1
|
Vasquez-Teuber P, Rouxel T, Mason AS, Soyer JL. Breeding and management of major resistance genes to stem canker/blackleg in Brassica crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:192. [PMID: 39052130 PMCID: PMC11272824 DOI: 10.1007/s00122-024-04641-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 04/29/2024] [Indexed: 07/27/2024]
Abstract
Blackleg (also known as Phoma or stem canker) is a major, worldwide disease of Brassica crop species, notably B. napus (rapeseed, canola), caused by the ascomycete fungus Leptosphaeria maculans. The outbreak and severity of this disease depend on environmental conditions and management practices, as well as a complex interaction between the pathogen and its hosts. Genetic resistance is a major method to control the disease (and the only control method in some parts of the world, such as continental Europe), but efficient use of genetic resistance is faced with many difficulties: (i) the scarcity of germplasm/genetic resources available, (ii) the different history of use of resistance genes in different parts of the world and the different populations of the fungus the resistance genes are exposed to, (iii) the complexity of the interactions between the plant and the pathogen that expand beyond typical gene-for-gene interactions, (iv) the incredible evolutionary potential of the pathogen and the importance of knowing the molecular processes set up by the fungus to "breakdown' resistances, so that we may design high-throughput diagnostic tools for population surveys, and (v) the different strategies and options to build up the best resistances and to manage them so that they are durable. In this paper, we aim to provide a comprehensive overview of these different points, stressing the differences between the different continents and the current prospects to generate new and durable resistances to blackleg disease.
Collapse
Affiliation(s)
- Paula Vasquez-Teuber
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
- Department of Plant Production, Faculty of Agronomy, University of Concepción, Av. Vicente Méndez 595, Chillán, Chile
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany
| | - Thierry Rouxel
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France
| | - Annaliese S Mason
- Department of Plant Breeding, Justus Liebig University, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
- Plant Breeding Department, University of Bonn, Katzenburgweg 5, 53115, Bonn, Germany.
| | - Jessica L Soyer
- Université Paris-Saclay, INRAE, UR BIOGER, 91120, Palaiseau, France.
| |
Collapse
|
2
|
Jiquel A, Gervais J, Geistodt‐Kiener A, Delourme R, Gay EJ, Ollivier B, Fudal I, Faure S, Balesdent M, Rouxel T. A gene-for-gene interaction involving a 'late' effector contributes to quantitative resistance to the stem canker disease in Brassica napus. THE NEW PHYTOLOGIST 2021; 231:1510-1524. [PMID: 33621369 PMCID: PMC8360019 DOI: 10.1111/nph.17292] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/15/2021] [Indexed: 05/19/2023]
Abstract
The control of stem canker disease of Brassica napus (rapeseed), caused by the fungus Leptosphaeria maculans is based largely on plant genetic resistance: single-gene specific resistance (Rlm genes) or quantitative, polygenic, adult-stage resistance. Our working hypothesis was that quantitative resistance partly obeys the gene-for-gene model, with resistance genes 'recognizing' fungal effectors expressed during late systemic colonization. Five LmSTEE (stem-expressed effector) genes were selected and placed under the control of the AvrLm4-7 promoter, an effector gene highly expressed at the cotyledon stage of infection, for miniaturized cotyledon inoculation test screening of a gene pool of 204 rapeseed genotypes. We identified a rapeseed genotype, 'Yudal', expressing hypersensitive response to LmSTEE98. The LmSTEE98-RlmSTEE98 interaction was further validated by inactivation of the LmSTEE98 gene with a CRISPR-Cas9 approach. Isolates with mutated versions of LmSTEE98 induced more severe stem symptoms than the wild-type isolate in 'Yudal'. This single-gene resistance was mapped in a 0.6 cM interval of the 'Darmor_bzh' × 'Yudal' genetic map. One typical gene-for-gene interaction contributes partly to quantitative resistance when L. maculans colonizes the stems of rapeseed. With numerous other effectors specific to stem colonization, our study provides a new route for resistance gene discovery, elucidation of quantitative resistance mechanisms and selection for durable resistance.
