1
|
You HJ, Zhao R, Choi YM, Kang IJ, Lee S. Genome-Wide Association Study for Resistance to Phytophthora sojae in Soybean [ Glycine max (L.) Merr.]. PLANTS (BASEL, SWITZERLAND) 2024; 13:3501. [PMID: 39771199 PMCID: PMC11676158 DOI: 10.3390/plants13243501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Phytophthora sojae (Kauffman and Gerdemann) is an oomycete pathogen that threatens soybean (Glycine max L.) production worldwide. The development of soybean cultivars with resistance to this pathogen is of paramount importance for the sustainable management of the disease. The objective of this study was to identify genomic regions associated with resistance to P. sojae isolate 40468 through genome-wide association analyses of 983 soybean germplasms. To elucidate the genetic basis of resistance, three statistical models were employed: the compressed mixed linear model (CMLM), Bayesian-information and linkage disequilibrium iteratively nested keyway (BLINK), and fixed and random model circulating probability unification (FarmCPU). The three models consistently identified a genomic region (3.8-5.3 Mbp) on chromosome 3, which has been previously identified as an Rps cluster. A total of 18 single nucleotide polymorphisms demonstrated high statistical significance across all three models, which were distributed in eight linkage disequilibrium (LD) blocks within the aforementioned interval. Of the eight, LD3-2 exhibited the discernible segregation of phenotypic reactions by haplotype. Specifically, over 93% of accessions with haplotypes LD3-2-F or LD3-2-G displayed resistance, whereas over 91% with LD3-2-A, LD3-2-C, or LD3-2-D exhibited susceptibility. Furthermore, the BLINK and FarmCPU models identified new genomic variations significantly associated with the resistance on several other chromosomes, indicating that the resistance observed in this panel was due to the presence of different alleles of multiple Rps genes. These findings underscore the necessity for robust statistical models to accurately detect true marker-trait associations and provide valuable insights into soybean genetics and breeding.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Ruihua Zhao
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| | - Yu-Mi Choi
- National Agrobiodiversity Center, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Republic of Korea; (H.J.Y.)
| |
Collapse
|
2
|
Shim S, Kang IJ, You HJ, Kim H, Lee S. Transcriptome Comparison between Resistant and Susceptible Soybean Cultivars in Response to Inoculation of Phytophthora sojae. THE PLANT PATHOLOGY JOURNAL 2024; 40:641-655. [PMID: 39639668 PMCID: PMC11626037 DOI: 10.5423/ppj.oa.09.2024.0154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 10/23/2024] [Accepted: 11/01/2024] [Indexed: 12/07/2024]
Abstract
Phytophthora root and stem rot, caused by Phytophthora sojae, considerably reduces soybean yield worldwide. Our previous study identified two genomic regions on chromosome 18 (2.1-2.6 and 53.1-53.3 Mbp) that confer resistance to the P. sojae isolate 2457, through linkage analysis using progenies derived from the Daepung × Socheong2 population. These two regions contained 51 and 19 annotated genes, respectively. However, the specific gene responsible for resistance to P. sojae isolate 2457 has yet to be identified. In this study, we performed a comparative transcriptomic analysis of Socheong2 and Daepung, two Korean soybean varieties identified as resistant and susceptible to P. sojae isolate 2457, respectively. RNA sequencing was conducted on tissue samples collected at 0, 6, and 12 hours after inoculation (HAI), and significant differences in the expression of defense-related genes were observed across time points and between the two cultivars. Genes associated with the jasmonic acid, salicylic acid, ethylene, and systemic acquired resistance pathways were upregulated in both cultivars at 6 and 12 HAI compared to 0 HAI, with these biological processes were more strongly upregulated in Socheong2 compared to Daepung at 6 and 12 HAI. A comparison of differentially expressed genes (DEGs) and candidate genes within the previously identified QTL regions revealed an ortholog of the HS1 PRO-1 2 gene from Arabidopsis thaliana among the upregulated DEGs in Socheong2, particularly at 12 HAI compared to 0 HAI. This study will aid in targeted breeding efforts to develop soybean varieties with improved resistance to P. sojae.
Collapse
Affiliation(s)
- Sangrea Shim
- Department of Forest Resources, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon 16613, Korea
| | - Hee Jin You
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| | - Hangil Kim
- Department of Forest Environment Protection, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 34134, Korea
| |
Collapse
|
3
|
You HJ, Jang IH, Moon JK, Kang IJ, Kim JM, Kang S, Lee S. Genetic dissection of resistance to Phytophthora sojae using genome-wide association and linkage analysis in soybean [Glycine max (L.) Merr.]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:263. [PMID: 39516394 DOI: 10.1007/s00122-024-04771-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Two novel and one known genomic regions associated with R-gene resistance to Phytophthora sojae were identified by genome-wide association analysis and linkage analysis in soybean. Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is a severe disease that causes substantial economic losses in soybean [Glycine max (L.) Merr.]. The primary approach for successful disease management of PRR is using R-gene-mediated resistance. Based on the phenotypic evaluation of 376 cultivated soybean accessions for the R-gene type resistance to P. sojae (isolate 2457), a genome-wide association analysis identified two regions on chromosomes 3 and 8. The most significant genomic region (20.7-21.3 Mbp) on chromosome 8 was a novel resistance locus where no Rps gene was previously reported. Instead, multiple copies of the UDP-glycosyltransferase superfamily protein-coding gene, associated with disease resistance, were annotated in this new locus. Another genomic region on chromosome 3 was a well-known Rps cluster. Using the Daepung × Ilpumgeomjeong RIL population, a linkage analysis confirmed these two resistance loci and identified a resistance locus on chromosome 2. A unique feature of the resistance in Ilpumgeomjeong was discovered when phenotypic distribution was projected upon eight groups of RILs carrying different combinations of resistance alleles for the three loci. Interestingly, the seven groups carrying at least one resistance allele statistically differed from the other with none, regardless of the number of resistance alleles. This suggests that the respective three different resistance genes can confer resistance to P. sojae isolate 2457. Deployment of the three regions via marker-assisted selection will facilitate effectively improving resistance to particular P. sojae isolates in soybean breeding programs.
Collapse
Affiliation(s)
- Hee Jin You
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Ik Hyun Jang
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jung-Kyung Moon
- Division of Crop Foundation, National Institute of Crop Science, Wanju-gun, 55365, Jeollabuk-do, Republic of Korea
| | - In-Jeong Kang
- Division of Crop Cultivation and Environment Research, National Institute of Crop Science, Suwon, 16613, Gyeonggi-do, Republic of Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungtaeg Kang
- Department of Crop Science and Biotechnology, Dankook University, Cheonan, 31116, Chungcheongnam-do, Republic of Korea
| | - Sungwoo Lee
- Department of Crop Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
4
|
Clevinger EM, Biyashev R, Schmidt C, Song Q, Batnini A, Bolaños-Carriel C, Robertson AE, Dorrance AE, Saghai Maroof MA. Comparison of Rps loci toward isolates, singly and combined inocula, of Phytophthora sojae in soybean PI 407985, PI 408029, PI 408097, and PI424477. FRONTIERS IN PLANT SCIENCE 2024; 15:1394676. [PMID: 39011302 PMCID: PMC11246922 DOI: 10.3389/fpls.2024.1394676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/05/2024] [Indexed: 07/17/2024]
Abstract
For soybean, novel single dominant Resistance to Phytophthora sojae (Rps) genes are sought to manage Phytophthora root and stem rot. In this study, resistance to P. sojae was mapped individually in four recombinant inbred line (RIL) populations derived from crosses of the susceptible cultivar Williams with PI 407985, PI 408029, PI 408097, and PI424477 previously identified as putative novel sources of disease resistance. Each population was screened for resistance with five to seven isolates of P. sojae separately over multiple F7-F10 generations. Additionally, three of the populations were screened with inoculum from the combination of three P. sojae isolates (PPR), which comprised virulence to 14 Rps genes. Over 2,300 single-nucleotide polymorphism markers were used to construct genetic maps in each population to identify chromosomal regions associated with resistance to P. sojae. Resistance segregated as one or two genes to the individual isolates and one gene toward PPR in each population and mapped to chromosomes 3, 13, or 18 in one or more of the four RIL populations. Resistance to five isolates mapped to the same chromosome 3 region are as follows: OH7 (PI 424477 and PI408029), OH12168, OH7/8, PPR (PI 407985), and 1.S.1.1 (PI408029). The resistance regions on chromosome 13 also overlapped for OH1, OH25, OH-MIA (PI424477), PPR (PI 424477, PI 407985, and PI 408097), PPR and OH0217 (PI 408097), and OH4 (PI 408029), but were distinct for each population suggesting multiple genes confer resistance. Two regions were identified on chromosome 18 but all appear to map to known loci; notably, resistance to the combined inoculum (PPR) did not map at this locus. However, there are putative new alleles in three of four populations, three on chromosome 3 and two on chromosome 13 based on mapping location but also known virulence in the isolate used. This characterization of all the Rps genes segregating in these populations to these isolates will be informative for breeding, but the combined inoculum was able to map a novel loci. Furthermore, within each of these P. sojae isolates, there was virulence to more than the described Rps genes, and the effectiveness of the novel genes requires testing in larger populations.
Collapse
Affiliation(s)
- Elizabeth M Clevinger
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ruslan Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Clarice Schmidt
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Department of Agriculture, Beltsville, MD, United States
| | - Amine Batnini
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | | | - Alison E Robertson
- Department of Plant Pathology, Entomology and Microbiology, Iowa State University, Ames, IA, United States
| | - Anne E Dorrance
- Department of Plant Pathology, The Ohio State University, Wooster, OH, United States
| | - M A Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
5
|
Lin F, Salman M, Zhang Z, McCoy AG, Li W, Magar RT, Mitchell D, Zhao M, Gu C, Chilvers MI, Wang D. Identification and molecular mapping of a major gene conferring resistance to Phytophthora sansomeana in soybean 'Colfax'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:55. [PMID: 38386094 DOI: 10.1007/s00122-024-04556-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/12/2024] [Indexed: 02/23/2024]
Abstract
KEY MESSAGE The first single dominant resistance gene contributing major resistance to the oomycete pathogen Phytophthora sansomeana was identified and mapped from soybean 'Colfax'. Phytophthora root rot (PRR) is one of the most important diseases in soybean (Glycine max). PRR is well known to be caused by Phytophthora sojae, but recent studies showed that P. sansomeana also causes extensive root rot of soybean. Depending upon the isolate, it might produce aggressive symptoms, especially in seeds and seedlings. Unlike P. sojae which can be effectively managed by Rps genes, no known major resistance genes have yet been reported for P. sansomeana. Our previous study screened 470 soybean germplasm lines for resistance to P. sansomeana and found that soybean 'Colfax' (PI 573008) carries major resistance to the pathogen. In this study, we crossed 'Colfax' with a susceptible parent, 'Senaki', and developed three mapping populations with a total of 234 F2:3 families. Inheritance pattern analysis indicated a 1:2:1 ratio for resistant: segregating: susceptible lines among all the three populations, indicating a single dominant gene conferring the resistance in 'Colfax' (designated as Rpsan1). Linkage analysis using extreme phenotypes anchored Rpsan1 to a 30 Mb region on chromosome 3. By selecting nine polymorphic SNP markers within the region, Rpsan1 was genetically delimited into a 21.3 cM region between Gm03_4487138_A_C and Gm03_5451606_A_C, which corresponds to a 1.06 Mb genomic region containing nine NBS-LRR genes based on Gmax2.0 assembly. The mapping results were then validated using two breeding populations derived from 'E12076T-03' × 'Colfax' and 'E16099' × 'Colfax'. Marker-assisted resistance spectrum analyses with 9 additional isolates of P. sansomeana indicated that Rpsan1 may be effective towards a broader range of P. sansomeana isolates and has strong merit in protecting soybean to this pathogen in the future.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA.
| | - Muhammad Salman
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Punjab, 38000, Pakistan
| | - Zhanguo Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
- Northeast Agricultural University, National Soybean Engineering Research Center, Harbin, 150030, Heilongjiang Province, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Wenlong Li
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071001, Hebei Province, China
| | - Raju Thada Magar
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Drew Mitchell
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Meixia Zhao
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
6
|
Liu J, Wang L, Jiang S, Wang Z, Li H, Wang H. Mining of Minor Disease Resistance Genes in V. vinifera Grapes Based on Transcriptome. Int J Mol Sci 2023; 24:15311. [PMID: 37894991 PMCID: PMC10607095 DOI: 10.3390/ijms242015311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Intraspecific recurrent selection in V. vinifera is an effective method for grape breeding with high quality and disease resistance. The core theory of this method is the substitution accumulation of multi-genes with low disease resistance. The discovery of multi-genes for disease resistance in V. vinifera may provide a molecular basis for breeding for disease resistance in V. vinifera. In this study, resistance to downy mildew was identified, and genetic analysis was carried out in the intraspecific crossing population of V. vinifera (Ecolly × Dunkelfelder) to screen immune, highly resistant and disease-resistant plant samples; transcriptome sequencing and differential expression analysis were performed using high-throughput sequencing. The results showed that there were 546 differential genes (194 up-regulated and 352 down-regulated) in the immune group compared to the highly resistant group, and 199 differential genes (50 up-regulated and 149 down-regulated) in the highly resistant group compared to the resistant group, there were 103 differential genes (54 up-regulated and 49 down-regulated) in the immune group compared to the resistant group. KEGG analysis of differentially expressed genes in the immune versus high-resistance group. The pathway is mainly concentrated in phenylpropanoid biosynthesis, starch and sucrose metabolism, MAPK signaling pathway-plant, carotenoid biosyn-thesis and isoquinoline alkaloid biosynthesis. The differential gene functions of immune and resistant, high-resistant and resistant combinations were mainly enriched in plant-pathogen interaction pathway. Through the analysis of disease resistance-related genes in each pathway, the potential minor resistance genes in V. vinifera were mined, and the accumulation of minor resistance genes was analyzed from the molecular level.
