1
|
Kaniganti S, Palakolanu SR, Thiombiano B, Damarasingh J, Bommineni PR, Che P, Sharma KK, Jones T, Bouwmeester H, Bhatnagar-Mathur P. Developing Striga resistance in sorghum by modulating host cues through CRISPR/Cas9 gene editing. PLANT CELL REPORTS 2025; 44:90. [PMID: 40146284 DOI: 10.1007/s00299-025-03474-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/04/2025] [Indexed: 03/28/2025]
Abstract
KEY MESSAGE High transformation and gene editing efficiencies in sorghum-produced, transgene-free SDN1-edited plants exhibit precise mutations, reduced germination stimulants, and enhanced resistance to Striga infection. Sorghum (Sorghum bicolor L.) is a primary food staple grain for millions in Sub-Saharan Africa (SSA). It is mainly constrained by the parasitic weed Striga, which causes up to 100% yield losses and affects over 60% of cultivable farmlands and livelihoods. In this study, CRISPR/Cas9 technology is utilized to induce mutations in core strigolactone (SL) biosynthetic genes, i.e., CCD7, CCD8, MAX1, in addition to an uncharacterized gene (DUF) in the fine-mapped 400 kb lgs1 region in sorghum to develop durable Striga resistance. Two sorghum cultivars were delivered with the expression cassettes through immature embryo-based Agrobacterium-mediated transformation. Our study demonstrated transformation and gene editing efficiencies of ~ 70 and up to 17.5% (calculated based on the numuber of established plants), respectively, in two sorghum genotypes. Subsequent analysis of homozygous E0 lines in the E1 generation confirmed stable integration of mutations for all targeted genes. Loss-of-function mutations in the CCD7, CCD8, MAX1, and DUF genes led to a significant downregulation of the expression of associated genes in the SL biosynthetic pathway. The phenotypic analysis of edited lines revealed changes in phenotypic patterns compared to wild-type plants. Analysis of root exudates showed significant reductions in SL production in edited lines compared to wild-type plants. Striga infection experiments demonstrated delayed or reduced emergence rates of Striga in edited lines with lower SL production, highlighting the potential for genetically altering SL production to control Striga infestations. This study provides insights into the functional roles of CCD7, CCD8, MAX1, and DUF genes in sorghum towards reduced and/or altered SL production and improved resistance to Striga infestations.
Collapse
Affiliation(s)
- Sirisha Kaniganti
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Biotechnology, Osmania University, Hyderabad, Telangana, 500 007, India
| | - Sudhakar Reddy Palakolanu
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Benjamin Thiombiano
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Jagadeesh Damarasingh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Pradeep Reddy Bommineni
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Ping Che
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Kiran Kumar Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
| | - Todd Jones
- Department of Applied Science and Technology, Corteva Agriscience, Johnston, IA, USA
| | - Harro Bouwmeester
- Swammerdam Institute for Life Sciences, University of Amsterdam, 100 BE, Amsterdam, The Netherlands
| | - Pooja Bhatnagar-Mathur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
- Plant Breeding & Genetics Laboratory, Joint FAO/ IAEA Centre, International Atomic Energy Agency, 1400, Vienna, Austria.
| |
Collapse
|
2
|
Figueiredo de Oliveira I, Ferreira Simeone ML, Gomes de Paula Lana U, de Carvalho Guimarães C, Morais de Sousa Tinôco S. Enhancing Sorghum Growth: Influence of Arbuscular Mycorrhizal Fungi and Sorgoleone. Microorganisms 2025; 13:423. [PMID: 40005789 PMCID: PMC11858774 DOI: 10.3390/microorganisms13020423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/02/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
The low availability of phosphorus (P) in soil is one of the main constraints on crop production. Plants have developed several strategies to increase P use efficiency, including modifications in root morphology, the exudation of different compounds, and associations with microorganisms such as arbuscular mycorrhizal fungi (AMF). This study aimed to investigate the effect of sorgoleone compound on AMF colonization and its subsequent impact on P uptake, rhizosphere microbiota, and sorghum growth. The experiment was conducted in a greenhouse using the sorghum genotype P9401, known for low sorgoleone production. Three doses of purified sorgoleone (20 μM, 40 μM, and 80 μM) were added to low-P soil and plants were harvested after 45 days. Treatments included inoculation with the arbuscular mycorrhizal fungi Rhizophagus clarus and a negative control without inoculum. The addition of 40 and 80 μM of sorgoleone did not significantly increase mycorrhization. However, treatment with 20 μM sorgoleone combined with R. clarus inoculation significantly increased total sorghum biomass by 1.6-fold (p ≤ 0.05) compared to the non-inoculated treatment. AMF inoculation influenced only AMF colonization and the fungal microbiota, without affecting the bacterial community, whereas sorgoleone showed no effect on either. The activities of acid and alkaline phosphatases in the rhizospheric soil did not differ significantly among the treatments. Furthermore, the sorghum genes CYP71AM1, associated with sorgoleone biosynthesis, and Sb02g009880, Sb06g002560, Sb06g002540, and Sb03g029970 (related to phosphate transport induced by mycorrhiza) were significantly upregulated (p ≤ 0.05) in fine roots under these conditions. The 20 μM concentration of sorgoleone can enhance AMF colonization in sorghum and promote plant growth under low-P conditions, without significantly altering the microbiota.
