useful in plant breeding to select accessions and to fingerprint varieties. Moreover, the results highlight the particular attention that should be paid to the method used to conserve the Cynara cardunculus germplasm and suggest to the preference of using accessions from different gene banks to run an association map.
Collapse
|
8
|
Ferro AM, Ramos P, Guerreiro O, Jerónimo E, Pires I, Capel C, Capel J, Lozano R, Duarte MF, Oliveira MM, Gonçalves S. Impact of novel SNPs identified in Cynara cardunculus genes on functionality of proteins regulating phenylpropanoid pathway and their association with biological activities. BMC Genomics 2017; 18:183. [PMID: 28212611 PMCID: PMC5314637 DOI: 10.1186/s12864-017-3534-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 02/02/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cynara cardunculus L. offers a natural source of phenolic compounds with the predominant molecule being chlorogenic acid. Chlorogenic acid is gaining interest due to its involvement in various biological properties such as, antibacterial, antifungal, antioxidant, hepatoprotective, and anticarcinogenic activities. RESULTS In this work we screened a Cynara cardunculus collection for new allelic variants in key genes involved in the chlorogenic acid biosynthesis pathway. The target genes encode p-coumaroyl ester 3'-hydroxylase (C3'H) and hydroxycinnamoyl-CoA: quinate hydroxycinnamoyl transferase (HQT), both participating in the synthesis of chlorogenic acid. Using high-resolution melting, the C3'H gene proved to be highly conserved with only 4 haplotypes while, for HQT, 17 haplotypes were identified de novo. The putative influence of the identified polymorphisms in C3'H and HQT proteins was further evaluated using bioinformatics tools. We could identify some polymorphisms that may lead to protein conformational changes. Chlorogenic acid content, antioxidant and antithrombin activities were also evaluated in Cc leaf extracts and an association analysis was performed to assess a putative correlation between these traits and the identified polymorphisms. CONCLUSION In this work we identified allelic variants with putative impact on C3'H and HQT proteins which are significantly associated with chlorogenic acid content and antioxidant activity. Further study of these alleles should be explored to assess putative relevance as genetic markers correlating with Cynara cardunculus biological properties with further confirmation by functional analysis.
Collapse
Affiliation(s)
- Ana Margarida Ferro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Patrícia Ramos
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centre for Research in Ceramics and Composite Materials (CICECO) and Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olinda Guerreiro
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - Inês Pires
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almeria, Spain
| | - Maria F. Duarte
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
| | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2781-901 Oeiras, Portugal
| | - Sónia Gonçalves
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL), Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, 7801-908 Beja, Portugal
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB101SA Cambridge, UK
| |
Collapse
|
9
|
Curci PL, De Paola D, Sonnante G. Development of chloroplast genomic resources for Cynara. Mol Ecol Resour 2015; 16:562-73. [PMID: 26354522 DOI: 10.1111/1755-0998.12457] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 07/31/2015] [Accepted: 08/14/2015] [Indexed: 12/17/2022]
Abstract
In this study, new chloroplast (cp) resources were developed for the genus Cynara, using whole cp genomes from 20 genotypes, by means of high-throughput sequencing technologies. Our target species included seven globe artichokes, two cultivated cardoons, eight wild artichokes, and three other wild Cynara species (C. baetica, C. cornigera and C. syriaca). One complete cp genome was isolated using short reads from a whole-genome sequencing project, while the others were obtained by means of long-range PCR, for which primer pairs are provided here. A de novo assembly strategy combined with a reference-based assembly allowed us to reconstruct each cp genome. Comparative analyses among the newly sequenced genotypes and two additional Cynara cp genomes ('Brindisino' artichoke and C. humilis) retrieved from public databases revealed 126 parsimony informative characters and 258 singletons in Cynara, for a total of 384 variable characters. Thirty-nine SSR loci and 34 other INDEL events were detected. After data analysis, 37 primer pairs for SSR amplification were designed, and these molecular markers were subsequently validated in our Cynara genotypes. Phylogenetic analysis based on all cp variable characters provided the best resolution when compared to what was observed using only parsimony informative characters, or only short 'variable' cp regions. The evaluation of the molecular resources obtained from this study led us to support the 'super-barcode' theory and consider the total cp sequence of Cynara as a reliable and valuable molecular marker for exploring species diversity and examining variation below the species level.