Collapse
Affiliation(s)
- Junli Liu
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Liang Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Shan Jiang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Zhilei Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
| | - Hua Li
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| | - Hua Wang
- College of Enology, Northwest A&F University, Xianyang 712100, China; (J.L.); (L.W.); (S.J.); (Z.W.)
- China Wine Industry Technology Institute, Yinchuan 750021, China
- Shaanxi Engineering Research Center for Viti-Viniculture, Xianyang 712100, China
- Engineering Research Center for Viti-Viniculture, National Forestry and Grassland Administration, Xianyang 712100, China
| |
Collapse
|
7
|
Li W, Zheng X, Cheng R, Zhong C, Zhao J, Liu TH, Yi T, Zhu Z, Xu J, Meksem K, Dai L, Liu S. Soybean ZINC FINGER PROTEIN03 targets two SUPEROXIDE DISMUTASE1s and confers resistance to Phytophthora sojae. PLANT PHYSIOLOGY 2023; 192:633-647. [PMID: 36782397 PMCID: PMC10152685 DOI: 10.1093/plphys/kiad083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/22/2022] [Accepted: 01/19/2023] [Indexed: 05/03/2023]
Abstract
Phytophthora sojae causes Phytophthora root and stem rot disease of soybean (Glycine max), leading to huge annual yield loss worldwide, but resistance to Phytophthora sojae (Rps) genes remains elusive. Soybean cultivar "Yudou 29" is resistant to P. sojae strain PsMC1, and this study aimed to clone, identify, and characterize the Rps gene in Yudou 29 (RpsYD29) and clarify its functional mechanism. We map-based cloned RpsYD29 (ZINC FINGER PROTEIN03, GmZFP03) using the families of a cross between Yudou 29 and a P. sojae-susceptible soybean cultivar "Jikedou 2". P. sojae resistance of GmZFP03 was functionally validated by stable soybean genetic transformation and allele-phenotype association analysis. GmZFP03 was identified as a C2H2-type zinc finger protein transcription factor, showing 4 amino acid residue polymorphisms (V79F, G122-, G123-, and D125V) and remarkably different expression patterns between resistant and susceptible soybeans. Notably boosted activity and gene expression of superoxide dismutase (SOD) in resistant-type GmZFP03-expressed transgenic soybean, substantial enhancement of P. sojae resistance of wild-type soybean by exogenous SOD treatment, and GmZFP03 binding to and activation of 2 SOD1 (Glyma.03g242900 and Glyma.19g240400) promoters demonstrated the involvement of SOD1s in GmZFP03-mediated resistance to P. sojae strain PsMC1. Thus, this study cloned the soybean P. sojae-resistant GmZFP03, the product of which specifically targets 2 SOD1 promoters. GmZFP03 can be directly used for precise P. sojae-resistance soybean breeding.
Collapse
Affiliation(s)
- Wei Li
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Xiang Zheng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Rong Cheng
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Chanjuan Zhong
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Jie Zhao
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Tyler H Liu
- College of Letters and Science, University of Wisconsin, Madison, WI 53706, USA
| | - Tuyong Yi
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, P. R. China
| | - Jieting Xu
- Wimi Biotechnology Co., Ltd, Changzhou 213000, P. R. China
| | - Khalid Meksem
- Department of Plant, Soil and Agricultural Systems, Southern Illinois University, Carbondale, IL 62901, USA
| | - Liangying Dai
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
| | - Shiming Liu
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, College of Plant Protection, Hunan Agricultural University, Changsha 410128, P. R. China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| |
Collapse
|
8
|
Chandra S, Choudhary M, Bagaria PK, Nataraj V, Kumawat G, Choudhary JR, Sonah H, Gupta S, Wani SH, Ratnaparkhe MB. Progress and prospectus in genetics and genomics of Phytophthora root and stem rot resistance in soybean ( Glycine max L.). Front Genet 2022; 13:939182. [PMID: 36452161 PMCID: PMC9702362 DOI: 10.3389/fgene.2022.939182] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/21/2022] [Indexed: 09/16/2023] Open
Abstract
Soybean is one of the largest sources of protein and oil in the world and is also considered a "super crop" due to several industrial advantages. However, enhanced acreage and adoption of monoculture practices rendered the crop vulnerable to several diseases. Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most prevalent diseases adversely affecting soybean production globally. Deployment of genetic resistance is the most sustainable approach for avoiding yield losses due to this disease. PRSR resistance is complex in nature and difficult to address by conventional breeding alone. Genetic mapping through a cost-effective sequencing platform facilitates identification of candidate genes and associated molecular markers for genetic improvement against PRSR. Furthermore, with the help of novel genomic approaches, identification and functional characterization of Rps (resistance to Phytophthora sojae) have also progressed in the recent past, and more than 30 Rps genes imparting complete resistance to different PRSR pathotypes have been reported. In addition, many genomic regions imparting partial resistance have also been identified. Furthermore, the adoption of emerging approaches like genome editing, genomic-assisted breeding, and genomic selection can assist in the functional characterization of novel genes and their rapid introgression for PRSR resistance. Hence, in the near future, soybean growers will likely witness an increase in production by adopting PRSR-resistant cultivars. This review highlights the progress made in deciphering the genetic architecture of PRSR resistance, genomic advances, and future perspectives for the deployment of PRSR resistance in soybean for the sustainable management of PRSR disease.
Collapse
Affiliation(s)
| | | | - Pravin K. Bagaria
- Department of Plant Pathology, Punjab Agricultural University, Ludhiana, India
| | | | | | | | - Humira Sonah
- National Agri-Food Biotechnology Institute, Mohali, India
| | - Sanjay Gupta
- ICAR-Indian Institute of Soybean Research, Indore, India
| | - Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology, Srinagar, Jammu and Kashmir, India
| | | |
Collapse
|
9
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
10
|
Li W, Liu M, Lai YC, Liu JX, Fan C, Yang G, Wang L, Liang WW, Di SF, Yu DY, Bi YD. Genome-Wide Association Study of Partial Resistance to P. sojae in Wild Soybeans from Heilongjiang Province, China. Curr Issues Mol Biol 2022; 44:3194-3207. [PMID: 35877445 PMCID: PMC9319971 DOI: 10.3390/cimb44070221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 02/02/2023] Open
Abstract
Phytophthora root rot (PRR) is a destructive disease of soybeans (Glycine max (L.) Merr) caused by Phytophthora sojae (P. sojae). The most effective way to prevent the disease is growing resistant or tolerant varieties. Partial resistance provides a more durable resistance against the pathogen compared to complete resistance. Wild soybean (Glycine soja Sieb. & Zucc.) seems to be an extraordinarily important gene pool for soybean improvement due to its high level of genetic variation. In this study, 242 wild soybean germplasms originating from different regions of Heilongjiang province were used to identify resistance genes to P. sojae race 1 using a genome-wide association study (GWAS). A total of nine significant SNPs were detected, repeatedly associated with P. sojae resistance and located on chromosomes 1, 10, 12, 15, 17, 19 and 20. Among them, seven favorable allelic variations associated with P. sojae resistance were evaluated by a t-test. Eight candidate genes were predicted to explore the mechanistic hypotheses of partial resistance, including Glysoja.19G051583, which encodes an LRR receptor-like serine/threonine protein kinase protein, Glysoja.19G051581, which encodes a receptor-like cytosolic serine/threonine protein kinase protein. These findings will provide additional insights into the genetic architecture of P. sojae resistance in a large sample of wild soybeans and P. sojae-resistant breeding through marker-assisted selection.
Collapse
Affiliation(s)
- Wei Li
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Miao Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Yong-Cai Lai
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Jian-Xin Liu
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Chao Fan
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Guang Yang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Ling Wang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Wen-Wei Liang
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - Shu-Feng Di
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
| | - De-Yue Yu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China;
| | - Ying-Dong Bi
- Crop Tillage and Cultivation Institute of Heilongjiang Academy of Agricultural Sciences (HAAS), Harbin 150086, China; (W.L.); (M.L.); (Y.-C.L.); (J.-X.L.); (C.F.); (G.Y.); (L.W.); (W.-W.L.); (S.-F.D.)
- Correspondence:
| |
Collapse
|
11
|
Chen L, Wang W, Ping J, Fitzgerald JC, Cai G, Clark CB, Aggarwal R, Ma J. Identification and molecular mapping of Rps14, a gene conferring broad-spectrum resistance to Phytophthora sojae in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3863-3872. [PMID: 34370048 DOI: 10.1007/s00122-021-03933-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
KEY MESSAGE A soybean landrace carries broad-spectrum resistance to Phytophthora sojae, which is conferred by a single gene, designated Rps14, on the short arm of chromosome 3. Phytophthora sojae is the causative agent for Phytophthora root and stem rot in soybean [Glycine max (L.) Merr.] and can be managed by deployment of resistance to P. sojae (Rps) genes. PI 340,029 is a soybean landrace carrying broad-spectrum resistance to the pathogen. Analysis of an F2 population derived from a cross between PI 340,029 and a susceptible cultivar 'Williams' reveals that the resistance to P. sojae race 1 is conferred by a single gene, designated Rps14, which was initially mapped to a 4.5-cM region on the short arm of chromosome 3 by bulked segregant analysis (BSA), and subsequently narrowed to a 1.48 cM region corresponding to 229-kb in the Williams 82 reference genome (Wm82 v2.a1), using F3:4 families derived from the F2 population. Further analysis indicates that the broad-spectrum resistance carried by PI 340,029 is fully attributable to Rps14. The genomic sequences corresponding to the defined Rps14 region from a set of diverse soybean varieties exhibit drastic NBS-LRR gene copy number variation, ranging from 3 to 17 copies. Ultimate isolation of Rps14 would be critical for precise selection and deployment of the gene for soybean protection.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Seed Technologies and Analytics, BASF Corporation, Morrisville, NC, 27560, USA
| | - Joshua C Fitzgerald
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Virginia Agricultural Research and Extension Centers, Virginia Polytechnic Institute and State University, Warsaw, VA, 22572, USA
| | - Guohong Cai
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Rajat Aggarwal
- Research and Development, Corteva AgriscienceTM, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
12
|
Wang W, Chen L, Fengler K, Bolar J, Llaca V, Wang X, Clark CB, Fleury TJ, Myrvold J, Oneal D, van Dyk MM, Hudson A, Munkvold J, Baumgarten A, Thompson J, Cai G, Crasta O, Aggarwal R, Ma J. A giant NLR gene confers broad-spectrum resistance to Phytophthora sojae in soybean. Nat Commun 2021; 12:6263. [PMID: 34741017 PMCID: PMC8571336 DOI: 10.1038/s41467-021-26554-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022] Open
Abstract
Phytophthora root and stem rot caused by P. sojae is a destructive soybean soil-borne disease found worldwide. Discovery of genes conferring broad-spectrum resistance to the pathogen is a need to prevent the outbreak of the disease. Here, we show that soybean Rps11 is a 27.7-kb nucleotide-binding site-leucine-rich repeat (NBS-LRR or NLR) gene conferring broad-spectrum resistance to the pathogen. Rps11 is located in a genomic region harboring a cluster of large NLR genes of a single origin in soybean, and is derived from rounds of unequal recombination. Such events result in promoter fusion and LRR expansion that may contribute to the broad resistance spectrum. The NLR gene cluster exhibits drastic structural diversification among phylogenetically representative varieties, including gene copy number variation ranging from five to 23 copies, and absence of allelic copies of Rps11 in any of the non-Rps11-donor varieties examined, exemplifying innovative evolution of NLR genes and NLR gene clusters.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Kevin Fengler
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Joy Bolar
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Victor Llaca
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Tomara J Fleury
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Jon Myrvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - David Oneal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | | | - Ashley Hudson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jesse Munkvold
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Andy Baumgarten
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Jeff Thompson
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Guohong Cai
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
- Crop Production and Pest Control Research Unit, USDA, ARS, West Lafayette, IN, 47907, USA
| | - Oswald Crasta
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA
- R&D, Equinom, Inc., Indianapolis, IN, 46268, USA
| | - Rajat Aggarwal
- Research and Development, Corteva Agriscience™, Johnston, IA, 50131, USA.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
13
|
Sahoo DK, Das A, Huang X, Cianzio S, Bhattacharyya MK. Tightly linked Rps12 and Rps13 genes provide broad-spectrum Phytophthora resistance in soybean. Sci Rep 2021; 11:16907. [PMID: 34413429 PMCID: PMC8377050 DOI: 10.1038/s41598-021-96425-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023] Open
Abstract
The Phytophtora root and stem rot is a serious disease in soybean. It is caused by the oomycete pathogen Phytophthora sojae. Growing Phytophthora resistant cultivars is the major method of controlling this disease. Resistance is race- or gene-specific; a single gene confers immunity against only a subset of the P. sojae isolates. Unfortunately, rapid evolution of new Phytophthora sojae virulent pathotypes limits the effectiveness of an Rps ("resistance to Phytophthora sojae") gene to 8-15 years. The current study was designed to investigate the effectiveness of Rps12 against a set of P. sojae isolates using recombinant inbred lines (RILs) that contain recombination break points in the Rps12 region. Our study revealed a unique Rps gene linked to the Rps12 locus. We named this novel gene as Rps13 that confers resistance against P. sojae isolate V13, which is virulent to recombinants that contains Rps12 but lack Rps13. The genetic distance between the two Rps genes is 4 cM. Our study revealed that two tightly linked functional Rps genes with distinct race-specificity provide broad-spectrum resistance in soybean. We report here the molecular markers for incorporating the broad-spectrum Phytophthora resistance conferred by the two Rps genes in commercial soybean cultivars.