Collapse
Affiliation(s)
- Audren Jiquel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Euralis Semences6 Chemin des PanedautesMondonville31700France
| | - Julie Gervais
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Aude Geistodt‐Kiener
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | | | - Elise J. Gay
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
- Université Paris‐SaclayRoute de l'Orme aux MerisiersSaint‐Aubin91190France
| | - Bénédicte Ollivier
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Isabelle Fudal
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | | | - Marie‐Hélène Balesdent
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| | - Thierry Rouxel
- INRAEAgroParisTechUMR BIOGERUniversité Paris‐SaclayAvenue Lucien Brétignières, BP 01Thiverval‐GrignonF‐78850France
| |
Collapse
|
3
|
Yang H, Mohd Saad NS, Ibrahim MI, Bayer PE, Neik TX, Severn-Ellis AA, Pradhan A, Tirnaz S, Edwards D, Batley J. Candidate Rlm6 resistance genes against Leptosphaeria. maculans identified through a genome-wide association study in Brassica juncea (L.) Czern. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2035-2050. [PMID: 33768283 DOI: 10.1007/s00122-021-03803-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
One hundred and sixty-seven B. juncea varieties were genotyped on the 90K Brassica assay (42,914 SNPs), which led to the identification of sixteen candidate genes for Rlm6. Brassica species are at high risk of severe crop loss due to pathogens, especially Leptosphaeria maculans (the causal agent of blackleg). Brassica juncea (L.) Czern is an important germplasm resource for canola improvement, due to its good agronomic traits, such as heat and drought tolerance and high blackleg resistance. The present study is the first using genome-wide association studies to identify candidate genes for blackleg resistance in B. juncea based on genome-wide SNPs obtained from the Illumina Infinium 90 K Brassica SNP array. The verification of Rlm6 in B. juncea was performed through a cotyledon infection test. Genotyping 42,914 single nucleotide polymorphisms (SNPs) in a panel of 167 B. juncea lines revealed a total of seven SNPs significantly associated with Rlm6 on chromosomes A07 and B04 in B. juncea. Furthermore, 16 candidate Rlm6 genes were found in these regions, defined as nucleotide binding site leucine-rich-repeat (NLR), leucine-rich repeat RLK (LRR-RLK) and LRR-RLP genes. This study will give insights into the blackleg resistance in B. juncea and facilitate identification of functional blackleg resistance genes which can be used in Brassica breeding.
Collapse
Affiliation(s)
- Hua Yang
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | | | | | - Philipp E Bayer
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Ting Xiang Neik
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Anita A Severn-Ellis
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Aneeta Pradhan
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Soodeh Tirnaz
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - David Edwards
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia.
| |
Collapse
|
4
|
Raman H, Raman R, Qiu Y, Zhang Y, Batley J, Liu S. The Rlm13 Gene, a New Player of Brassica napus- Leptosphaeria maculans Interaction Maps on Chromosome C03 in Canola. FRONTIERS IN PLANT SCIENCE 2021; 12:654604. [PMID: 34054900 PMCID: PMC8150007 DOI: 10.3389/fpls.2021.654604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 05/24/2023]
Abstract
Canola exhibits an extensive genetic variation for resistance to blackleg disease, caused by the fungal pathogen Leptosphaeria maculans. Despite the identification of several Avr effectors and R (race-specific) genes, specific interactions between Avr-R genes are not yet fully understood in the Brassica napus-L. maculans pathosystem. In this study, we investigated the genetic basis of resistance in an F2 : 3 population derived from Australian canola varieties CB-Telfer (Rlm4)/ATR-Cobbler (Rlm4) using a single-spore isolate of L. maculans, PHW1223. A genetic linkage map of the CB-Telfer/ATR-Cobbler population was constructed using 7,932 genotyping-by-sequencing-based DArTseq markers and subsequently utilized for linkage and haplotype analyses. Genetic linkage between DArTseq markers and resistance to PHW1223 isolate was also validated using the B. napus 60K Illumina Infinium array. Our results revealed that a major locus for resistance, designated as Rlm13, maps on chromosome C03. To date, no R gene for resistance to blackleg has been reported on the C subgenome in B. napus. Twenty-four candidate R genes were predicted to reside within the quantitative trait locus (QTL) region. We further resequenced both the parental lines of the mapping population (CB-Telfer and ATR-Cobbler, > 80 × coverage) and identified several structural sequence variants in the form of single-nucleotide polymorphisms (SNPs), insertions/deletions (InDels), and presence/absence variations (PAVs) near Rlm13. Comparative mapping revealed that Rlm13 is located within the homoeologous A03/C03 region in ancestral karyotype block "R" of Brassicaceae. Our results provide a "target" for further understanding the Avr-Rlm13 gene interaction as well as a valuable tool for increasing resistance to blackleg in canola germplasm.