Collapse
Affiliation(s)
- Pasquale L Curci
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola, 165/A, 70126, Bari, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola, 165/A, 70126, Bari, Italy
| | - Gabriella Sonnante
- Institute of Biosciences and Bioresources, National Research Council, Via Amendola, 165/A, 70126, Bari, Italy
| |
Collapse
|
10
|
Gatto A, De Paola D, Bagnoli F, Vendramin GG, Sonnante G. Population structure of Cynara cardunculus complex and the origin of the conspecific crops artichoke and cardoon. ANNALS OF BOTANY 2013; 112:855-65. [PMID: 23877076 PMCID: PMC3747803 DOI: 10.1093/aob/mct150] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
BACKGROUND AND AIMS Globe artichoke and leafy cardoon, two crops within the same species Cynara cardunculus, are traditionally cultivated in the Mediterranean region and play a significant role in the agricultural economy of this area. The two cultigens have different reproductive systems: artichoke is generally vegetatively propagated, while leafy cardoon is seed propagated. The domestication events underlying the origin of both artichoke and cultivated cardoon from their wild relative and the area of occurrence are not yet fully understood. The aim of this study was to investigate population structure in wild cardoon, globe artichoke and leafy cardoon material and infer domestication events. METHODS Thirty-five microsatellite (simple sequence repeat) markers, distributed in the C. cardunculus genome, and a large geographical and numerical sampling in southern Europe and North Africa were used to assess population structure and diversity. KEY RESULTS The results suggest the presence of two distinct domestication events for artichoke and leafy cardoon, and also suggest a new possible scenario, with western wild cardoon having originated from cultivated cardoon escaped from cultivation. Evidence was found for a demographic bottleneck in the past history of globe artichoke. CONCLUSIONS The results shed new light on the relationships between the three taxa of C. cardunculus and highlight relevant aspects on the evolution of domestication of two crops with a different reproductive system within the same species. It is proposed that the probable centre of origin of artichoke is located in southern Italy, probably Sicily.
Collapse
Affiliation(s)
- Angela Gatto
- Institute of Plant Genetics (IGV), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | - Domenico De Paola
- Institute of Plant Genetics (IGV), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
| | | | - Giovanni Giuseppe Vendramin
- Institute of Plant Genetics, National Research Council, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Firenze, Italy
| | - Gabriella Sonnante
- Institute of Plant Genetics (IGV), National Research Council (CNR), Via Amendola 165/A, 70126 Bari, Italy
- For correspondence. E-mail
| |
Collapse
|
11
|
Griffiths AG, Barrett BA, Simon D, Khan AK, Bickerstaff P, Anderson CB, Franzmayr BK, Hancock KR, Jones CS. An integrated genetic linkage map for white clover (Trifolium repens L.) with alignment to Medicago. BMC Genomics 2013; 14:388. [PMID: 23758831 PMCID: PMC3693905 DOI: 10.1186/1471-2164-14-388] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 05/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND White clover (Trifolium repens L.) is a temperate forage legume with an allotetraploid genome (2n=4×=32) estimated at 1093 Mb. Several linkage maps of various sizes, marker sources and completeness are available, however, no integrated map and marker set has explored consistency of linkage analysis among unrelated mapping populations. Such integrative analysis requires tools for homoeologue matching among populations. Development of these tools provides for a consistent framework map of the white clover genome, and facilitates in silico alignment with the model forage legume, Medicago truncatula. RESULTS This is the first report of integration of independent linkage maps in white clover, and adds to the literature on methyl filtered GeneThresher®-derived microsatellite (simple sequence repeat; SSR) markers for linkage mapping. Gene-targeted SSR markers were discovered in a GeneThresher® (TrGT) methyl-filtered database of 364,539 sequences, which yielded 15,647 SSR arrays. Primers were designed for 4,038 arrays and of these, 465 TrGT-SSR markers were used for parental consensus genetic linkage analysis in an F1 mapping population (MP2). This was merged with an EST-SSR consensus genetic map of an independent population (MP1), using markers to match homoeologues and develop a multi-population integrated map of the white clover genome. This integrated map (IM) includes 1109 loci based on 804 SSRs over 1274 cM, covering 97% of the genome at a moderate density of one locus per 1.2 cM. Eighteen candidate genes and one morphological marker were also placed on the IM. Despite being derived from disparate populations and marker sources, the component maps and the derived IM had consistent representations of the white clover genome for marker order and genetic length. In silico analysis at an E-value threshold of 1e-20 revealed substantial co-linearity with the Medicago truncatula genome, and indicates a translocation between T. repens groups 2 and 6 relative to M. truncatula. CONCLUSIONS This integrated genetic linkage analysis provides a consistent and comprehensive linkage analysis of the white clover genome, with alignment to a model forage legume. Associated marker locus information, particularly the homoeologue-specific markers, offers a new resource for forage legume research to enable genetic analysis and improvement of this forage and grassland species.