Collapse
Affiliation(s)
- Dipak K Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Anindya Das
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Xiaoqiu Huang
- Department of Computer Science, Iowa State University, Ames, IA, 50011, USA
| | - Silvia Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
14
|
Matsuoka JI, Takahashi M, Yamada T, Kono Y, Yamada N, Takahashi K, Moriwaki J, Akamatsu H. Identification of three closely linked loci conferring broad-spectrum Phytophthora sojae resistance in soybean variety Tosan-231. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2151-2165. [PMID: 33792774 DOI: 10.1007/s00122-021-03813-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE A variable genomic region containing two Harosoy-derived loci related to Rps7 and one Nemashirazu-derived locus confers broad-spectrum Phytophthora sojae resistance in Tosan-231 and is useful for developing resistant cultivars. We investigated resistance to pathotypically variable Phytophthora sojae isolates in the soybean variety Tosan-231, which has broad-spectrum resistance. Mapping analysis using descendent lines from a cross between Shuurei and Tosan-231 demonstrated that a genomic region between SSR markers BARCSOYSSR_03_0209 and BARCSOYSSR_03_0385 (termed "Region T"), confers broad-spectrum resistance in Tosan-231 and contains three closely linked resistance loci. Inoculation tests with 20 P. sojae isolates of different pathotypes and simple sequence repeat (SSR) analysis of progenitors of Tosan-231 facilitated identification and characterization of Rps genes at the three resistance loci. Two resistance genes, RpsT1 and RpsT2, were found to be derived from Harosoy carrying Rps7. This result suggested two mutually exclusive possibilities: (1) either RpsT1 or RpsT2 is Rps7, and the other is a locally functional novel gene; (2) Rps7 is not a single gene but in fact comprises RpsT1 and RpsT2. The resistance locus containing RpsT3 is derived from Nemashirazu, in which Rps genes have remained poorly defined. Moreover, we identified two genomic regions with relatively high recombination frequencies on the basis of mapping information and proposed a strategy to readily assemble useful resistance genes in or around Region T.
Collapse
Affiliation(s)
- Jun-Ichi Matsuoka
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan.
| | - Mami Takahashi
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
| | - Tetsuya Yamada
- Institute of Crop Science, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuhi Kono
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
| | - Naohiro Yamada
- Nagano Vegetable and Ornamental Crops Experiment Station, 1066-1 Souga, Shiojiri, Nagano, 399-646, Japan
- , Nagano Agricultural Experiment Station, 492 Ogawara, Suzaka, Nagano, 382-0072, Japan
| | - Koji Takahashi
- Institute of Crop Science, NARO, 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Jouji Moriwaki
- Kyushu Okinawa Agricultural Research Center, NARO, 1823-1 Miimachi, Kurume, Fukuoka, 839-8503, Japan
| | - Hajime Akamatsu
- Hokuriku Research Center, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), 1-2-1 Inada, Joetsu, Niigata, 943-0193, Japan
- Business Promotion Office, Department of Regional Strategy, Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO), C/O Institute of Vegetable and Floriculture Science, NARO, 360 Kusawa, Ano, Tsu, Mie, 514-2392, Japan
| |
Collapse
|
15
|
Lin F, Li W, McCoy AG, Gao X, Collins PJ, Zhang N, Wen Z, Cao S, Wani SH, Gu C, Chilvers MI, Wang D. Molecular mapping of quantitative disease resistance loci for soybean partial resistance to Phytophthora sansomeana. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1977-1987. [PMID: 33721030 DOI: 10.1007/s00122-021-03799-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE Two soybean QDRL were identified with additive interaction to P. sansomeana isolate MPS17-22. Further analyses uncovered four interaction patterns between the two QDRL and seven additional P. sansomeana isolates. Phytophthora sansomeana is a recently recognized species that contributes to root rot in soybean. Previous studies indicated that P. sansomeana is widely distributed among soybean growing regions and has a much wider host range than P. sojae, a well-known pathogen of soybean. Unlike P. sojae, no known disease resistance genes have been documented that can effectively control P. sansomeana. Therefore, it is important to identify resistance that can be quickly integrated into future soybean varieties. E13901 is an improved soybean line that confers partial resistance to P. sansomeana. A mapping population of 228 F4:5 families was developed from a cross between E13901 and a susceptible improved soybean variety E13390. Using a composite interval mapping method, two quantitative disease resistance loci (QDRL) were identified on Chromosomes 5 (designated qPsan5.1) and 16 (designated qPsan16.1), respectively. qPsan5.1 was mapped at 54.71 cM between Gm05_32565157_T_C and Gm05_32327497_T_C. qPsan5.1 was contributed by E13390 and explained about 6% of the disease resistance variation. qPsan16.1 was located at 39.01 cM between Gm16_35700223_G_T and Gm16_35933600/ Gm16_35816475. qPsan16.1 was from E13901 and could explain 5.5% of partial disease resistance. Further analysis indicated an additive interaction of qPsan5.1 and qPsan16.1 against P. sansomeana isolate MPS17-22. Marker assisted resistance spectrum analysis and progeny tests verified the two QDRL and their interaction patterns with other P. sansomeana isolates. Both QDRL can be quickly integrated into soybean varieties using marker assisted selection.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Wenlong Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
- Hebei Agricultural University, Baoding, 071001, Hebei Province, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Xuan Gao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, Anhui Normal University, Wuhu, China
| | - Paul J Collins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Na Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Sizhe Cao
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue St., Rm. A384-E, East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
16
|
Van K, Rolling W, Biyashev RM, Matthiesen RL, Abeysekara NS, Robertson AE, Veney DJ, Dorrance AE, McHale LK, Saghai Maroof MA. Mining germplasm panels and phenotypic datasets to identify loci for resistance to Phytophthora sojae in soybean. THE PLANT GENOME 2021; 14:e20063. [PMID: 33200586 DOI: 10.1002/tpg2.20063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Phytophthora sojae causes Phytophthora root and stem rot of soybean and has been primarily managed through deployment of qualitative Resistance to P. sojae genes (Rps genes). The effectiveness of each individual or combination of Rps gene(s) depends on the diversity and pathotypes of the P. sojae populations present. Due to the complex nature of P. sojae populations, identification of more novel Rps genes is needed. In this study, phenotypic data from previous studies of 16 panels of plant introductions (PIs) were analyzed. Panels 1 and 2 consisted of 448 Glycine max and 520 G. soja, which had been evaluated for Rps gene response with a combination of P. sojae isolates. Panels 3 and 4 consisted of 429 and 460 G. max PIs, respectively, which had been evaluated using individual P. sojae isolates with complex virulence pathotypes. Finally, Panels 5-16 (376 G. max PIs) consisted of data deposited in the USDA Soybean Germplasm Collection from evaluations with 12 races of P. sojae. Using these panels, genome-wide association (GWA) analyses were carried out by combining phenotypic and SoySNP50K genotypic data. GWA models identified two, two, six, and seven novel Rps loci with Panels 1, 2, 3, and 4, respectively. A total of 58 novel Rps loci were identified using Panels 5-16. Genetic and phenotypic dissection of these loci may lead to the characterization of novel Rps genes that can be effectively deployed in new soybean cultivars against diverse P. sojae populations.
Collapse
Affiliation(s)
- Kyujung Van
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, 43210, USA
| | - William Rolling
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
| | - Ruslan M Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Rashelle L Matthiesen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Nilwala S Abeysekara
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Alison E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, 50011, USA
| | - Deloris J Veney
- Department of Plant Pathology, Ohio State University, Wooster, OH, 44691, USA
| | - Anne E Dorrance
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
- Department of Plant Pathology, Ohio State University, Wooster, OH, 44691, USA
- Center for Soybean Research, Ohio State University, Wooster, OH, 44691, USA
| | - Leah K McHale
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH, 43210, USA
- Center for Applied Plant Sciences, Ohio State University, Columbus, OH, 43210, USA
- Center for Soybean Research, Ohio State University, Wooster, OH, 44691, USA
| | - M A Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, 24061, USA
| |
Collapse
|
17
|
Jang IH, Kang IJ, Kim JM, Kang ST, Jang YE, Lee S. Genetic Mapping of a Resistance Locus to Phytophthora sojae in the Korean Soybean Cultivar Daewon. THE PLANT PATHOLOGY JOURNAL 2020; 36:591-599. [PMID: 33312094 PMCID: PMC7721532 DOI: 10.5423/ppj.oa.09.2020.0173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/16/2020] [Accepted: 10/26/2020] [Indexed: 05/19/2023]
Abstract
Phytophthora root and stem rot reduce soybean yields worldwide. The use of R-gene type resistance is currently crucial for protecting soybean production. The present study aimed to identify the genomic location of a gene conferring resistance to Phytophthora sojae isolate 2457 in the recombinant inbred line population developed by a cross of Daepung × Daewon. Single-marker analysis identified 20 single nucleotide polymorphisms associated with resistance to the P. sojae isolate 2457, which explained ~67% of phenotypic variance. Daewon contributed a resistance allele for the locus. This region is a well-known location for Rps1 and Rps7. The present study is the first, however, to identify an Rps gene locus from a major soybean variety cultivated in South Korea. Linkage analysis also identified a 573 kb region on chromosome 3 with high significance (logarithm of odds = 13.7). This genomic region was not further narrowed down due to lack of recombinants within the interval. Based on the latest soybean genome, ten leucine-rich repeat coding genes and four serine/threonine protein kinase-coding genes are annotated in this region, which all are well-known types of genes for conferring disease resistance in crops. These genes would be candidates for molecular characterization of the resistance in further studies. The identified R-gene locus would be useful in developing P. sojae resistant varieties in the future. The results of the present study provide foundational knowledge for researchers who are interested in soybean-P. sojae interaction.
Collapse
Affiliation(s)
- Ik-Hyun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - In Jeong Kang
- Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613, Korea
| | - Ji-Min Kim
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Sung-Taeg Kang
- Department of Crop Science and Biotechnology, College of Bioresource Science, Dankook University, Cheonan 1116, Korea
| | - Young Eun Jang
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
| | - Sungwoo Lee
- Department of Crop Science, College of Agriculture and Life Sciences, Chungnam National University, Daejeon 3434, Korea
- Corresponding author. Phone) +82-42-821-5727 , FAX) +82-42-822-2631, E-mail) , ORCID, Sungwoo Lee, https://orcid.org/0000-0003-3564-236
| |
Collapse
|
18
|
Zhong C, Sun S, Zhang X, Duan C, Zhu Z. Fine Mapping, Candidate Gene Identification and Co-segregating Marker Development for the Phytophthora Root Rot Resistance Gene RpsYD25. Front Genet 2020; 11:799. [PMID: 32849803 PMCID: PMC7399351 DOI: 10.3389/fgene.2020.00799] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 07/03/2020] [Indexed: 12/18/2022] Open
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a serious disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Rps genes. Soybean cultivar Yudou25 can effectively resist pathotypes of P. sojae in China. Previous studies have mapped the Rps gene in Yudou25, RpsYD25, on chromosome 3. In this study, at first RpsYD25 was located between SSR markers Satt1k3 (2.2 cM) and BARCSOYSSR_03_0253 (4.5 cM) by using an F2:3 population containing 165 families derived from Zaoshu18 and Yudou25. Then the recombination sites were identified in 1127 F3:4 families derived from Zaoshu18 and Yudou25 using the developed PCR-based SNP, InDel and SSR markers, and RpsYD25 was finely mapped in the a 101.3 kb genomic region. In this region, a zinc ion binding and nucleic acid binding gene Glyma.03g034700 and two NBS-LRR genes Glyma.03g034800 and Glyma.03g034900 were predicted as candidate genes of RpsYD25, and five co-segregated SSR markers with RpsYD25 were identified and validated to be diagnostic markers. Combined with the resistance reaction to multiple P. sojae isolates, seven of 178 soybean genotypes were detected to contain RpsYD25 using the five co-segregated SSR markers. The soybean genotypes carrying RpsYD25 and the developed co-segregated markers can be effectively applied in the breeding for P. sojae resistance in China.