Collapse
Affiliation(s)
- Isabela Figueiredo de Oliveira
- Programa de Pós-Graduação em Bioengenharia, Universidade Federal de São João del-Rei, Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil;
| | - Maria Lúcia Ferreira Simeone
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas 35701-970, Minas Gerais, Brazil; (M.L.F.S.); (U.G.d.P.L.); (C.d.C.G.)
| | - Ubiraci Gomes de Paula Lana
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas 35701-970, Minas Gerais, Brazil; (M.L.F.S.); (U.G.d.P.L.); (C.d.C.G.)
| | - Cristiane de Carvalho Guimarães
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas 35701-970, Minas Gerais, Brazil; (M.L.F.S.); (U.G.d.P.L.); (C.d.C.G.)
| | - Sylvia Morais de Sousa Tinôco
- Programa de Pós-Graduação em Bioengenharia, Universidade Federal de São João del-Rei, Praça Dom Helvécio 74, Fábricas, São João del-Rei 36301-160, Minas Gerais, Brazil;
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas 35701-970, Minas Gerais, Brazil; (M.L.F.S.); (U.G.d.P.L.); (C.d.C.G.)
| |
Collapse
|
3
|
Kasule F, Diack O, Mbaye M, Kakeeto R, Econopouly BF. Genomic resources, opportunities, and prospects for accelerated improvement of millets. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:273. [PMID: 39565376 PMCID: PMC11579216 DOI: 10.1007/s00122-024-04777-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 10/28/2024] [Indexed: 11/21/2024]
Abstract
KEY MESSAGE Genomic resources, alongside the tools and expertise required to leverage them, are essential for the effective improvement of globally significant millet crop species. Millets are essential for global food security and nutrition, particularly in sub-Saharan Africa and South Asia. They are crucial in promoting nutrition, climate resilience, economic development, and cultural heritage. Despite their critical role, millets have historically received less investment in developing genomic resources than major cereals like wheat, maize, and rice. However, recent advancements in genomics, particularly next-generation sequencing technologies, offer unprecedented opportunities for rapid improvement in millet crops. This review paper provides an overview of the status of genomic resources in millets and in harnessing the recent opportunities in artificial intelligence to address challenges in millet crop improvement to boost productivity, nutrition, and end quality. It emphasizes the significance of genomics in tackling global food security issues and underscores the necessity for innovative breeding strategies to translate genomics and AI into effective breeding strategies for millets.
Collapse
Affiliation(s)
- Faizo Kasule
- Interdepartmental Genetics and Genomics (IGG), Iowa State University, Ames, IA, 50011, USA
| | - Oumar Diack
- Centre National de Recherches Agronomiques de Bambey (CNRA), Institut Sénégalais de Recherches Agricoles (ISRA), BP 53, Bambey, Sénégal
| | - Modou Mbaye
- Centre d'Etude Régional Pour L'Amélioration de L'Adaptation À La Sécheresse (CERAAS), Institut Sénégalais de Recherches Agricoles (ISRA), Route de Khombole, BP 3320, Thiès, Sénégal
| | - Ronald Kakeeto
- National Agricultural Research Organization (NARO), National Semi-Arid Resources Research Institute (NaSARRI), P.O. Box 56, Soroti, Uganda
| | | |
Collapse
|
4
|
Harnessing plant resistance against Striga spp. parasitism in major cereal crops for enhanced crop production and food security in Sub-Saharan Africa: a review. Food Secur 2023. [DOI: 10.1007/s12571-023-01345-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
AbstractGiven their long-lasting seed viability, 15–20-year lifespan and their high seed production levels, a significant impact of parasitic plant Striga spp. on African food production is inevitable. Over the last decades, climate change has increasingly favoured the adaptability, spread and virulence of major Striga species, S. hermonthica and S. asiatica, across arable land in Sub-Saharan Africa (SSA). These parasitic weeds are causing important yield losses on several staple food crops and endangering food and nutritional security in many SSA countries. Losses caused by Striga spp. are amplified by low soil fertility and recurrent droughts. The impact of Striga parasitism has been characterized through different phenotypic and genotypic traits assessment of their host plants. Among all control strategies, host-plant resistance remains the most pro-poor, easy-to-adopt, sustainable and eco-friendly control strategy against Striga parasitism. This review highlights the impact of Striga parasitism on food security in SSA and reports recent results related to the genetic basis of different agronomic, pheno-physiological and biochemical traits associated with the resistance to Striga in major African cereal food crops.