Collapse
Affiliation(s)
- Andrew G Griffiths
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Brent A Barrett
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Deborah Simon
- Landcorp Farming Limited, PO Box 5349, Wellington, 6145, New Zealand
| | - Anar K Khan
- AgResearch Invermay Agricultural Centre, Private Bag 50034, Mosgiel, 9053, New Zealand
| | | | - Craig B Anderson
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Benjamin K Franzmayr
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Kerry R Hancock
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
- Pastoral Genomics, ℅ AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| | - Chris S Jones
- AgResearch Grasslands Research Centre, Private Bag 11008, Palmerston North, 4442, New Zealand
| |
Collapse
|
12
|
Scaglione D, Lanteri S, Acquadro A, Lai Z, Knapp SJ, Rieseberg L, Portis E. Large-scale transcriptome characterization and mass discovery of SNPs in globe artichoke and its related taxa. PLANT BIOTECHNOLOGY JOURNAL 2012; 10:956-69. [PMID: 22849342 DOI: 10.1111/j.1467-7652.2012.00725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Cynara cardunculus (2n = 2× = 34) is a member of the Asteraceae family that contributes significantly to the agricultural economy of the Mediterranean basin. The species includes two cultivated varieties, globe artichoke and cardoon, which are grown mainly for food. Cynara cardunculus is an orphan crop species whose genome/transcriptome has been relatively unexplored, especially in comparison to other Asteraceae crops. Hence, there is a significant need to improve its genomic resources through the identification of novel genes and sequence-based markers, to design new breeding schemes aimed at increasing quality and crop productivity. We report the outcome of cDNA sequencing and assembly for eleven accessions of C. cardunculus. Sequencing of three mapping parental genotypes using Roche 454-Titanium technology generated 1.7 × 10⁶ reads, which were assembled into 38,726 reference transcripts covering 32 Mbp. Putative enzyme-encoding genes were annotated using the KEGG-database. Transcription factors and candidate resistance genes were surveyed as well. Paired-end sequencing was done for cDNA libraries of eight other representative C. cardunculus accessions on an Illumina Genome Analyzer IIx, generating 46 × 10⁶ reads. Alignment of the IGA and 454 reads to reference transcripts led to the identification of 195,400 SNPs with a Bayesian probability exceeding 95%; a validation rate of 90% was obtained by Sanger-sequencing of a subset of contigs. These results demonstrate that the integration of data from different NGS platforms enables large-scale transcriptome characterization, along with massive SNP discovery. This information will contribute to the dissection of key agricultural traits in C. cardunculus and facilitate the implementation of marker-assisted selection programs.