Collapse
Affiliation(s)
- Chao Zhong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China.,College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Suli Sun
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuecui Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Canxing Duan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
19
|
Ramalingam J, Alagarasan G, Savitha P, Lydia K, Pothiraj G, Vijayakumar E, Sudhagar R, Singh A, Vedna K, Vanniarajan C. Improved host-plant resistance to Phytophthora rot and powdery mildew in soybean (Glycine max (L.) Merr.). Sci Rep 2020; 10:13928. [PMID: 32811867 PMCID: PMC7434881 DOI: 10.1038/s41598-020-70702-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 07/10/2020] [Indexed: 11/08/2022] Open
Abstract
Soybean is an important oilseed cum vegetable crop, susceptible to various biotic stresses which is attributed to recent decline in crop productivity. The emergence of virulent biotypes/strains of different plant pathogens necessitates the development of new crop varieties with enhanced host resistance mechanisms. Pyramiding of multiple disease-resistant genes is one of the strategies employed to develop durable disease-resistant cultivars to the prevailing and emerging biotypes of pathogens. The present study, reports the successful introgression of two major R-genes, including Rps2 (Phytophthora rot resistance), Rmd-c (complete-powdery mildew resistance) and effective nodulating gene (rj2) through functional Marker-Assisted Backcross Breeding (MABB) in the genetic background of well-adapted and high yielding soybean varieties, CO 3 and JS 335. We have identified several promising introgressed lines with enhanced resistance to Phytophthora rot and powdery mildew. The improved soybean lines have exhibited medium to high level of resistance against powdery mildew and Phytophthora rot as well as displayed effective nodulation capacity. Our study has proven the generation of resistant genotypes to realize the potential of MABB for achieving host plant resistance in soybean. The improved lines developed can greatly assist the soybean breeding programs in India and other soybean growing countries for evolving disease-resistant varieties.
Collapse
Affiliation(s)
- Jegadeesan Ramalingam
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India.
- Department of Biotechnology, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India.
| | - Ganesh Alagarasan
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Palanisamy Savitha
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Kelsey Lydia
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Govindan Pothiraj
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, India
| | - Eswaramoorthy Vijayakumar
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| | - Rajaprakasam Sudhagar
- Centre for Plant Breeding and Genetics, Department of Pulses, Tamil Nadu Agricultural University, Coimbatore, India
| | - Amar Singh
- Department of Plant Pathology, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Kumari Vedna
- Department of Plant Breeding and Genetics, Chaudhary Sarwan Kumar Himachal Pradesh Krishi Vishvavidyalaya, Palampur, India
| | - Chockalingam Vanniarajan
- Department of Plant Breeding and Genetics, Agricultural College and Research Institute, Tamil Nadu Agricultural University, Madurai, India
| |
Collapse
|
20
|
Niu L, Zhong X, Zhang Y, Yang J, Xing G, Li H, Liu D, Ma R, Dong Y, Yang X. Enhanced tolerance to Phytophthora root and stem rot by over-expression of the plant antimicrobial peptide CaAMP1 gene in soybean. BMC Genet 2020; 21:68. [PMID: 32631255 PMCID: PMC7336493 DOI: 10.1186/s12863-020-00872-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Antimicrobial peptides play important roles in both plant and animal defense systems. Moreover, over-expression of CaAMP1 (Capsicum annuum antimicrobial protein 1), an antimicrobial protein gene isolated from C. annuum leaves infected with Xanthomonas campestris pv. vesicatoria, confers broad-spectrum resistance to hemibiotrophic bacterial and necrotrophic fungal pathogens in Arabidopsis. Phytophthora root and stem rot (PRR), caused by the fungus Phytophthora sojae, is one of the most devastating diseases affecting soybean (Glycine max) production worldwide. RESULTS In this study, CaAMP1 was transformed into soybean by Agrobacterium-mediated genetic transformation. Integration of the foreign gene in the genome of transgenic soybean plants and its expression at the translation level were verified by Southern and western blot analyses, respectively. CaAMP1 over-expression (CaAMP1-OX) lines inoculated with P. sojae race 1 exhibited enhanced and stable PRR tolerance through T2-T4 generations compared with the wild-type Williams 82 plants. Gene expression analyses in the transgenic plants revealed that the expression of salicylic acid-dependent, jasmonic acid-dependent, and plant disease resistance genes (R-genes) were significantly up-regulated after P. sojae inoculation. CONCLUSIONS These results indicate that CaAMP1 over-expression can significantly enhance PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways. This provides an alternative approach for developing soybean varieties with improved tolerance against soil-borne pathogenic PRR.
Collapse
Affiliation(s)
- Lu Niu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yuanyu Zhang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Haiyun Li
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Dongbo Liu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
- Jilin Normal University, Siping, 136000, China
| | - Rui Ma
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yingshan Dong
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| |
Collapse
|
21
|
Jiang B, Cheng Y, Cai Z, Li M, Jiang Z, Ma R, Yuan Y, Xia Q, Nian H. Fine mapping of a Phytophthora-resistance locus RpsGZ in soybean using genotyping-by-sequencing. BMC Genomics 2020; 21:280. [PMID: 32245402 PMCID: PMC7126358 DOI: 10.1186/s12864-020-6668-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/12/2020] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) is one of the most serious limitations to soybean production worldwide. The identification of resistance gene(s) and their incorporation into elite varieties is an effective approach for breeding to prevent soybean from being harmed by this disease. A valuable mapping population of 228 F8:11 recombinant inbred lines (RILs) derived from a cross of the resistant cultivar Guizao1 and the susceptible cultivar BRSMG68 and a high-density genetic linkage map with an average distance of 0.81 centimorgans (cM) between adjacent bin markers in this population were used to map and explore candidate gene(s). RESULTS PRR resistance in Guizao1 was found to be controlled by a single Mendelian locus and was finely mapped to a 367.371-kb genomic region on chromosome 3 harbouring 19 genes, including 7 disease resistance (R)-like genes, in the reference Willliams 82 genome. Quantitative real-time PCR assays of possible candidate genes revealed that Glyma.03 g05300 was likely involved in PRR resistance. CONCLUSIONS These findings from the fine mapping of a novel Rps locus will serve as a basis for the cloning and transfer of resistance genes in soybean and the breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Bingzhi Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- Guangdong Provincial Key Laboratory of Crops Genetics and Improvement, Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640 People’s Republic of China
| | - Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Zhandong Cai
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Mu Li
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ze Jiang
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Ruirui Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Yeshan Yuan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI) Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083 People’s Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, Guangdong 510642 People’s Republic of China
| |
Collapse
|
22
|
Rolling W, Lake R, Dorrance AE, McHale LK. Genome-wide association analyses of quantitative disease resistance in diverse sets of soybean [Glycine max (L.) Merr.] plant introductions. PLoS One 2020; 15:e0227710. [PMID: 32196522 PMCID: PMC7083333 DOI: 10.1371/journal.pone.0227710] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 12/25/2019] [Indexed: 12/17/2022] Open
Abstract
Phytophthora sojae is one of the costliest soybean pathogens in the US. Quantitative disease resistance (QDR) is a vital part of Phytophthora disease management. In this study, QDR was measured in 478 and 495 plant introductions (PIs) towards P. sojae isolates OH.121 and C2.S1, respectively, in genome-wide association (GWA) analyses to identify genetic markers linked to QDR loci (QDRL). Populations were generated by sampling PIs from the US, the Republic of Korea, and the full collection of PIs maintained by the USDA. Additionally, a meta-analysis of QDRL reported from bi-parental studies was done to compare past and present findings. Twenty-four significant marker-trait associations were identified from the 478 PIs phenotyped with OH.121, and an additional 24 marker-trait associations were identified from the 495 PIs phenotyped with C2.S1. In total, 48 significant markers were distributed across 16 chromosomes and based on linkage analysis, represent a total of 44 QDRL. The majority of QDRL were identified with only one of the two isolates, and only a region on chromosome 13 was consistently identified. Regions on chromosomes 3, 13, and 17 were identified in previous GWA-analyses and were re-identified in this study. Five QDRL co-localized with P. sojae meta-QDRL identified from QDRL reported in previous biparental mapping studies. The remaining regions represent novel QDRL, in the soybean-P. sojae pathosystem and were primarily identified in germplasm from the Republic of Korea. Overall, the number of loci identified in this study highlights the complexity of QDR to P. sojae.
Collapse
Affiliation(s)
- William Rolling
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
| | - Rhiannon Lake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| | - Anne E. Dorrance
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Plant Pathology, The Ohio State University, Wooster, Ohio, United States of America
| | - Leah K. McHale
- Center for Applied Plant Science and Center for Soybean Research, The Ohio State University, Columbus, Ohio, United States of America
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
23
|
Yang J, Ye W, Wang X, Ren L, Yao Y, Wang X, Wang Y, Dong S, Zheng X, Wang Y. An Improved Method for the Identification of Soybean Resistance to Phytophthora sojae Applied to Germplasm Resources from the Huanghuaihai and Dongbei Regions of China. PLANT DISEASE 2020; 104:408-413. [PMID: 31790644 DOI: 10.1094/pdis-01-19-0168-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is a destructive disease afflicting soybean. The use of resistant cultivars is the most effective method to combat PRR. PRR resistance was assessed in 223 soybean cultivars from Huanghuaihai and Dongbei, major soybean-producing regions in east central and northeastern China. To evaluate levels of soybean resistance to P. sojae, we used eight representative P. sojae isolates and a modified etiolated hypocotyl-slit inoculation method. The cultivars Wandou21020, Xu9302-A, Kedou10, and Lidi055 showed resistance to all eight isolates; 14 cultivars showed intermediate resistance to all eight P. sojae isolates, and 53 cultivars were resistant to seven isolates. Thirty-three cultivars (15%) were susceptible only to the highly virulent PsJS2 isolate, which is consistent with the reactions of the Chapman differential line that carries Rps3a. The diverse reaction patterns seen in germplasm from different regions (provinces/cities) in this study reflect the variety of PRR-resistant soybean sources in China. Our research indicates that sources of P. sojae resistance are present in the major soybean production areas of China. This study provides useful information for soybean breeding programs.
Collapse
Affiliation(s)
- Jin Yang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Xiaomen Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Linrong Ren
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Yan Yao
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Yan Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Suomeng Dong
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, and Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, Jiangsu 210095, China
| |
Collapse
|
24
|
Kang IJ, Kang S, Jang IH, Jang YW, Shim HK, Heu S, Lee S. Identification of New Isolates of Phytophthora sojae and the Reactions of Korean Soybean Cultivars Following Hypocotyl Inoculation. THE PLANT PATHOLOGY JOURNAL 2019; 35:698-704. [PMID: 31832050 PMCID: PMC6901254 DOI: 10.5423/ppj.nt.09.2019.0249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 11/02/2019] [Accepted: 11/04/2019] [Indexed: 05/29/2023]
Abstract
Phytophthora root and stem rot (PRSR) caused by Phytophthora sojae is one of the most destructive diseases of soybean. PRSR recently became an issue as soybean cultivation in paddy fields increased in South Korea. The management of PRSR mainly involves R-gene-mediated resistance, however, little is known about the resistance in Korean cultivars. Major Korean soybean cultivars were investigated for the presence or absence of R-gene-mediated resistance to four P. sojae isolates, two of which were new isolates. Isolate-specific reactions were observed following P. sojae inoculation. Of 21 cultivars, 15-20 cultivars (71.4-95.2%) showed susceptible reaction for each isolate. Ten cultivars were susceptible to all the isolates, and six cultivars were identified to have R-gene-mediated resistance to one or two isolates. The results of this study would provide a framework for the discovery of resistant cultivars, development of new cultivars resistant to P. sojae, and investigation of pathogenic diversity of P. sojae population in South Korea.
Collapse
Affiliation(s)
- In Jeong Kang
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sunjoo Kang
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| | - Ik Hyun Jang
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| | - Yun Woo Jang
- Department of Southern Area Crop Science, National Institute of Crop Science, Miryang 50424,
Korea
| | - Hyung Kwon Shim
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sunggi Heu
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Suwon 16613,
Korea
| | - Sungwoo Lee
- Department of Crop Science, Chungnam National University, Daejeon 34134,
Korea
| |
Collapse
|
25
|
Kim JY, Jeong S, Kim KH, Lim WJ, Lee HY, Jeong N, Moon JK, Kim N. Dissection of soybean populations according to selection signatures based on whole-genome sequences. Gigascience 2019; 8:giz151. [PMID: 31869408 PMCID: PMC6927394 DOI: 10.1093/gigascience/giz151] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 08/21/2019] [Accepted: 12/05/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Domestication and improvement processes, accompanied by selections and adaptations, have generated genome-wide divergence and stratification in soybean populations. Simultaneously, soybean populations, which comprise diverse subpopulations, have developed their own adaptive characteristics enhancing fitness, resistance, agronomic traits, and morphological features. The genetic traits underlying these characteristics play a fundamental role in improving other soybean populations. RESULTS This study focused on identifying the selection signatures and adaptive characteristics in soybean populations. A core set of 245 accessions (112 wild-type, 79 landrace, and 54 improvement soybeans) selected from 4,234 soybean accessions was re-sequenced. Their genomic architectures were examined according to the domestication and improvement, and accessions were then classified into 3 wild-type, 2 landrace, and 2 improvement subgroups based on various population analyses. Selection and gene set enrichment analyses revealed that the landrace subgroups have selection signals for soybean-cyst nematode HG type 0 and seed development with germination, and that the improvement subgroups have selection signals for plant development with viability and seed development with embryo development, respectively. The adaptive characteristic for soybean-cyst nematode was partially underpinned by multiple resistance accessions, and the characteristics related to seed development were supported by our phenotypic findings for seed weights. Furthermore, their adaptive characteristics were also confirmed as genome-based evidence, and unique genomic regions that exhibit distinct selection and selective sweep patterns were revealed for 13 candidate genes. CONCLUSIONS Although our findings require further biological validation, they provide valuable information about soybean breeding strategies and present new options for breeders seeking donor lines to improve soybean populations.