Collapse
Affiliation(s)
- Harsh Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Rosy Raman
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yu Qiu
- NSW Department of Primary Industries, Wagga Wagga Agricultural Institute, Wagga Wagga, NSW, Australia
| | - Yuanyuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Crawley, WA, Australia
| | - Shengyi Liu
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, China
| |
Collapse
|
5
|
Fikere M, Barbulescu DM, Malmberg MM, Spangenberg GC, Cogan NOI, Daetwyler HD. Meta-analysis of GWAS in canola blackleg (Leptosphaeria maculans) disease traits demonstrates increased power from imputed whole-genome sequence. Sci Rep 2020; 10:14300. [PMID: 32868838 PMCID: PMC7459325 DOI: 10.1038/s41598-020-71274-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 08/13/2020] [Indexed: 12/21/2022] Open
Abstract
Blackleg disease causes yield losses in canola (Brassica napus L.). To identify resistance genes and genomic regions, genome-wide association studies (GWAS) of 585 diverse winter and spring canola accessions were performed using imputed whole-genome sequence (WGS) and transcriptome genotype-by-sequencing (GBSt). Blackleg disease phenotypes were collected across three years in six trials. GWAS were performed in several ways and their respective power was judged by the number of significant single nucleotide polymorphisms (SNP), the false discovery rate (FDR), and the percentage of SNP that validated in additional field trials in two subsequent years. WGS GWAS with 1,234,708 million SNP detected a larger number of significant SNP, achieved a lower FDR and a higher validation rate than GBSt with 64,072 SNP. A meta-analysis combining survival and average internal infection resulted in lower FDR but also lower validation rates. The meta-analysis GWAS identified 79 genomic regions (674 SNP) conferring potential resistance to L. maculans. While several GWAS signals localised in regions of known Rlm genes, fifty-three new potential resistance regions were detected. Seventeen regions had underlying genes with putative functions related to disease defence or stress response in Arabidopsis thaliana. This study provides insight into the genetic architecture and potential molecular mechanisms underlying canola L. maculans resistance.
Collapse
Affiliation(s)
- M Fikere
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia.,Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, Brisbane, QLD, 4072, Australia
| | - D M Barbulescu
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, 3401, Australia
| | - M M Malmberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - G C Spangenberg
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - N O I Cogan
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia
| | - H D Daetwyler
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia. .,Centre for AgriBioscience, Agriculture Victoria, AgriBio, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
6
|
Ghanbarnia K, Ma L, Larkan NJ, Haddadi P, Fernando WGD, Borhan MH. Leptosphaeria maculans AvrLm9: a new player in the game of hide and seek with AvrLm4-7. MOLECULAR PLANT PATHOLOGY 2018; 19:1754-1764. [PMID: 29330918 PMCID: PMC6638032 DOI: 10.1111/mpp.12658] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 05/14/2023]
Abstract
Blackleg disease of Brassica napus caused by Leptosphaeria maculans (Lm) is largely controlled by the deployment of race-specific resistance (R) genes. However, selection pressure exerted by R genes causes Lm to adapt and give rise to new virulent strains through mutation and deletion of effector genes. Therefore, a knowledge of effector gene function is necessary for the effective management of the disease. Here, we report the cloning of Lm effector AvrLm9 which is recognized by the resistance gene Rlm9 in B. napus cultivar Goéland. AvrLm9 was mapped to scaffold 7 of the Lm genome, co-segregating with the previously reported AvrLm5 (previously known as AvrLmJ1). Comparison of AvrLm5 alleles amongst the 37 re-sequenced Lm isolates and transgenic complementation identified a single point mutation correlating with the AvrLm9 phenotype. Therefore, we renamed this gene as AvrLm5-9 to reflect the dual specificity of this locus. Avrlm5-9 transgenic isolates were avirulent when inoculated on the B. napus cultivar Goéland. The expression of AvrLm5-9 during infection was monitored by RNA sequencing. The recognition of AvrLm5-9 by Rlm9 is masked in the presence of AvrLm4-7, another Lm effector. AvrLm5-9 and AvrLm4-7 do not interact, and AvrLm5-9 is expressed in the presence of AvrLm4-7. AvrLm5-9 is the second Lm effector for which host recognition is masked by AvrLm4-7. An understanding of this complex interaction will provide new opportunities for the engineering of broad-spectrum recognition.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Department of Plant ScienceUniversity of ManitobaWinnipegMBCanada R3T 2N2