Collapse
|
5
|
Kawa D, Taylor T, Thiombiano B, Musa Z, Vahldick HE, Walmsley A, Bucksch A, Bouwmeester H, Brady SM. Characterization of growth and development of sorghum genotypes with differential susceptibility to Striga hermonthica. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7970-7983. [PMID: 34410382 PMCID: PMC8643648 DOI: 10.1093/jxb/erab380] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
Two sorghum varieties, Shanqui Red (SQR) and SRN39, have distinct levels of susceptibility to the parasitic weed Striga hermonthica, which have been attributed to different strigolactone composition within their root exudates. Root exudates of the Striga-susceptible variety Shanqui Red (SQR) contain primarily 5-deoxystrigol, which has a high efficiency for inducing Striga germination. SRN39 roots primarily exude orobanchol, leading to reduced Striga germination and making this variety resistant to Striga. The structural diversity in exuded strigolactones is determined by a polymorphism in the LOW GERMINATION STIMULANT 1 (LGS1) locus. Yet, the genetic diversity between SQR and SRN39 is broad and has not been addressed in terms of growth and development. Here, we demonstrate additional differences between SQR and SRN39 by phenotypic and molecular characterization. A suite of genes related to metabolism was differentially expressed between SQR and SRN39. Increased levels of gibberellin precursors in SRN39 were accompanied by slower growth rate and developmental delay and we observed an overall increased SRN39 biomass. The slow-down in growth and differences in transcriptome profiles of SRN39 were strongly associated with plant age. Additionally, enhanced lateral root growth was observed in SRN39 and three additional genotypes exuding primarily orobanchol. In summary, we demonstrate that the differences between SQR and SRN39 reach further than the changes in strigolactone profile in the root exudate and translate into alterations in growth and development.
Collapse
Affiliation(s)
- Dorota Kawa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Tamera Taylor
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA, USA
| | - Benjamin Thiombiano
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Zayan Musa
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Hannah E Vahldick
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| | - Aimee Walmsley
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Alexander Bucksch
- Department of Plant Biology, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Warnell School of Forestry and Natural Resources, University of Georgia, GA, USA
| | - Harro Bouwmeester
- Plant Hormone Biology Group, Green Life Sciences Cluster, Swammerdam Institute for Life Science, University of Amsterdam, Amsterdam, the Netherlands
| | - Siobhan M Brady
- Department of Plant Biology and Genome Center, University of California, Davis, Davis, CA, USA
| |
Collapse
|
6
|
Muchira N, Ngugi K, Wamalwa LN, Avosa M, Chepkorir W, Manyasa E, Nyamongo D, Odeny DA. Genotypic Variation in Cultivated and Wild Sorghum Genotypes in Response to Striga hermonthica Infestation. FRONTIERS IN PLANT SCIENCE 2021; 12:671984. [PMID: 34305972 PMCID: PMC8296141 DOI: 10.3389/fpls.2021.671984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/03/2021] [Indexed: 05/23/2023]
Abstract
Striga hermonthica is the most important parasitic weed in sub-Saharan Africa and remains one of the most devastating biotic factors affecting sorghum production in the western regions of Kenya. Farmers have traditionally managed Striga using cultural methods, but the most effective and practical solution to poor smallholder farmers is to develop Striga-resistant varieties. This study was undertaken with the aim of identifying new sources of resistance to Striga in comparison with the conventional sources as standard checks. We evaluated 64 sorghum genotypes consisting of wild relatives, landraces, improved varieties, and fourth filial generation (F4) progenies in both a field trial and a pot trial. Data were collected for days to 50% flowering (DTF), dry panicle weight (DPW, g), plant height (PH, cm), yield (YLD, t ha-1), 100-grain weight (HGW, g), overall disease score (ODS), overall pest score (OPS), area under Striga number progress curve (ASNPC), maximum above-ground Striga (NSmax), and number of Striga-forming capsules (NSFC) at relevant stages. Genetic diversity and hybridity confirmation was determined using Diversity Arrays Technology sequencing (DArT-seq). Residual heterosis for HGW and NSmax was calculated as the percent increase or decrease in performance of F4 crossover midparent (MP). The top 10 best yielding genotypes were predominantly F4 crosses in both experiments, all of which yielded better than resistant checks, except FRAMIDA in the field trial and HAKIKA in the pot trial. Five F4 progenies (ICSVIII IN × E36-1, LANDIWHITE × B35, B35 × E36-1, F6YQ212 × B35, and ICSVIII IN × LODOKA) recorded some of the highest HGW in both trials revealing their stability in good performance. Three genotypes (F6YQ212, GBK045827, and F6YQ212xB35) and one check (SRN39) were among the most resistant to Striga in both trials. SNPs generated from DArT-seq grouped the genotypes into three major clusters, with all resistant checks grouping in the same cluster except N13. We identified more resistant and high-yielding genotypes than the conventional checks, especially among the F4 crosses, which should be promoted for adoption by farmers. Future studies will need to look for more diverse sources of Striga resistance and pyramid different mechanisms of resistance into farmer-preferred varieties to enhance the durability of Striga resistance in the fields of farmers.