Collapse
Affiliation(s)
- Jae-Yoon Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Seongmun Jeong
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Kyoung Hyoun Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Won-Jun Lim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Ho-Yeon Lee
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Namhee Jeong
- National Institute of Crop Science, Rural Development Administration, Nongsaengmyeong-ro 370, Deokjin-gu, Jeon-Ju 54874, Republic of Korea
| | - Jung-Kyung Moon
- National Institute of Crop Science, Rural Development Administration, Nongsaengmyeong-ro 370, Deokjin-gu, Jeon-Ju 54874, Republic of Korea
| | - Namshin Kim
- Genome Editing Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Gwahak-ro 125, Yuseong-gu, Daejeon 34141, Republic of Korea
- Department of Bioinformatics, KRIBB School of Bioscience, University of Science and Technology (UST), Gajeong-ro 217, Yuseong-gu, Daejeon 34141, Republic of Korea
| |
Collapse
|
26
|
Zhong C, Li Y, Sun S, Duan C, Zhu Z. Genetic Mapping and Molecular Characterization of a Broad-spectrum Phytophthora sojae Resistance Gene in Chinese Soybean. Int J Mol Sci 2019; 20:E1809. [PMID: 31013701 PMCID: PMC6515170 DOI: 10.3390/ijms20081809] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/07/2019] [Accepted: 04/09/2019] [Indexed: 01/26/2023] Open
Abstract
Phytophthora root rot (PRR) causes serious annual soybean yield losses worldwide. The most effective method to prevent PRR involves growing cultivars that possess genes conferring resistance to Phytophthora sojae (Rps). In this study, QTL-sequencing combined with genetic mapping was used to identify RpsX in soybean cultivar Xiu94-11 resistance to all P. sojae isolates tested, exhibiting broad-spectrum PRR resistance. Subsequent analysis revealed RpsX was located in the 242-kb genomic region spanning the RpsQ locus. However, a phylogenetic investigation indicated Xiu94-11 carrying RpsX is distantly related to the cultivars containing RpsQ, implying RpsX and RpsQ have different origins. An examination of candidate genes revealed RpsX and RpsQ share common nonsynonymous SNP and a 144-bp insertion in the Glyma.03g027200 sequence encoding a leucine-rich repeat (LRR) region. Glyma.03g027200 was considered to be the likely candidate gene of RpsQ and RpsX. Sequence analyses confirmed that the 144-bp insertion caused by an unequal exchange resulted in two additional LRR-encoding fragments in the candidate gene. A marker developed based on the 144-bp insertion was used to analyze the genetic population and germplasm, and proved to be useful for identifying the RpsX and RpsQ alleles. This study implies that the number of LRR units in the LRR domain may be important for PRR resistance in soybean.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng 125100, China.
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
27
|
Lin F, Wani SH, Collins PJ, Wen Z, Gu C, Chilvers MI, Wang D. Mapping Quantitative Trait Loci for Tolerance to Pythium irregulare in Soybean ( Glycine max L.). G3 (BETHESDA, MD.) 2018; 8:3155-3161. [PMID: 30111618 PMCID: PMC6169387 DOI: 10.1534/g3.118.200368] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/29/2018] [Indexed: 01/27/2023]
Abstract
Pythium root rot is one of the significant diseases of soybean (Glycine max (L.) Merr.) in the United States. The causal agent of the disease is a soil-borne oomycete pathogen Pythium irregulare, the most prevalent and aggressive species of Pythium in North Central United States. However, few studies have been conducted in soybean for the identification of quantitative trait loci (QTL) for tolerance to P. irregulare In this study, two recombinant inbred line (RIL) populations (designated as POP1 and POP2) were challenged with P. irregulare (isolate CMISO2-5-14) in a greenhouse assay. POP1 and POP2 were derived from 'E09014' × 'E05226-T' and 'E05226-T' × 'E09088', and contained 113 and 79 lines, respectively. Parental tests indicated that 'E05226-T' and 'E09014' were more tolerant than 'E09088', while 'E09088' was highly susceptible to the pathogen. The disease indices, root weight of inoculation (RWI) and ratio of root weight (RRW) of both populations showed near normal distributions, with transgressive segregation, suggesting the involvement of multiple QTL from both parents contributed to the tolerance. All the lines were genotyped using Illumina Infinium BARCSoySNP6K iSelect BeadChip and yielded 1373 and 1384 polymorphic markers for POP1 and POP2, respectively. Notably, despite high density, polymorphic markers coverage was incomplete in some genomic regions. As such, 28 and 37 linkage groups were obtained in POP1 and POP2, respectively corresponding to the 20 soybean chromosomes. Using RRW, one QTL was identified in POP1 on Chromosome 20 that explained 12.7-13.3% of phenotypic variation. The desirable allele of this QTL was from 'E05226-T'. Another QTL was found in POP2 on Chromosome 11. It explained 15.4% of the phenotypic variation and the desirable allele was from 'E09088'. However, no QTL were identified using RWI in either population. These results supported that RRW was more suitable to be used to evaluate P. irregulare tolerance in soybean.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| | - Shabir H Wani
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
- Mountain Research Centre for Field Crops, Khudwani, Anantnag-192 101, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, J&K, India
| | - Paul J Collins
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| | - Zixiang Wen
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing-48824, Michigan
| |
Collapse
|
28
|
Du Q, Yang X, Zhang J, Zhong X, Kim KS, Yang J, Xing G, Li X, Jiang Z, Li Q, Dong Y, Pan H. Over-expression of the Pseudomonas syringae harpin-encoding gene hrpZm confers enhanced tolerance to Phytophthora root and stem rot in transgenic soybean. Transgenic Res 2018; 27:277-288. [PMID: 29728957 DOI: 10.1007/s11248-018-0071-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/04/2018] [Indexed: 11/25/2022]
Abstract
Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most devastating diseases reducing soybean (Glycine max) production all over the world. Harpin proteins in many plant pathogenic bacteria were confirmed to enhance disease and insect resistance in crop plants. Here, a harpin protein-encoding gene hrpZpsta from the P. syringae pv. tabaci strain Psta218 was codon-optimized (renamed hrpZm) and introduced into soybean cultivars Williams 82 and Shennong 9 by Agrobacterium-mediated transformation. Three independent transgenic lines over-expressing hrpZm were obtained and exhibited stable and enhanced tolerance to P. sojae infection in T2-T4 generations compared to the non-transformed (NT) and empty vector (EV)-transformed plants. Quantitative real-time PCR (qRT-PCR) analysis revealed that the expression of salicylic acid-dependent genes PR1, PR12, and PAL, jasmonic acid-dependent gene PPO, and hypersensitive response (HR)-related genes GmNPR1 and RAR was significantly up-regulated after P. sojae inoculation. Moreover, the activities of defense-related enzymes such as phenylalanine ammonia lyase (PAL), polyphenoloxidase (PPO), peroxidase, and superoxide dismutase also increased significantly in the transgenic lines compared to the NT and EV-transformed plants after inoculation. Our results suggest that over-expression of the hrpZm gene significantly enhances PRR tolerance in soybean by eliciting resistance responses mediated by multiple defense signaling pathways, thus providing an alternative approach for development of soybean varieties with improved tolerance against the soil-borne pathogen PRR.
Collapse
Affiliation(s)
- Qian Du
- College of Plant Science, Jilin University, Changchun, 130062, China
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiangdong Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Jinhua Zhang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaofang Zhong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | | | - Jing Yang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Guojie Xing
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Xiaoyu Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Zhaoyuan Jiang
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Qiyun Li
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China
| | - Yingshan Dong
- Jilin Academy of Agricultural Sciences, Changchun, 130033, China.
| | - Hongyu Pan
- College of Plant Science, Jilin University, Changchun, 130062, China.
| |
Collapse
|
29
|
Zhong C, Sun S, Li Y, Duan C, Zhu Z. Next-generation sequencing to identify candidate genes and develop diagnostic markers for a novel Phytophthora resistance gene, RpsHC18, in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:525-538. [PMID: 29138903 DOI: 10.1007/s00122-017-3016-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 11/04/2017] [Indexed: 05/24/2023]
Abstract
KEY MESSAGE A novel Phytophthora sojae resistance gene RpsHC18 was identified and finely mapped on soybean chromosome 3. Two NBS-LRR candidate genes were identified and two diagnostic markers of RpsHC18 were developed. Phytophthora root rot caused by Phytophthora sojae is a destructive disease of soybean. The most effective disease-control strategy is to deploy resistant cultivars carrying Phytophthora-resistant Rps genes. The soybean cultivar Huachun 18 has a broad and distinct resistance spectrum to 12 P. sojae isolates. Quantitative trait loci sequencing (QTL-seq), based on the whole-genome resequencing (WGRS) of two extreme resistant and susceptible phenotype bulks from an F2:3 population, was performed, and one 767-kb genomic region with ΔSNP-index ≥ 0.9 on chromosome 3 was identified as the RpsHC18 candidate region in Huachun 18. The candidate region was reduced to a 146-kb region by fine mapping. Nonsynonymous SNP and haplotype analyses were carried out in the 146-kb region among ten soybean genotypes using WGRS. Four specific nonsynonymous SNPs were identified in two nucleotide-binding sites-leucine-rich repeat (NBS-LRR) genes, RpsHC18-NBL1 and RpsHC18-NBL2, which were considered to be the candidate genes. Finally, one specific SNP marker in each candidate gene was successfully developed using a tetra-primer ARMS-PCR assay, and the two markers were verified to be specific for RpsHC18 and to effectively distinguish other known Rps genes. In this study, we applied an integrated genomic-based strategy combining WGRS with traditional genetic mapping to identify RpsHC18 candidate genes and develop diagnostic markers. These results suggest that next-generation sequencing is a precise, rapid and cost-effective way to identify candidate genes and develop diagnostic markers, and it can accelerate Rps gene cloning and marker-assisted selection for breeding of P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
30
|
Zhong C, Sun S, Yao L, Ding J, Duan C, Zhu Z. Fine Mapping and Identification of a Novel Phytophthora Root Rot Resistance Locus RpsZS18 on Chromosome 2 in Soybean. FRONTIERS IN PLANT SCIENCE 2018; 9:44. [PMID: 29441079 PMCID: PMC5797622 DOI: 10.3389/fpls.2018.00044] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/09/2018] [Indexed: 05/19/2023]
Abstract
Phytophthora root rot (PRR) caused by Phytophthora sojae is a major soybean disease that causes severe economic losses worldwide. Using soybean cultivars carrying a Rps resistance gene is the most effective strategy for controlling this disease. We previously detected a novel Phytophthora resistance gene, RpsZS18, on chromosome 2 of the soybean cultivar Zaoshu18. The aim of the present study was to identify and finely map RpsZS18. We used 232 F2:3 families generated from a cross between Zaoshu18 (resistant) and Williams (susceptible) as the mapping population. Simple sequence repeat (SSR) markers distributed on chromosome 2 were used to map RpsZS18. First, 12 SSR markers linked with RpsZS18 were identified by linkage analyses, including two newly developed SSR markers, ZCSSR33 and ZCSSR46, that flanked the gene at distances of 0.9 and 0.5 cM, respectively. Second, PCR-based InDel markers were developed based on sequence differences between the two parents and used to further narrow down the mapping region of RpsZS18 to 71.3 kb. Third, haplotype analyses were carried out in the RpsZS18 region using 14 soybean genotypes with whole-genome resequencing. We detected six genes with unique haplotype sequences in Zaoshu18. Finally, quantitative real-time PCR assays of the six genes revealed an EF-hand calcium-binding domain containing protein encoding gene (Glyma.02g245700), a pfkB carbohydrate kinase encoding gene (Glyma.02g245800), and a gene with no functional annotation (Glyma.02g246300), are putative candidate PRR resistance genes. This study provides useful information for breeding P. sojae-resistant soybean cultivars.