| | - Lisong Ma
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | - Nicholas J. Larkan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
- Armatus Genetics Inc.SaskatoonSKCanada S7J 4M2
| | - Parham Haddadi
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| | | | - Mohammad Hossein Borhan
- Saskatoon Research and Development Centre, Agriculture and Agri‐Food CanadaSaskatoonSKCanada S7N 0X2
| |
Collapse
|
7
|
Nováková M, Šašek V, Trdá L, Krutinová H, Mongin T, Valentová O, Balesdent MH, Rouxel T, Burketová L. Leptosphaeria maculans effector AvrLm4-7 affects salicylic acid (SA) and ethylene (ET) signalling and hydrogen peroxide (H2 O2 ) accumulation in Brassica napus. MOLECULAR PLANT PATHOLOGY 2016; 17:818-31. [PMID: 26575525 PMCID: PMC6638468 DOI: 10.1111/mpp.12332] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 10/06/2015] [Accepted: 10/07/2015] [Indexed: 05/03/2023]
Abstract
To achieve host colonization, successful pathogens need to overcome plant basal defences. For this, (hemi)biotrophic pathogens secrete effectors that interfere with a range of physiological processes of the host plant. AvrLm4-7 is one of the cloned effectors from the hemibiotrophic fungus Leptosphaeria maculans 'brassicaceae' infecting mainly oilseed rape (Brassica napus). Although its mode of action is still unknown, AvrLm4-7 is strongly involved in L. maculans virulence. Here, we investigated the effect of AvrLm4-7 on plant defence responses in a susceptible cultivar of B. napus. Using two isogenic L. maculans isolates differing in the presence of a functional AvrLm4-7 allele [absence ('a4a7') and presence ('A4A7') of the allele], the plant hormone concentrations, defence-related gene transcription and reactive oxygen species (ROS) accumulation were analysed in infected B. napus cotyledons. Various components of the plant immune system were affected. Infection with the 'A4A7' isolate caused suppression of salicylic acid- and ethylene-dependent signalling, the pathways regulating an effective defence against L. maculans infection. Furthermore, ROS accumulation was decreased in cotyledons infected with the 'A4A7' isolate. Treatment with an antioxidant agent, ascorbic acid, increased the aggressiveness of the 'a4a7' L. maculans isolate, but not that of the 'A4A7' isolate. Together, our results suggest that the increased aggressiveness of the 'A4A7' L. maculans isolate could be caused by defects in ROS-dependent defence and/or linked to suppressed SA and ET signalling. This is the first study to provide insights into the manipulation of B. napus defence responses by an effector of L. maculans.
Collapse
Affiliation(s)
- Miroslava Nováková
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Vladimír Šašek
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Lucie Trdá
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Hana Krutinová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
- Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Thomas Mongin
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Olga Valentová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Prague, Czech Republic
| | - Marie-HelEne Balesdent
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR INRA-AgroParisTech 1290 Bioger, Avenue Lucien Brétignières, Thiverval-Grignon, France
| | - Lenka Burketová
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| |
Collapse
|
8
|
Selin C, de Kievit TR, Belmonte MF, Fernando WGD. Elucidating the Role of Effectors in Plant-Fungal Interactions: Progress and Challenges. Front Microbiol 2016; 7:600. [PMID: 27199930 PMCID: PMC4846801 DOI: 10.3389/fmicb.2016.00600] [Citation(s) in RCA: 141] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Pathogenic fungi have diverse growth lifestyles that support fungal colonization on plants. Successful colonization and infection for all lifestyles depends upon the ability to modify living host plants to sequester the necessary nutrients required for growth and reproduction. Secretion of virulence determinants referred to as “effectors” is assumed to be the key governing factor that determines host infection and colonization. Effector proteins are capable of suppressing plant defense responses and alter plant physiology to accommodate fungal invaders. This review focuses on effector molecules of biotrophic and hemibiotrophic plant pathogenic fungi, and the mechanism required for the release and uptake of effector molecules by the fungi and plant cells, respectively. We also place emphasis on the discovery of effectors, difficulties associated with predicting the effector repertoire, and fungal genomic features that have helped promote effector diversity leading to fungal evolution. We discuss the role of specific effectors found in biotrophic and hemibiotrophic fungi and examine how CRISPR/Cas9 technology may provide a new avenue for accelerating our ability in the discovery of fungal effector function.