Collapse
Affiliation(s)
- Nicoleta Muchira
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
- International Crops Research Institute for the Semi-Arid Tropics-Kenya, Nairobi, Kenya
| | - Kahiu Ngugi
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Lydia N. Wamalwa
- Department of Plant Science and Crop Protection, University of Nairobi, Nairobi, Kenya
| | - Millicent Avosa
- International Crops Research Institute for the Semi-Arid Tropics-Kenya, Nairobi, Kenya
| | - Wiliter Chepkorir
- International Crops Research Institute for the Semi-Arid Tropics-Kenya, Nairobi, Kenya
| | - Eric Manyasa
- International Crops Research Institute for the Semi-Arid Tropics-Kenya, Nairobi, Kenya
| | - Desterio Nyamongo
- Kenya Agricultural and Livestock Research Organization, Genetic Resources Research Institute, Kikuyu, Kenya
| | - Damaris A. Odeny
- International Crops Research Institute for the Semi-Arid Tropics-Kenya, Nairobi, Kenya
| |
Collapse
|
7
|
Mallu TS, Mutinda S, Githiri SM, Achieng Odeny D, Runo S. New pre-attachment Striga resistant sorghum adapted to African agro-ecologies. PEST MANAGEMENT SCIENCE 2021; 77:2894-2902. [PMID: 33576100 DOI: 10.1002/ps.6325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/23/2021] [Accepted: 02/12/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Pre-attachment resistance to the parasitic plants Striga hermonthica and S. asiatica occurs in sorghum mutants designated low germination stimulant 1 (lgs1). However, only a few of these mutants have been identified and their resistance validated. Additionally, pre-attachment resistance in sorghum beyond lgs1 mutants has not been explored. We used lgs1-specific markers to identify new lgs1-like mutants in a diverse global sorghum collection. The sorghum collection was also evaluated for pre-attachment resistance against Striga using an in vitro assay that measured Striga germination activity and radicle growth. RESULTS From a total of 177 sorghum accessions, 60 recorded mean germination levels of below 42%, which is comparable with the previously identified lgs1-like sorghum (SRN39 and IS9830) used as controls in this study. Furthermore, 32 of these accessions recorded Striga radicle lengths comparable or lower than the controls (0.42 mm). Thirty-eight accessions contained the lgs1 mutation and although overall, lgs1 mutants had considerably reduced Striga germination, some low inducers of Striga germination were wild-type for lgs1. Germination was positively but weakly correlated with radicle length pointing to additional radicle growth inhibitory activity. CONCLUSIONS lgs1 mutations, alongside other mechanisms for low Striga germination stimulation, are prevalent in sorghum, and poor Striga radicle growth is suggestive of host-derived inhibition. As an outcome, our study makes available multiple Striga-resistant sorghum with adaptability to diverse agro-ecological regions in sub-Saharan Africa making immediate deployment possible. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tesfamichael S Mallu
- Pan African University, Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Sylvia Mutinda
- Pan African University, Institute for Basic Sciences, Technology and Innovation, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Stephen M Githiri
- Department of Horticulture, Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | - Damaris Achieng Odeny
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) - Eastern and Southern Africa, Nairobi, Kenya
| | - Steven Runo
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| |
Collapse
|
8
|
Jamil M, Kountche BA, Al-Babili S. Current progress in Striga management. PLANT PHYSIOLOGY 2021; 185:1339-1352. [PMID: 33793943 PMCID: PMC8133620 DOI: 10.1093/plphys/kiab040] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 01/18/2021] [Indexed: 05/20/2023]
Abstract
The Striga, particularly S. he rmonthica, problem has become a major threat to food security, exacerbating hunger and poverty in many African countries. A number of Striga control strategies have been proposed and tested during the past decade, however, further research efforts are still needed to provide sustainable and effective solutions to the Striga problem. In this paper, we provide an update on the recent progress and the approaches used in Striga management, and highlight emerging opportunities for developing new technologies to control this enigmatic parasite.