Collapse
Affiliation(s)
- Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Liangliang Yao
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Junjie Ding
- Jiamusi Branch of Heilongjiang Academy of Agricultural Sciences, Jiamusi, China
| | - Canxing Duan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
31
|
Li Y, Sun S, Zhong C, Wang X, Wu X, Zhu Z. Genetic mapping and development of co-segregating markers of RpsQ, which provides resistance to Phytophthora sojae in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1223-1233. [PMID: 28258371 DOI: 10.1007/s00122-017-2883-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 02/17/2017] [Indexed: 05/07/2023]
Abstract
KEY MESSAGE The RpsQ Phytophthora resistance locus was finely mapped to a 118-kb region on soybean chromosome 3. A best candidate gene was predicted and three co-segregating gene markers were developed. Phytophthora root rot (PRR), caused by Phytophthora sojae, is a major threat to sustainable soybean production. The use of genetically resistant cultivars is considered the most effective way to control this disease. The Chinese soybean cultivar Qichadou 1 exhibited a broad spectrum resistance, with a distinct resistance phenotype, following inoculation with 36 Chinese P. sojae isolates. Genetic analyses indicated that the disease resistance in Qichadou 1 is controlled by a single dominant gene. This gene locus was designated as RpsQ and mapped to a 118-kb region between BARCSOYSSR_03_0165 and InDel281 on soybean chromosome 3, and co-segregated with Insert11, Insert144 and SNP276. Within this region, there was only one gene Glyma.03g27200 encoding a protein with a typical serine/threonine protein kinase structure, and the expression pattern analysis showed that this gene induced by P. sojae infection, which was suggested as a best candidate gene of RpsQ. Candidate gene specific marker Insert144 was used to distinguish RpsQ from the other known Rps genes on chromosome 3. Identical polymerase chain reaction amplification products were produced for cultivars Qichadou 1 (RpsQ) and Ludou 4 (Rps9). All other cultivars carrying Rps genes on chromosome 3 produced different PCR products, which all lacked a 144-bp fragment present in Qichadou 1 and Ludou 4. The phenotypes of the analyzed cultivars combined with the physical position of the PRR resistance locus, candidate gene analyses, and the candidate gene marker test revealed RpsQ and Rps9 are likely the same gene, and confer resistance to P. sojae.
Collapse
Affiliation(s)
- Yinping Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Suli Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Chao Zhong
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Xiaoming Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Xiaofei Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China
| | - Zhendong Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, People's Republic of China.
| |
Collapse
|
32
|
Cheng Y, Ma Q, Ren H, Xia Q, Song E, Tan Z, Li S, Zhang G, Nian H. Fine mapping of a Phytophthora-resistance gene RpsWY in soybean (Glycine max L.) by high-throughput genome-wide sequencing. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:1041-1051. [PMID: 28246754 PMCID: PMC5395582 DOI: 10.1007/s00122-017-2869-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 01/26/2017] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE Using a combination of phenotypic screening, genetic and statistical analyses, and high-throughput genome-wide sequencing, we have finely mapped a dominant Phytophthora resistance gene in soybean cultivar Wayao. Phytophthora root rot (PRR) caused by Phytophthora sojae is one of the most important soil-borne diseases in many soybean-production regions in the world. Identification of resistant gene(s) and incorporating them into elite varieties are an effective way for breeding to prevent soybean from being harmed by this disease. Two soybean populations of 191 F2 individuals and 196 F7:8 recombinant inbred lines (RILs) were developed to map Rps gene by crossing a susceptible cultivar Huachun 2 with the resistant cultivar Wayao. Genetic analysis of the F2 population indicated that PRR resistance in Wayao was controlled by a single dominant gene, temporarily named RpsWY, which was mapped on chromosome 3. A high-density genetic linkage bin map was constructed using 3469 recombination bins of the RILs to explore the candidate genes by the high-throughput genome-wide sequencing. The results of genotypic analysis showed that the RpsWY gene was located in bin 401 between 4466230 and 4502773 bp on chromosome 3 through line 71 and 100 of the RILs. Four predicted genes (Glyma03g04350, Glyma03g04360, Glyma03g04370, and Glyma03g04380) were found at the narrowed region of 36.5 kb in bin 401. These results suggest that the high-throughput genome-wide resequencing is an effective method to fine map PRR candidate genes.
Collapse
Affiliation(s)
- Yanbo Cheng
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qibin Ma
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Hailong Ren
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Qiuju Xia
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Enliang Song
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Zhiyuan Tan
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China
| | - Shuxian Li
- Agricultural Research Service, Crop Genetics Research Unit, United States Department of Agriculture, Stoneville, MS, 38776, USA
| | - Gengyun Zhang
- Beijing Genomics Institute (BGI)-Shenzhen, Shenzhen, 518086, People's Republic of China
| | - Hai Nian
- The State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
- The Key Laboratory of Plant Molecular Breeding of Guangdong Province, College of Agriculture, South China Agricultural University, Guangzhou, 510642, Guangdong, People's Republic of China.
| |
Collapse
|
33
|
Niu J, Guo N, Sun J, Li L, Cao Y, Li S, Huang J, Zhao J, Zhao T, Xing H. Fine Mapping of a Resistance Gene RpsHN that Controls Phytophthora sojae Using Recombinant Inbred Lines and Secondary Populations. FRONTIERS IN PLANT SCIENCE 2017; 8:538. [PMID: 28443124 PMCID: PMC5387331 DOI: 10.3389/fpls.2017.00538] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 03/27/2017] [Indexed: 05/04/2023]
Abstract
Phytophthora root rot (PRR), caused by Phytophthora sojae, has negative effects on soybean yield in China and can be controlled by identifying germplasm resources with resistance genes. In this study, the resistance locus RpsHN in the soybean line Meng8206 was mapped using two mapping populations. Initial mapping was realized using two recombinant inbred line (RIL) populations and included 103 F6:8 RILs derived from a cross of Meng8206 × Linhedafenqing, including 2600 bin markers, and 130 F6:8 RILs derived from a cross of Meng8206 × Zhengyang148, including 2267 bin markers. Subsequently, a 159 F2:3 secondary population derived from a cross of Meng8206 × Linmeng6-46, were used to fine map this locus using SSR markers. Finally, the resistance locus from Meng8206 was fine mapped to a 278.7 kb genomic region flanked by SSR markers SSRSOYN-25 and SSRSOYN-44 at a genetic distance of 1.6 and 1.0 cM on chromosome 3 (Chr. 03). Real-time RT-PCR analysis of the possible candidate genes showed that three genes (Glyma.03g04260, Glyma.03g04300, and Glyma.03g04340) are likely involved in PRR resistance. These results will serve as a basis for cloning, transferring of resistant genes and breeding of P. sojae-resistant soybean cultivars through marker-assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| | - Han Xing
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
34
|
Jiang CJ, Sugano S, Kaga A, Lee SS, Sugimoto T, Takahashi M, Ishimoto M. Evaluation of Resistance to Phytophthora sojae in Soybean Mini Core Collections Using an Improved Assay System. PHYTOPATHOLOGY 2017; 107:216-223. [PMID: 27775499 DOI: 10.1094/phyto-06-16-0233-r] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Stem and root rot disease caused by Phytophthora sojae is devastating to soybean crops worldwide. Developing host resistance to P. sojae, considered the most effective and stable means to control this disease, is partly hampered by limited germplasm resources. In this study, we first modified conventional methods for a P. sojae resistance assay to a simpler and more cost-effective version, in which the P. sojae inoculum was mixed into the soil and the resistance was evaluated by survival rate (%) of soybean seedlings. This rating had significant correlations (P < 0.01) with the reduction in root fresh weight and the visual root rot severity. Applying this method to evaluate P. sojae resistance in soybean mini core collections comprising either 79 accessions originating from Japan (JMC) or 80 accessions collected around the world (WMC) revealed a wide variation in resistance among the individual varieties. In total, 38 accessions from the JMC and 41 from the WMC exhibited resistance or moderate resistance to P. sojae isolate N1 (with virulence to Rps1b, 3c, 4, 5, and 6), with ≥50% survival. Of these, 26 from the JMC and 29 from the WMC showed at least moderate resistance to P. sojae isolate HR1 (vir Rps1a-c, 1k, 2, 3a-c, 4-6, and 8). Additionally, 24 WCS accessions, in contrast to only 6 from the JMC, exhibited 100% survival after being challenged with both the N1 and HR1 isolates, suggesting a biogeographical difference between the two collections. We further verified two JMC varieties, Daizu and Amagi zairai 90D, for their resistance to an additional four P. sojae isolates (60 to 100% survival), which may provide new and valuable genetic sources for P. sojae resistance breeding in soybean.
Collapse
Affiliation(s)
- Chang-Jie Jiang
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Shoji Sugano
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Akito Kaga
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Sung Shin Lee
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Takuma Sugimoto
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Mami Takahashi
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| | - Masao Ishimoto
- First, second, third, fourth, and seventh authors: Institute of Agrobiological Sciences, NARO, Kannondai 2-1-2, Tsukuba, Ibaraki 305-8602 Japan; fifth author: Hyogo Agricultural Institute for Agriculture, Forestry and Fisheries, 1533 Minamino-oka, Befu, Kasai, Hyogo 679-0198, Japan; and sixth author: Central Region Agricultural Research Center, NARO, Inada1-2-1, Jyoetsu, Niigata 943-0193, Japan
| |
Collapse
|
35
|
Sahoo DK, Abeysekara NS, Cianzio SR, Robertson AE, Bhattacharyya MK. A Novel Phytophthora sojae Resistance Rps12 Gene Mapped to a Genomic Region That Contains Several Rps Genes. PLoS One 2017; 12:e0169950. [PMID: 28081566 PMCID: PMC5233422 DOI: 10.1371/journal.pone.0169950] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 12/24/2016] [Indexed: 02/06/2023] Open
Abstract
Phytophthora sojae Kaufmann and Gerdemann, which causes Phytophthora root rot, is a widespread pathogen that limits soybean production worldwide. Development of Phytophthora resistant cultivars carrying Phytophthora resistance Rps genes is a cost-effective approach in controlling this disease. For this mapping study of a novel Rps gene, 290 recombinant inbred lines (RILs) (F7 families) were developed by crossing the P. sojae resistant cultivar PI399036 with the P. sojae susceptible AR2 line, and were phenotyped for responses to a mixture of three P. sojae isolates that overcome most of the known Rps genes. Of these 290 RILs, 130 were homozygous resistant, 12 heterzygous and segregating for Phytophthora resistance, and 148 were recessive homozygous and susceptible. From this population, 59 RILs homozygous for Phytophthora sojae resistance and 61 susceptible to a mixture of P. sojae isolates R17 and Val12-11 or P7074 that overcome resistance encoded by known Rps genes mapped to Chromosome 18 were selected for mapping novel Rps gene. A single gene accounted for the 1:1 segregation of resistance and susceptibility among the RILs. The gene encoding the Phytophthora resistance mapped to a 5.8 cM interval between the SSR markers BARCSOYSSR_18_1840 and Sat_064 located in the lower arm of Chromosome 18. The gene is mapped 2.2 cM proximal to the NBSRps4/6-like sequence that was reported to co-segregate with the Phytophthora resistance genes Rps4 and Rps6. The gene is mapped to a highly recombinogenic, gene-rich genomic region carrying several nucleotide binding site-leucine rich repeat (NBS-LRR)-like genes. We named this novel gene as Rps12, which is expected to be an invaluable resource in breeding soybeans for Phytophthora resistance.
Collapse
Affiliation(s)
- Dipak K. Sahoo
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Nilwala S. Abeysekara
- Department Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| | - Silvia R. Cianzio
- Department of Agronomy, Iowa State University, Ames, IA, United States of America
| | - Alison E. Robertson
- Department Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States of America
| | | |
Collapse
|
36
|
Kumawat G, Gupta S, Ratnaparkhe MB, Maranna S, Satpute GK. QTLomics in Soybean: A Way Forward for Translational Genomics and Breeding. FRONTIERS IN PLANT SCIENCE 2016; 7:1852. [PMID: 28066449 PMCID: PMC5174554 DOI: 10.3389/fpls.2016.01852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/23/2016] [Indexed: 05/19/2023]
Abstract
Food legumes play an important role in attaining both food and nutritional security along with sustainable agricultural production for the well-being of humans globally. The various traits of economic importance in legume crops are complex and quantitative in nature, which are governed by quantitative trait loci (QTLs). Mapping of quantitative traits is a tedious and costly process, however, a large number of QTLs has been mapped in soybean for various traits albeit their utilization in breeding programmes is poorly reported. For their effective use in breeding programme it is imperative to narrow down the confidence interval of QTLs, to identify the underlying genes, and most importantly allelic characterization of these genes for identifying superior variants. In the field of functional genomics, especially in the identification and characterization of gene responsible for quantitative traits, soybean is far ahead from other legume crops. The availability of genic information about quantitative traits is more significant because it is easy and effective to identify homologs than identifying shared syntenic regions in other crop species. In soybean, genes underlying QTLs have been identified and functionally characterized for phosphorous efficiency, flowering and maturity, pod dehiscence, hard-seededness, α-Tocopherol content, soybean cyst nematode, sudden death syndrome, and salt tolerance. Candidate genes have also been identified for many other quantitative traits for which functional validation is required. Using the sequence information of identified genes from soybean, comparative genomic analysis of homologs in other legume crops could discover novel structural variants and useful alleles for functional marker development. The functional markers may be very useful for molecular breeding in soybean and harnessing benefit of translational research from soybean to other leguminous crops. Thus, soybean crop can act as a model crop for translational genomics and breeding of quantitative traits in legume crops. In this review, we summarize current status of identification and characterization of genes underlying QTLs for various quantitative traits in soybean and their significance in translational genomics and breeding of other legume crops.