Collapse
|
13
|
Genetic mapping and identification of QTL for earliness in the globe artichoke/cultivated cardoon complex. BMC Res Notes 2012; 5:252. [PMID: 22621324 PMCID: PMC3434057 DOI: 10.1186/1756-0500-5-252] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 05/10/2012] [Indexed: 11/18/2022] Open
Abstract
Background The Asteraceae species Cynara cardunculus (2n = 2x = 34) includes the two fully cross-compatible domesticated taxa globe artichoke (var. scolymus L.) and cultivated cardoon (var. altilis DC). As both are out-pollinators and suffer from marked inbreeding depression, linkage analysis has focussed on the use of a two way pseudo-test cross approach. Results A set of 172 microsatellite (SSR) loci derived from expressed sequence tag DNA sequence were integrated into the reference C. cardunculus genetic maps, based on segregation among the F1 progeny of a cross between a globe artichoke and a cultivated cardoon. The resulting maps each detected 17 major linkage groups, corresponding to the species’ haploid chromosome number. A consensus map based on 66 co-dominant shared loci (64 SSRs and two SNPs) assembled 694 loci, with a mean inter-marker spacing of 2.5 cM. When the maps were used to elucidate the pattern of inheritance of head production earliness, a key commercial trait, seven regions were shown to harbour relevant quantitative trait loci (QTL). Together, these QTL accounted for up to 74% of the overall phenotypic variance. Conclusion The newly developed consensus as well as the parental genetic maps can accelerate the process of tagging and eventually isolating the genes underlying earliness in both the domesticated C. cardunculus forms. The largest single effect mapped to the same linkage group in each parental maps, and explained about one half of the phenotypic variance, thus representing a good candidate for marker assisted selection.
Collapse
|
14
|
Scaglione D, Acquadro A, Portis E, Tirone M, Knapp SJ, Lanteri S. RAD tag sequencing as a source of SNP markers in Cynara cardunculus L. BMC Genomics 2012; 13:3. [PMID: 22214349 PMCID: PMC3269995 DOI: 10.1186/1471-2164-13-3] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Accepted: 01/03/2012] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND The globe artichoke (Cynara cardunculus L. var. scolymus) genome is relatively poorly explored, especially compared to those of the other major Asteraceae crops sunflower and lettuce. No SNP markers are in the public domain. We have combined the recently developed restriction-site associated DNA (RAD) approach with the Illumina DNA sequencing platform to effect the rapid and mass discovery of SNP markers for C. cardunculus. RESULTS RAD tags were sequenced from the genomic DNA of three C. cardunculus mapping population parents, generating 9.7 million reads, corresponding to ~1 Gbp of sequence. An assembly based on paired ends produced ~6.0 Mbp of genomic sequence, separated into ~19,000 contigs (mean length 312 bp), of which ~21% were fragments of putative coding sequence. The shared sequences allowed for the discovery of ~34,000 SNPs and nearly 800 indels, equivalent to a SNP frequency of 5.6 per 1,000 nt, and an indel frequency of 0.2 per 1,000 nt. A sample of heterozygous SNP loci was mapped by CAPS assays and this exercise provided validation of our mining criteria. The repetitive fraction of the genome had a high representation of retrotransposon sequence, followed by simple repeats, AT-low complexity regions and mobile DNA elements. The genomic k-mers distribution and CpG rate of C. cardunculus, compared with data derived from three whole genome-sequenced dicots species, provided a further evidence of the random representation of the C. cardunculus genome generated by RAD sampling. CONCLUSION The RAD tag sequencing approach is a cost-effective and rapid method to develop SNP markers in a highly heterozygous species. Our approach permitted to generate a large and robust SNP datasets by the adoption of optimized filtering criteria.
Collapse
Affiliation(s)
- Davide Scaglione
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Alberto Acquadro
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Ezio Portis
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Matteo Tirone
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| | - Steven J Knapp
- Institute for Plant Breeding, Genetics, and Genomics, University of Georgia, 111 Riverbend Rd., 30602 Athens, Georgia USA
| | - Sergio Lanteri
- Di.Va.P.R.A. Plant Genetics and Breeding, University of Torino, via L. da Vinci 44, 10095 Grugliasco (Torino), Italy
| |
Collapse
|