Collapse
Affiliation(s)
- Muhammad Jamil
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Boubacar A Kountche
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Salim Al-Babili
- Division of Biological and Environmental Sciences and Engineering, the BioActives Lab, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
- Author for communication:
| |
Collapse
|
9
|
de Oliveira IF, Simeone MLF, de Guimarães CC, Garcia NS, Schaffert RE, de Sousa SM. Sorgoleone concentration influences mycorrhizal colonization in sorghum. MYCORRHIZA 2021; 31:259-264. [PMID: 33200347 DOI: 10.1007/s00572-020-01006-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
The association between arbuscular mycorrhizal fungi (AMF) and sorghum, the fifth most cultivated cereal in the world and a staple food for many countries, is relevant to improving phosphorus (P) absorption. The importance of root exudation as a signal for the symbiosis has been shown for several species, but a complete understanding of the signaling molecules involved in the mycorrhizal symbiosis signaling pathway has not yet been elucidated. In this context, we investigated the effect of sorgoleone, one of the most studied allelochemicals and a predominant compound of root exudates in sorghum, on AMF colonization and consequently P uptake and plant growth on a sorghum genotype. The sorghum genotype P9401 presents low endogenous sorgoleone content, and when it was inoculated with Rhizophagus clarus together with 5 and 10 µM sorgoleone, mycorrhizal colonization was enhanced. A significant enhancement of mycorrhizal colonization and an increase of P content and biomass were observed when R. clarus was inoculated together with 20 µM sorgoleone. Thus, our results indicate that sorgoleone influences mycorrhizal colonization, but the mechanisms by which it does so still need to be revealed.
Collapse
Affiliation(s)
- Isabela Figueiredo de Oliveira
- Universidade Federal de São João del-Rei, R. Padre João Pimentel, 80, Dom Bosco, São João del-Rei, Minas Gerais, 36301-158, Brazil
| | - Maria Lúcia Ferreira Simeone
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Cristiane Carvalho de Guimarães
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Nathally Stefany Garcia
- Universidade Federal de São João del-Rei, Rod. MG 424 KM 47, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Robert Eugene Schaffert
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil
| | - Sylvia Morais de Sousa
- Universidade Federal de São João del-Rei, R. Padre João Pimentel, 80, Dom Bosco, São João del-Rei, Minas Gerais, 36301-158, Brazil.
- Empresa Brasileira de Pesquisa Agropecuária, Embrapa Milho e Sorgo, Rod. MG 424 KM 65, Sete Lagoas, Minas Gerais, 35701-970, Brazil.
| |
Collapse
|
10
|
Mohemed N, Charnikhova T, Fradin EF, Rienstra J, Babiker AGT, Bouwmeester HJ. Genetic variation in Sorghum bicolor strigolactones and their role in resistance against Striga hermonthica. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2415-2430. [PMID: 29415281 PMCID: PMC6498397 DOI: 10.1093/jxb/ery041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 01/08/2018] [Indexed: 05/24/2023]
Abstract
Sorghum is an important food, feed, and industrial crop worldwide. Parasitic weeds of the genus Striga constitute a major constraint to sorghum production, particularly in the drier parts of the world. In this study we analysed the Striga germination stimulants, strigolactones, in the root exudates of 36 sorghum genotypes and assessed Striga germination and infection. Low germination-stimulating activity and low Striga infection correlated with the exudation of low amounts of 5-deoxystrigol and high amounts of orobanchol, whereas susceptibility to Striga and high germination-stimulating activity correlated with high concentrations of 5-deoxystrigol and low concentrations of orobanchol. Marker analysis suggested that similar genetics to those previously described for the resistant sorghum variety SRN39 and the susceptible variety Shanqui Red underlie these differences. This study shows that the strigolactone profile in the root exudate of sorghum has a large impact on the level of Striga infection. High concentrations of 5-deoxystrigol result in high infection, while high concentrations of orobanchol result in low infection. This knowledge should help to optimize the use of low germination stimulant-based resistance to Striga by the selection of sorghum genotypes with strigolactone profiles that favour normal growth and development, but reduce the risk of Striga infection.