Collapse
Affiliation(s)
- Giriraj Kumawat
- Crop Improvement Section, ICAR—Indian Institute of Soybean ResearchIndore, India
| | | | | | | | | |
Collapse
|
37
|
Li L, Lin F, Wang W, Ping J, Fitzgerald JC, Zhao M, Li S, Sun L, Cai C, Ma J. Fine mapping and candidate gene analysis of two loci conferring resistance to Phytophthora sojae in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:2379-2386. [PMID: 27591777 DOI: 10.1007/s00122-016-2777-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Accepted: 08/24/2016] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE RpsUN1 and RpsUN2 were fine mapped to two genomic regions harboring disease resistance-like genes. The haplotypes and instability of the regions and candidate genes for the two resistance loci were characterized. Phytophthora root and stem rot caused by Phytophthora sojae, is one of the most destructive diseases of soybean. Deploying soybean cultivars carrying race-specific resistance conferred by Rps genes is the most practical approach to managing this disease. Previously, two Rps genes, RpsUN1 and RpsUN2 were identified in a landrace PI 567139B and mapped to a 6.5 cM region on chromosome 3 and a 3.0 cM region on chromosome 16, corresponding to 1387 and 423 kb of the soybean reference genome sequences. By analyzing recombinants defined by genotypic and phenotypic screening of the 826 F2:3 families derived from two reciprocal crosses between the two parental lines, RpsUN1 and RpsUN2, were further narrowed to a 151 kb region that harbors five genes including three disease resistance (R)-like genes, and a 36 kb region that contains four genes including five R-like genes, respectively, according to the reference genome. Expressional changes of these nine genes before and after inoculation with the pathogen, as revealed by RNA-seq, suggest that Glyma.03g034600 in the RpsUN1 region and Glyma.16g215200 and Glyma.16g214900 in the RpsUN2 region of PI 567139B may be associated with the resistance to P. sojae. It is also suggested that unequal recombination between/among R-like genes may have occurred, resulting in the formation of two recombinants with inconsistent genotypic and phenotypic observations. The haplotype variation of genomic regions where RpsUN1 and RpsUN2 reside in the entire soybean germplasm deposited in the US soybean germplasm collection suggests that RpsUN1 and RpsUN2 are most likely novel genes.
Collapse
Affiliation(s)
- Linghong Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Bayer CropScience LP, Research Triangle Park, Durham, NC, 27709, USA
| | | | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, 47907, USA
| | - Shuai Li
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Chunmei Cai
- College of Life Sciences, Qingdao Agricultural University, Qingdao, 266109, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
38
|
Chang HX, Lipka AE, Domier LL, Hartman GL. Characterization of Disease Resistance Loci in the USDA Soybean Germplasm Collection Using Genome-Wide Association Studies. PHYTOPATHOLOGY 2016; 106:1139-1151. [PMID: 27135674 DOI: 10.1094/phyto-01-16-0042-fi] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Genetic resistance is a key strategy for disease management in soybean. Over the last 50 years, soybean germplasm has been phenotyped for resistance to many pathogens, resulting in the development of disease-resistant elite breeding lines and commercial cultivars. While biparental linkage mapping has been used to identify disease resistance loci, genome-wide association studies (GWAS) using high-density and high-quality markers such as single nucleotide polymorphisms (SNPs) has become a powerful tool to associate molecular markers and phenotypes. The objective of our study was to provide a comprehensive understanding of disease resistance in the United States Department of Agriculture Agricultural Research Service Soybean Germplasm Collection by using phenotypic data in the public Germplasm Resources Information Network and public SNP data (SoySNP50K). We identified SNPs significantly associated with disease ratings from one bacterial disease, five fungal diseases, two diseases caused by nematodes, and three viral diseases. We show that leucine-rich repeat (LRR) receptor-like kinases and nucleotide-binding site-LRR candidate resistance genes were enriched within the linkage disequilibrium regions of the significant SNPs. We review and present a global view of soybean resistance loci against multiple diseases and discuss the power and the challenges of using GWAS to discover disease resistance in soybean.
Collapse
Affiliation(s)
- Hao-Xun Chang
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Alexander E Lipka
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Leslie L Domier
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| | - Glen L Hartman
- All authors: Department of Crop Sciences, University of Illinois, Urbana, IL 61801; and third and fourth authors: USDA-Agricultural Research Services, Urbana
| |
Collapse
|
39
|
Schneider R, Rolling W, Song Q, Cregan P, Dorrance AE, McHale LK. Genome-wide association mapping of partial resistance to Phytophthora sojae in soybean plant introductions from the Republic of Korea. BMC Genomics 2016; 17:607. [PMID: 27515508 PMCID: PMC4982113 DOI: 10.1186/s12864-016-2918-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Accepted: 07/07/2016] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Phytophthora root and stem rot is one of the most yield-limiting diseases of soybean [Glycine max (L.) Merr], caused by the oomycete Phytophthora sojae. Partial resistance is controlled by several genes and, compared to single gene (Rps gene) resistance to P. sojae, places less selection pressure on P. sojae populations. Thus, partial resistance provides a more durable resistance against the pathogen. In previous work, plant introductions (PIs) originating from the Republic of Korea (S. Korea) have shown to be excellent sources for high levels of partial resistance against P. sojae. RESULTS Resistance to two highly virulent P. sojae isolates was assessed in 1395 PIs from S. Korea via a greenhouse layer test. Lines exhibiting possible Rps gene immunity or rot due to other pathogens were removed and the remaining 800 lines were used to identify regions of quantitative resistance using genome-wide association mapping. Sixteen SNP markers on chromosomes 3, 13 and 19 were significantly associated with partial resistance to P. sojae and were grouped into seven quantitative trait loci (QTL) by linkage disequilibrium blocks. Two QTL on chromosome 3 and three QTL on chromosome 19 represent possible novel loci for partial resistance to P. sojae. While candidate genes at QTL varied in their predicted functions, the coincidence of QTLs 3-2 and 13-1 on chromosomes 3 and 13, respectively, with Rps genes and resistance gene analogs provided support for the hypothesized mechanism of partial resistance involving weak R-genes. CONCLUSIONS QTL contributing to partial resistance towards P. sojae in soybean germplasm originating from S. Korea were identified. The QTL identified in this study coincide with previously reported QTL, Rps genes, as well as novel loci for partial resistance. Molecular markers associated with these QTL can be used in the marker-assisted introgression of these alleles into elite cultivars. Annotations of genes within QTL allow hypotheses on the possible mechanisms of partial resistance to P. sojae.
Collapse
Affiliation(s)
- Rhiannon Schneider
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA
- Present Address: Pioneer Hi-Bred International Inc., Napoleon, OH, 43545, USA
| | - William Rolling
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Qijian Song
- US Department of Agriculture, Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Perry Cregan
- US Department of Agriculture, Soybean Genomics and Improvement Laboratory, Agricultural Research Service, Beltsville, MD, 20705, USA
| | - Anne E Dorrance
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA
- Department of Plant Pathology, The Ohio State University, Wooster, OH, 44691, USA
| | - Leah K McHale
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, 43210, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
40
|
Matthiesen RL, Abeysekara NS, Ruiz-Rojas JJ, Biyashev RM, Maroof MAS, Robertson AE. A Method for Combining Isolates of Phytophthora sojae to Screen for Novel Sources of Resistance to Phytophthora Stem and Root Rot in Soybean. PLANT DISEASE 2016; 100:1424-1428. [PMID: 30686197 DOI: 10.1094/pdis-08-15-0916-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Soybean cultivars with specific single resistance genes (Rps) are grown to reduce yield loss due to Phytophthora stem and root rot caused by the oomycete pathogen Phytophthora sojae. To identify novel Rps loci, soybean lines are often screened several times, each time with an isolate of P. sojae that differs in virulence on various Rps genes. The goal of this study was to determine whether several isolates of P. sojae that differ in virulence on Rps genes could be combined into a single source of inoculum and used to screen soybean lines for novel Rps genes. A set of 14 soybean differential lines, each carrying a specific Rps gene, was inoculated with three isolates of P. sojae, which differed in virulence on 6 to 10 Rps genes, individually or in a 1:1:1 mixture. Inoculum containing the 1:1:1 mixture of isolates was virulent on 13 Rps genes. The mixed-inoculum method was used to screen 1,019 soybean accessions in a blind assay for novel sources of resistance. In all, 17% of Glycine max accessions and 11% of G. soja accessions were resistant (≤30% dead plants), suggesting that these accessions may carry a novel Rps gene or genes. Advantages of combining isolates into a single source of inoculum include reduced cost, ability to screen soybean germplasm with inoculum virulent on all known Rps genes, and ease of identifying novel sources of resistance. This study is a precursor to identifying novel sources of resistance to P. sojae in soybean using RXLR effectors.
Collapse
Affiliation(s)
- R L Matthiesen
- Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - N S Abeysekara
- Department of Plant and Soil Sciences, University of Delaware, Newark 19716
| | - J J Ruiz-Rojas
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg 24060
| | - R M Biyashev
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg 24060
| | - M A Saghai Maroof
- Department of Crop and Soil Environmental Sciences, Virginia Tech, Blacksburg 24060
| | - A E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University
| |
Collapse
|
41
|
Dorrance AE, Kurle J, Robertson AE, Bradley CA, Giesler L, Wise K, Concibido VC. Pathotype Diversity of Phytophthora sojae in Eleven States in the United States. PLANT DISEASE 2016; 100:1429-1437. [PMID: 30686193 DOI: 10.1094/pdis-08-15-0879-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pathotype diversity of Phytophthora sojae was assessed in 11 states in the United States during 2012 and 2013. Isolates of P. sojae were recovered from 202 fields, either from soil samples using a soybean seedling bioassay or by isolation from symptomatic plants. Each isolate was inoculated directly onto 12 soybean differentials; no Rps gene or Rps 1a, 1b, 1c, 1k, 3a, 3b, 3c, 4, 6, 7, or 8. There were 213 unique virulence pathotypes identified among the 873 isolates collected. None of the Rps genes were effective against all the isolates collected but Rps6 and Rps8 were effective against the majority of isolates collected in the northern regions of the sampled area. Virulence toward Rps1a, 1b, 1c, and 1k ranged from 36 to 100% of isolates collected in each state, while virulence to Rps6 and Rps8 was less than 36 and 10%, respectively. Depending on the state, the effectiveness of Rps3a ranged from totally effective to susceptible to more than 40% of the isolates. Pathotype complexity has increased in populations of P. sojae in the United States, emphasizing the increasing importance of stacked Rps genes in combination with high partial resistance as a means of limiting losses to P. sojae.
Collapse
Affiliation(s)
- A E Dorrance
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster 44691
| | - J Kurle
- Department of Plant Pathology, University of Minnesota, St. Paul 55108
| | - A E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - C A Bradley
- Department of Crop Sciences, University of Illinois, Urbana 61801
| | - L Giesler
- Department of Plant Pathology, University of Nebraska, Lincoln 68583
| | - K Wise
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47097
| | | |
Collapse
|
42
|
Huang J, Guo N, Li Y, Sun J, Hu G, Zhang H, Li Y, Zhang X, Zhao J, Xing H, Qiu L. Phenotypic evaluation and genetic dissection of resistance to Phytophthora sojae in the Chinese soybean mini core collection. BMC Genet 2016; 17:85. [PMID: 27316671 PMCID: PMC4912746 DOI: 10.1186/s12863-016-0383-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/25/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Phytophthora root and stem rot (PRR) caused by Phytophthora sojae is one of the most serious diseases affecting soybean (Glycine max (L.) Merr.) production all over the world. The most economical and environmentally-friendly way to control the disease is the exploration and utilization of resistant varieties. RESULTS We screened a soybean mini core collection composed of 224 germplasm accessions for resistance against eleven P. sojae isolates. Soybean accessions from the Southern and Huanghuai regions, especially the Hubei, Jiangsu, Sichuan and Fujian provinces, had the most varied and broadest spectrum of resistance. Based on gene postulation, Rps1b, Rps1c, Rps4, Rps7 and novel resistance genes were identified in resistant accessions. Consequently, association mapping of resistance to each isolate was performed with 1,645 single nucleotide polymorphism (SNP) markers. A total of 14 marker-trait associations for Phytophthora resistance were identified. Among them, four were located in known PRR resistance loci intervals, five were located in other disease resistance quantitative trait locus (QTL) regions, and five associations unmasked novel loci for PRR resistance. In addition, we also identified candidate genes related to resistance. CONCLUSION This is the first P. sojae resistance evaluation conducted using the Chinese soybean mini core collection, which is a representative sample of Chinese soybean cultivars. The resistance reaction analyses provided an excellent database of resistant resources and genetic variations for future breeding programs. The SNP markers associated with resistance will facilitate marker-assisted selection (MAS) in breeding programs for resistance to PRR, and the candidate genes may be useful for exploring the mechanism underlying P. sojae resistance.