Collapse
Affiliation(s)
- Carrie Selin
- Department of Plant Science, University of Manitoba Winnipeg, MB, Canada
| | | | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba Winnipeg, MB, Canada
| | | |
Collapse
|
9
|
Plissonneau C, Daverdin G, Ollivier B, Blaise F, Degrave A, Fudal I, Rouxel T, Balesdent MH. A game of hide and seek between avirulence genes AvrLm4-7 and AvrLm3 in Leptosphaeria maculans. THE NEW PHYTOLOGIST 2016; 209:1613-24. [PMID: 26592855 DOI: 10.1111/nph.13736] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/27/2015] [Indexed: 05/02/2023]
Abstract
Extending the durability of plant resistance genes towards fungal pathogens is a major challenge. We identified and investigated the relationship between two avirulence genes of Leptosphaeria maculans, AvrLm3 and AvrLm4-7. When an isolate possesses both genes, the Rlm3-mediated resistance of oilseed rape (Brassica napus) is not expressed due to the presence of AvrLm4-7 but virulent isolates toward Rlm7 recover the AvrLm3 phenotype. Combining genetic and genomic approaches (genetic mapping, RNA-seq, BAC (bacterial artificial chromosome) clone sequencing and de novo assembly) we cloned AvrLm3, a telomeric avirulence gene of L. maculans. AvrLm3 is located in a gap of the L. maculans reference genome assembly, is surrounded by repeated elements, encodes for a small secreted cysteine-rich protein and is highly expressed at early infection stages. Complementation and silencing assays validated the masking effect of AvrLm4-7 on AvrLm3 recognition by Rlm3 and we showed that the presence of AvrLm4-7 does not impede AvrLm3 expression in planta. Y2H assays suggest the absence of physical interaction between the two avirulence proteins. This unusual interaction is the basis for field experiments aiming to evaluate strategies that increase Rlm7 durability.
Collapse
Affiliation(s)
- Clémence Plissonneau
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Guillaume Daverdin
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Bénédicte Ollivier
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Françoise Blaise
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Alexandre Degrave
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Isabelle Fudal
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Thierry Rouxel
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| | - Marie-Hélène Balesdent
- INRA, UMR INRA-AgroParisTech 1290-Bioger, Avenue Lucien Brétignières, BP 01, F-78850, Thiverval-Grignon, France
| |
Collapse
|
10
|
Sonah H, Zhang X, Deshmukh RK, Borhan MH, Fernando WGD, Bélanger RR. Comparative Transcriptomic Analysis of Virulence Factors in Leptosphaeria maculans during Compatible and Incompatible Interactions with Canola. FRONTIERS IN PLANT SCIENCE 2016; 7:1784. [PMID: 27990146 PMCID: PMC5131014 DOI: 10.3389/fpls.2016.01784] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Accepted: 11/11/2016] [Indexed: 05/08/2023]
Abstract
Leptosphaeria maculans is a hemibiotrophic fungus that causes blackleg of canola (Brassica napus), one of the most devastating diseases of this crop. In the present study, transcriptome profiling of L. maculans was performed in an effort to understand and define the pathogenicity genes that govern both the biotrophic and the necrotrophic phase of the fungus, as well as those that separate a compatible from an incompatible interaction. For this purpose, comparative RNA-seq analyses were performed on L. maculans isolate D5 at four different time points following inoculation on susceptible cultivar Topas-DH16516 or resistant introgression line Topas-Rlm2. Analysis of 1.6 billion Illumina reads readily identified differentially expressed genes that were over represented by candidate secretory effector proteins, CAZymes, and other pathogenicity genes. Comparisons between the compatible and incompatible interactions led to the identification of 28 effector proteins whose chronology and level of expression suggested a role in the establishment and maintenance of biotrophy with the plant. These included all known Avr genes of isolate D5 along with eight newly characterized effectors. In addition, another 15 effector proteins were found to be exclusively expressed during the necrotrophic phase of the fungus, which supports the concept that L. maculans has a separate and distinct arsenal contributing to each phase. As for CAZymes, they were often highly expressed at 3 dpi but with no difference in expression between the compatible and incompatible interactions, indicating that other factors were necessary to determine the outcome of the interaction. However, their significantly higher expression at 11 dpi in the compatible interaction confirmed that they contributed to the necrotrophic phase of the fungus. A notable exception was LysM genes whose high expression was singularly observed on the susceptible host at 7 dpi. In the case of TFs, their higher expression at 7 and 11 dpi on susceptible Topas support an important role in regulating the genes involved in the different pathogenic phases of L. maculans. In conclusion, comparison of the transcriptome of L. maculans during compatible and incompatible interactions has led to the identification of key pathogenicity genes that regulate not only the fate of the interaction but also lifestyle transitions of the fungus.