Collapse
Affiliation(s)
- Nasreldin Mohemed
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Emilie F Fradin
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Juriaan Rienstra
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Abdelgabar G T Babiker
- Environment, Natural Resources and Desertification Research Institute, The National Research Center, Khartoum, Sudan
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
11
|
Subrahmaniam HJ, Libourel C, Journet EP, Morel JB, Muños S, Niebel A, Raffaele S, Roux F. The genetics underlying natural variation of plant-plant interactions, a beloved but forgotten member of the family of biotic interactions. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:747-770. [PMID: 29232012 DOI: 10.1111/tpj.13799] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 12/02/2017] [Accepted: 12/06/2017] [Indexed: 05/22/2023]
Abstract
Despite the importance of plant-plant interactions on crop yield and plant community dynamics, our understanding of the genetic and molecular bases underlying natural variation of plant-plant interactions is largely limited in comparison with other types of biotic interactions. By listing 63 quantitative trait loci (QTL) mapping and global gene expression studies based on plants directly challenged by other plants, we explored whether the genetic architecture and the function of the candidate genes underlying natural plant-plant interactions depend on the type of interactions between two plants (competition versus commensalism versus reciprocal helping versus asymmetry). The 16 transcriptomic studies are unevenly distributed between competitive interactions (n = 12) and asymmetric interactions (n = 4, all focusing on response to parasitic plants). By contrast, 17 and 30 QTL studies were identified for competitive interactions and asymmetric interactions (either weed suppressive ability or response to parasitic plants), respectively. Surprisingly, no studies have been carried out on the identification of genetic and molecular bases underlying natural variation in positive interactions. The candidate genes underlying natural plant-plant interactions can be classified into seven categories of plant function that have been identified in artificial environments simulating plant-plant interactions either frequently (photosynthesis, hormones), only recently (cell wall modification and degradation, defense pathways against pathogens) or rarely (ABC transporters, histone modification and meristem identity/life history traits). Finally, we introduce several avenues that need to be explored in the future to obtain a thorough understanding of the genetic and molecular bases underlying plant-plant interactions within the context of realistic community complexity.
Collapse
Affiliation(s)
| | - Cyril Libourel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Etienne-Pascal Journet
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
- AGIR, Université de Toulouse, INRA, INPT, INP-EI PURPAN, Castanet-Tolosan, France
| | - Jean-Benoît Morel
- BGPI, INRA, CIRAD, SupAgro, Université de Montpellier, Montpellier, France
| | - Stéphane Muños
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Andreas Niebel
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Sylvain Raffaele
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| | - Fabrice Roux
- LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, France
| |
Collapse
|
12
|
Samejima H, Sugimoto Y. Recent research progress in combatting root parasitic weeds. BIOTECHNOL BIOTEC EQ 2018. [DOI: 10.1080/13102818.2017.1420427] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Hiroaki Samejima
- Division of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Yukihiro Sugimoto
- Division of Applied Chemistry in Bioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| |
Collapse
|
13
|
Gobena D, Shimels M, Rich PJ, Ruyter-Spira C, Bouwmeester H, Kanuganti S, Mengiste T, Ejeta G. Mutation in sorghum LOW GERMINATION STIMULANT 1 alters strigolactones and causes Striga resistance. Proc Natl Acad Sci U S A 2017; 114:4471-4476. [PMID: 28396420 PMCID: PMC5410831 DOI: 10.1073/pnas.1618965114] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Striga is a major biotic constraint to sorghum production in semiarid tropical Africa and Asia. Genetic resistance to this parasitic weed is the most economically feasible control measure. Mutant alleles at the LGS1 (LOW GERMINATION STIMULANT 1) locus drastically reduce Striga germination stimulant activity. We provide evidence that the responsible gene at LGS1 codes for an enzyme annotated as a sulfotransferase and show that functional loss of this gene results in a change of the dominant strigolactone (SL) in root exudates from 5-deoxystrigol, a highly active Striga germination stimulant, to orobanchol, an SL with opposite stereochemistry. Orobanchol, although not previously reported in sorghum, functions in the multiple SL roles required for normal growth and environmental responsiveness but does not stimulate germination of Striga This work describes the identification of a gene regulating Striga resistance and the underlying protective chemistry resulting from mutation.