Collapse
Affiliation(s)
- Jing Huang
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Na Guo
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yinghui Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Jutao Sun
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Guanjun Hu
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Haipeng Zhang
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yanfei Li
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China
| | - Xing Zhang
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jinming Zhao
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Han Xing
- National Center for Soybean Improvement/National Key laboratory of Crop Genetics and Germplasm enhancement, Key laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI)/Key Lab of Germplasm Utilization (MOA), Institute of Crop Science, Chinese Academy of Agricultural Sciences, 100081, Beijing, People's Republic of China.
| |
Collapse
|
43
|
Li L, Guo N, Niu J, Wang Z, Cui X, Sun J, Zhao T, Xing H. Loci and candidate gene identification for resistance to Phytophthora sojae via association analysis in soybean [Glycine max (L.) Merr]. Mol Genet Genomics 2016; 291:1095-103. [PMID: 26758588 DOI: 10.1007/s00438-015-1164-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 12/19/2015] [Indexed: 10/22/2022]
Abstract
Phytophthora sojae is an oomycete soil-borne plant pathogen that causes the serious disease Phytophthora root rot in soybean, leading to great loss of soybean production every year. Understanding the genetic basis of this plant-pathogen interaction is important to improve soybean disease resistance. To discover genes or QTLs underlying naturally occurring variations in soybean P.sojae resistance, we performed a genome-wide association study using 59,845 single-nucleotide polymorphisms identified from re-sequencing of 279 accessions from Yangtze-Huai soybean breeding germplasm. We used two models for association analysis. The same strong peak was detected by both two models on chromosome 13. Within the 500-kb flanking regions, three candidate genes (Glyma13g32980, Glyma13g33900, Glyma13g33512) had SNPs in their exon regions. Four other genes were located in this region, two of which contained a leucine-rich repeat domain, which is an important characteristic of R genes in plants. These candidate genes could be potentially useful for improving the resistance of cultivated soybean to P.sojae in future soybean breeding.
Collapse
Affiliation(s)
- Lihong Li
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Na Guo
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jingping Niu
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Zili Wang
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xiaoxia Cui
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Jutao Sun
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tuanjie Zhao
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| | - Han Xing
- National Center for Soybean Improvement/National Key Laboratory of Crop Genetics and Germplasm Enhancement/Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
44
|
Ping J, Fitzgerald JC, Zhang C, Lin F, Bai Y, Wang D, Aggarwal R, Rehman M, Crasta O, Ma J. Identification and molecular mapping of Rps11, a novel gene conferring resistance to Phytophthora sojae in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:445-51. [PMID: 26660465 DOI: 10.1007/s00122-015-2638-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/11/2015] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Rps11 confers excellent resistance to predominant Phytophthora sojae isolates capable of defeating major Rps genes deployed into soybean production, representing a novel source of resistance for soybean cultivar enhancement. ABSTRACT Phytophthora root and stem rot (PRSR), caused by the soil-borne pathogen Phytophthora sojae, is a devastating disease of soybean [Glycine max (L.) Merr.] throughout the world. Deploying resistant soybean cultivars is the most effective and environmentally friendly approach to managing this disease. The soybean landrace PI 594527 was found to carry excellent resistance to all P. sojae isolates examined, some of which were capable of overcoming the major Rps genesp, such as Rps1-k, Rps1-c, and Rps3-a, predominantly used for soybean protection in the past decades. A mapping population consisting of 58 F2 individuals and 209 F2:3 families derived from a cross between PI 594527 and the susceptible cultivar 'Williams' was used to characterize the inheritance pattern of the resistance to P. soja (Rps) in PI 594527. It was found that the resistance was conferred by a single Rps gene, designated Rps11, which was initially defined as an ~5 Mb genomic region at the beginning of chromosome 7 by bulked segregant analysis (BSA) with a nucleotide polymorphism (SNP) chip comprising 7039 SNP markers. Subsequently, simple sequence repeat (SSR) markers in the defined region were used to genotype the F2:3 mapping population to map Rps11 to a 225.3 kb genomic region flanked by SSR markers BARCSOYSSR_07_0286 and BARCSOYSSR_07_0300, according to the soybean reference genome sequence. Particularly, an SSR marker (i.e., BARCSOYSSR_07_0295) was found to tightly co-segregate with Rps11 in the mapping population and can be effectively used for marker-assisted selection of this gene for development of resistant soybean cultivars.
Collapse
Affiliation(s)
- Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Bayer CropScience LP, Research Triangle Park, NC, 27709, USA
| | | | - Chunbao Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
| | - Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | - Yonghe Bai
- Dow AgroSciences LLC., Indianapolis, IN, 46268, USA
- Bayer CropScience LP, Research Triangle Park, NC, 27709, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
45
|
Stewart S, Robertson AE, Wickramasinghe D, Draper MA, Michel A, Dorrance AE. Population Structure Among and Within Iowa, Missouri, Ohio, and South Dakota Populations of Phytophthora sojae. PLANT DISEASE 2016; 100:367-379. [PMID: 30694137 DOI: 10.1094/pdis-04-15-0437-re] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Phytophthora root and stem rot, caused by Phytophthora sojae, is an economically important disease of soybean throughout the Midwestern United States. This disease has been successfully managed with resistance (Rps) genes; however, pathogen populations throughout the Midwest have developed virulence to many Rps genes, including those that have not been deployed. To gain a better understanding of the processes that influence P. sojae evolution, the population genetic structure was compared among populations using one isolate collected from 17, 33, and 20 fields in Iowa, Ohio, and South Dakota, respectively, as well as multiple isolates from individual fields in Iowa, Ohio, and Missouri. Genotypic diversity was measured using 21 polymorphic microsatellite (simple-sequence repeat) markers. and pathotype diversity using 15 soybean differentials. For all but three of the populations with low sample size, there was a high level of pathotype diversity and a low to moderate level of genotypic diversity among the populations for both comparisons between states and within-field variation. None of the Rps-gene differentials were resistant to all of the isolates. There were 103 unique multilocus genotypes identified in this study and only 2 were identified from the same field. Although no clones were identified in more than one field, pairwise FST indicated that some gene flow within neighboring fields does occur but not across the region, including fields from neighboring states. These results suggest that there is a strong probability that each state may have their own or several regional populations, as well as provide further evidence of high diversity within this homothallic pathogen which may be due, in part, to limited gene flow, mutation, or outcrossing, and this likely affects the success of deployment of resistance.
Collapse
Affiliation(s)
- S Stewart
- Department Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - A E Robertson
- Department Plant Pathology and Microbiology, Iowa State University, Ames 50011
| | - D Wickramasinghe
- Department of Plant Pathology, The Ohio State University, Ohio Agricultural Research and Development Center (OARDC), Wooster 44691
| | - M A Draper
- Plant Science Department, South Dakota State University, Brookings 57007-1090
| | | | - A E Dorrance
- Department of Plant Pathology, The Ohio State University, OARDC
| |
Collapse
|
46
|
Yan Q, Cui X, Su L, Xu N, Guo N, Xing H, Dou D. GmSGT1 is differently required for soybean Rps genes-mediated and basal resistance to Phytophthora sojae. PLANT CELL REPORTS 2014; 33:1275-88. [PMID: 24763608 DOI: 10.1007/s00299-014-1615-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/25/2014] [Accepted: 04/01/2014] [Indexed: 05/10/2023]
Abstract
KEY MESSAGE Using RNAi approach, we demonstrate that GmSGT1 is an essential component in soybean against Phytophthora sojae, but not required for Rps 2 or Rps 3a-mediated resistance. Utilization of disease resistance in soybean is a major approach to combat root and stem rot disease, which is caused by Phytophthora sojae and poses a growing threat to soybean safety production. The SGT1 protein is essential for disease resistance in many plant species. Here, we analyzed and characterized functions of GmSGT1 gene family in R protein-mediated resistance and basal defense in this important crop. Five candidate genes of GmSGT1 were identified and they were grouped into three clades. Transcriptional levels of all the tested genes were highly induced upon P. sojae infection in four soybean cultivars that confer different resistant levels. Using a gene silencing system in soybean cotyledons, we demonstrated that silencing GmSGT1 genes comprised race-specific resistance in soybean lines carrying genes at the following loci for race-specific resistance to P. sojae: Rps1a, Rps1c, Rps1d, Rps1k, and Rps8. In contrast, the resistance mediated by Rps2 or Rps3a was not affected. Silencing GmSGT1 genes in cotyledons also reduced resistance to this pathogen in a moderately partial resistant cultivar. We further showed that transient overexpression of GmSGT1-1 in Nicotiana benthamiana could enhance the resistance to P. capsici. These results suggest that GmSGT1 is an essential component for soybean in resisting the pathogen and pathways of Rps-mediated disease resistance are diverse in soybean.
Collapse
Affiliation(s)
- Qiang Yan
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | |
Collapse
|
47
|
Sun J, Li L, Zhao J, Huang J, Yan Q, Xing H, Guo N. Genetic analysis and fine mapping of RpsJS, a novel resistance gene to Phytophthora sojae in soybean [Glycine max (L.) Merr]. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:913-9. [PMID: 24419901 DOI: 10.1007/s00122-014-2266-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 01/03/2014] [Indexed: 05/03/2023]
Abstract
KEY MESSAGE We finely map a novel resistance gene ( RpsJS ) to Phytophthora sojae in soybean. RpsJS was mapped in 138.9 kb region, including three NBS-LRR type predicted genes, on chromosome 18. Phytophthora root rot (PRR) caused by Phytophthora sojae (P. sojae) has been reported in most soybean-growing regions throughout the world. Development of PRR resistance varieties is the most economical and environmentally safe method for controlling this disease. Chinese soybean line Nannong 10-1 is resistant to many P. sojae isolates, and shows different reaction types to P. sojae isolates as compared with those with known Rps (Resistance to P. sojae) genes, which suggests that the line may carry novel Rps genes or alleles. A mapping population of 231 F(2) individuals from the cross of Nannong 10-1 (Resistant, R) and 06-070583 (Susceptible, S) was used to map the Rps gene. The segregation fits a ratio of 3R:1S within F(2) plants, indicating that resistance in Nannong 10-1 is controlled by a single dominant gene (designated as RpsJS). The results showed that RpsJS was mapped on soybean chromosome 18 (molecular linkage group G, MLG G) flanked by SSR (simple repeat sequences) markers BARCSOYSSR_18_1859 and SSRG60752K at a distance of 0.9 and 0.4 cm, respectively. Among the 14 genes annotated in this 138.9 kb region between the two markers, three genes (Glyma18g51930, Glyma18g51950 and Glyma18g51960) are the nucleotide-binding site and a leucine-rich repeat (NBS-LRR) type gene, which may be involved in recognizing the presence of pathogens and ultimately conferring resistance. Based on marker-assisted resistance spectrum analyses of RpsJS and the mapping results, we inferred that RpsJS was a novel gene or a new allele at the Rps4, Rps5 or Rps6 loci.
Collapse
Affiliation(s)
- Jutao Sun
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
48
|
Lin F, Zhao M, Baumann DD, Ping J, Sun L, Liu Y, Zhang B, Tang Z, Hughes E, Doerge RW, Hughes TJ, Ma J. Molecular response to the pathogen Phytophthora sojae among ten soybean near isogenic lines revealed by comparative transcriptomics. BMC Genomics 2014; 15:18. [PMID: 24410936 PMCID: PMC3893405 DOI: 10.1186/1471-2164-15-18] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2013] [Accepted: 01/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Phytophthora root and stem rot (PRR) of soybean, caused by Phytophthora sojae, is controlled by Rps genes. However, little is known regarding the Rps-induced molecular responses to P. sojae and how they actually overlap. We thus sequenced, analyzed, and compared the transcriptomes of 10 near isogenic lines (NILs), each with a unique Rps gene/allele, and the susceptible parent Williams, pre- and post-inoculation with the pathogen. RESULTS A total of 4,330 differentially expressed genes (DEGs) were identified in Williams versus 2,014 to 5,499 DEGs in individual NILs upon inoculation with the pathogen. Comparisons of the DEGs between the NILs and Williams identified incompatible interaction genes (IIGs) and compatible interaction genes (CIGs). Hierarchical cluster and heatmap analyses consistently grouped the NILs into three clusters: Cluster I (Rps1-a), Cluster II (Rps1-b, 1-c and 1-k) and Cluster III (Rps3-a, 3-b, 3-c, 4, 5, and 6), suggesting an overlap in Rps-induced defense signaling among certain NILs. Gene ontology (GO) analysis revealed associations between members of the WRKY family and incompatible reactions and between a number of phytohormone signaling pathways and incompatible/compatible interactions. These associations appear to be distinguished according to the NIL clusters. CONCLUSIONS This study characterized genes and multiple branches of putative regulatory networks associated with resistance to P. sojae in ten soybean NILs, and depicted functional "fingerprints" of individual Rps-mediated resistance responses through comparative transcriptomic analysis. Of particular interest are dramatic variations of detected DEGs, putatively involved in ethylene (ET)-, jasmonic acid (JA)-, (reactive oxygen species) ROS-, and (MAP-kinase) MAPK- signaling, among these soybean NILs, implicating their important roles of these signaling in differentiating molecular defense responses. We hypothesize that different timing and robustness in defense signaling to the same pathogen may be largely responsible for such variations.
Collapse
Affiliation(s)
- Feng Lin
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Meixia Zhao
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Douglas D Baumann
- Department of Mathematics, University of Wisconsin – La Crosse, La Crosse, WI 54601, USA
| | - Jieqing Ping
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lianjun Sun
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Yunfeng Liu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Biao Zhang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Zongxiang Tang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Elisa Hughes
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Rebecca W Doerge
- Department of Statistics, Purdue University, West Lafayette, IN 47907, USA
| | - Teresa J Hughes
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
- USDA-ARS Crop Production and Pest Control Research Unit, Purdue University, West Lafayette, IN 47907, USA
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|