Collapse
Affiliation(s)
- Humira Sonah
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | - Xuehua Zhang
- Department of Plant Science, University of Manitoba WinnipegWinnipeg, MB, Canada
| | - Rupesh K. Deshmukh
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
| | | | | | - Richard R. Bélanger
- Département de Phytologie, Faculté des Sciences de l'Agriculture et de l'Alimentation, Université LavalQuébec QC, Canada
- *Correspondence: Richard R. Bélanger
| |
Collapse
|
11
|
Ghanbarnia K, Fudal I, Larkan NJ, Links MG, Balesdent MH, Profotova B, Fernando WGD, Rouxel T, Borhan MH. Rapid identification of the Leptosphaeria maculans avirulence gene AvrLm2 using an intraspecific comparative genomics approach. MOLECULAR PLANT PATHOLOGY 2015; 16:699-709. [PMID: 25492575 PMCID: PMC6638346 DOI: 10.1111/mpp.12228] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Five avirulence genes from Leptosphaeria maculans, the causal agent of blackleg of canola (Brassica napus), have been identified previously through map-based cloning. In this study, a comparative genomic approach was used to clone the previously mapped AvrLm2. Given the lack of a presence-absence gene polymorphism coincident with the AvrLm2 phenotype, 36 L. maculans isolates were resequenced and analysed for single-nucleotide polymorphisms (SNPs) in predicted small secreted protein-encoding genes present within the map interval. Three SNPs coincident with the AvrLm2 phenotype were identified within LmCys1, previously identified as a putative effector-coding gene. Complementation of a virulent isolate with LmCys1, as the candidate AvrLm2 allele, restored the avirulent phenotype on Rlm2-containing B. napus lines. AvrLm2 encodes a small cysteine-rich protein with low similarity to other proteins in the public databases. Unlike other avirulence genes, AvrLm2 resides in a small GC island within an AT-rich isochore of the genome, and was never found to be deleted completely in virulent isolates.
Collapse
Affiliation(s)
- Kaveh Ghanbarnia
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada, R3T 2N2
| | | | - Nicholas J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| | - Matthew G Links
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
- Department of Computer Science, University of Saskatchewan, Saskatoon, SK, Canada, S7N 5C9
| | | | | | | | | | - M Hossein Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|
12
|
Larkan NJ, Lydiate DJ, Parkin IAP, Nelson MN, Epp DJ, Cowling WA, Rimmer SR, Borhan MH. The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. THE NEW PHYTOLOGIST 2013; 197:595-605. [PMID: 23206118 DOI: 10.1111/nph.12043] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/05/2012] [Indexed: 05/18/2023]
Abstract
LepR3, found in the Brassica napus cv 'Surpass 400', provides race-specific resistance to the fungal pathogen Leptosphaeria maculans, which was overcome after great devastation in Australia in 2004. We investigated the LepR3 locus to identify the genetic basis of this resistance interaction. We employed a map-based cloning strategy, exploiting collinearity with the Arabidopsis thaliana and Brassica rapa genomes to enrich the map and locate a candidate gene. We also investigated the interaction of LepR3 with the L. maculans avirulence gene AvrLm1 using transgenics. LepR3 was found to encode a receptor-like protein (RLP). We also demonstrated that avirulence towards LepR3 is conferred by AvrLm1, which is responsible for both the Rlm1 and LepR3-dependent resistance responses in B. napus. LepR3 is the first functional B. napus disease resistance gene to be cloned. AvrLm1's interaction with two independent resistance loci, Rlm1 and LepR3, highlights the need to consider redundant phenotypes in 'gene-for-gene' interactions and offers an explanation as to why LepR3 was overcome so rapidly in parts of Australia.
Collapse
Affiliation(s)
- N J Larkan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - D J Lydiate
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - I A P Parkin
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - M N Nelson
- School of Plant Biology, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - D J Epp
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - W A Cowling
- The UWA Institute of Agriculture, University of Western Australia, 35 Stirling Highway, Crawley, WA, 6009, Australia
| | - S R Rimmer
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| | - M H Borhan
- Saskatoon Research Centre, Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada, S7N 0X2
| |
Collapse
|