Collapse
Affiliation(s)
- Daniel Gobena
- Department of Agronomy, Purdue University, West Lafayette, IN 47907
| | - Mahdere Shimels
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Patrick J Rich
- Department of Agronomy, Purdue University, West Lafayette, IN 47907
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Harro Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Satish Kanuganti
- Department of Agronomy, Purdue University, West Lafayette, IN 47907
| | - Tesfaye Mengiste
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907
| | - Gebisa Ejeta
- Department of Agronomy, Purdue University, West Lafayette, IN 47907;
| |
Collapse
|
14
|
Mohemed N, Charnikhova T, Bakker EJ, van Ast A, Babiker AG, Bouwmeester HJ. Evaluation of field resistance to Striga hermonthica (Del.) Benth. in Sorghum bicolor (L.) Moench. The relationship with strigolactones. PEST MANAGEMENT SCIENCE 2016; 72:2082-2090. [PMID: 27611187 DOI: 10.1002/ps.4426] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/10/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
BACKGROUND Significant losses in sorghum biomass and grain yield occur in sub-Saharan Africa owing to infection by the root-parasitic weed Striga hermonthica (Del.) Benth. One strategy to avoid these losses is to adopt resistant crop varieties. For further delineation of the role of germination stimulants in resistance, we conducted a field experiment employing six sorghum genotypes, in eastern Sudan, and in parallel analysed the strigolactone levels in the root exudates of these genotypes under controlled conditions in Wageningen. RESULTS The root exudates of these genotypes displayed large differences in strigolactone composition and Striga-germination-inducing activity. Korokollow, Fakimustahi and Wadfahel exuded the highest amounts of 5-deoxystrigol. Fakimustahi was by far the highest sorgomol producer, and Wadbaco and SRN39 produced the highest amount of orobanchol. The concentration of 5-deoxystrigol in the root exudate showed a significant positive correlation with in vitro Striga germination and was positively associated with Striga infection in the field experiments, whereas orobanchol was negatively associated with Striga infection in the field experiments. CONCLUSION For the first time a close association is reported between strigolactone levels analysed under laboratory conditions and Striga infection in the field in sorghum genotypes. These genotypes may be used for further study of this resistance mechanism and for the introgression of the low germination trait in other sorghum varieties to breed for a strigolactone composition with low stimulant activity. The use of such improved varieties in combination with other Striga management tools could possibly alleviate the current Striga problem on the African continent. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Nasreldin Mohemed
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Tatsiana Charnikhova
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Evert J Bakker
- Biometris, Wageningen University, Wageningen, The Netherlands
| | - Aad van Ast
- Centre for Crop Systems Analysis, Wageningen University, Wageningen, The Netherlands
| | - Abdelgabar Gt Babiker
- Department of Plant Protection, Sudan University of Science and Technology, Khartoum North, Sudan
- National Centre for Research, Khartoum, Sudan
| | - Harro J Bouwmeester
- Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands.
| |
Collapse
|
15
|
Anami SE, Zhang L, Xia Y, Zhang Y, Liu Z, Jing H. Sweet sorghum ideotypes: genetic improvement of stress tolerance. Food Energy Secur 2015. [DOI: 10.1002/fes3.54] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Sylvester Elikana Anami
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
- Institute of Biotechnology Research Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
| | - Li‐Min Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yan Xia
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Yu‐Miao Zhang
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Zhi‐Quan Liu
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| | - Hai‐Chun Jing
- Key Laboratory of Plant Resources Institute of Botany Chinese Academy of Sciences Beijing 100093 China
| |
Collapse
|
16
|
Zhang Y, Ruyter-Spira C, Bouwmeester HJ. Engineering the plant rhizosphere. Curr Opin Biotechnol 2014; 32:136-142. [PMID: 25555138 DOI: 10.1016/j.copbio.2014.12.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 12/08/2014] [Accepted: 12/09/2014] [Indexed: 10/24/2022]
Abstract
Plant natural products are low molecular weight compounds playing important roles in plant survival under biotic and abiotic stresses. In the rhizosphere, several groups of plant natural products function as semiochemicals that mediate the interactions of plants with other plants, animals and microorganisms. The knowledge on the biosynthesis and transport of these signaling molecules is increasing fast. This enables us to consider to optimize plant performance by changing the production of these signaling molecules or their exudation into the rhizosphere. Here we discuss recent advances in the understanding and metabolic engineering of these rhizosphere semiochemicals.
Collapse
Affiliation(s)
- Yanxia Zhang
- Laboratory of Plant Physiology, Wageningen University, the Netherlands
| | - Carolien Ruyter-Spira
- Laboratory of Plant Physiology, Wageningen University, the Netherlands; Plant Research International, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | |
Collapse
|
17
|
Spallek T, Mutuku M, Shirasu K. The genus Striga: a witch profile. MOLECULAR PLANT PATHOLOGY 2013; 14:861-9. [PMID: 23841683 PMCID: PMC6638688 DOI: 10.1111/mpp.12058] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The genus Striga comprises about 30 obligate root-parasitic plants, commonly known as witchweeds. In particular, S. hermonthica, S. asiatica and S. gesnerioides cause immense losses to major stable crops in sub-Saharan Africa. Most Striga species parasitize grass species (Poaceae), but Striga gesnerioides has evolved to parasitize dicotyledonous plants. Aspects of phylogeny, economic impact, parasitic life style and molecular discoveries are briefly reviewed to profile one of the main biotic constraints to African agriculture. TAXONOMY Striga Lour.; Kingdom Plant; Division Angiospermae; Clade Eudicots; Order Laminales; Family Orobanchaceae. IMPORTANT HOSTS Sorghum Moench., maize (Zea mays L.), rice (Oryza L.), sugarcane (Saccharum L.), pearl millet [Pennisetum glaucum (L.) R. Br.], cowpea [Vigna unguiculata (L.) Walp.]. DISEASE SYMPTOMS Stunted growth, drought-stressed-like appearance, in severe cases chlorosis and necrosis. ECONOMIC IMPORTANCE 1 billion $US per annum. DISEASE CONTROL Hand weeding, breeding, chemical control, intercropping with catch or trap crops. USEFUL WEBPAGES http://ppgp.huck.psu.edu; http://striga.psc.riken.jp.
Collapse
Affiliation(s)
- Thomas Spallek
- RIKEN Centre for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | | | | |
Collapse
|
18
|
Oblessuc PR, Cardoso Perseguini JMK, Baroni RM, Chiorato AF, Carbonell SAM, Mondego JMC, Vidal RO, Camargo LEA, Benchimol-Reis LL. Increasing the density of markers around a major QTL controlling resistance to angular leaf spot in common bean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2451-65. [PMID: 23832048 DOI: 10.1007/s00122-013-2146-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Accepted: 06/14/2013] [Indexed: 05/21/2023]
Abstract
Angular leaf spot (ALS) causes major yield losses in the common bean (Phaseolus vulgaris L.), an important protein source in the human diet. This study describes the saturation around a major quantitative trait locus (QTL) region, ALS10.1, controlling resistance to ALS located on linkage group Pv10 and explores the genomic context of this region using available data from the P. vulgaris genome sequence. DArT-derived markers (STS-DArT) selected by bulk segregant analysis and SCAR and SSR markers were used to increase the resolution of the QTL, reducing the confidence interval of ALS10.1 from 13.4 to 3.0 cM. The position of the SSR ATA220 coincided with the maximum LOD score of the QTL. Moreover, a new QTL (ALS10.2(UC)) was identified at the end of the same linkage group. Sequence analysis using the P. vulgaris genome located ten SSRs and seven STS-DArT on chromosome 10 (Pv10). Coincident linkage and genome positions of five markers enabled the definition of a core region for ALS10.1 spanning 5.3 Mb. These markers are linked to putative genes related to disease resistance such as glycosyl transferase, ankyrin repeat-containing, phospholipase, and squamosa-promoter binding protein. Synteny analysis between ALS10.1 markers and the genome of soybean suggested a dynamic evolution of this locus in the common bean. The present study resulted in the identification of new candidate genes and markers closely linked to a major ALS disease resistance QTL, which can be used in marker-assisted selection, fine mapping and positional QTL cloning.
Collapse
Affiliation(s)
- Paula Rodrigues Oblessuc
- Departamento de Genética e Evolução e Bioagentes, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, 13083-970, Brazil,
| | | | | | | | | | | | | | | | | |
Collapse
|