1
|
Paliwal S, Tripathi MK, Tiwari S, Tripathi N, Payasi DK, Tiwari PN, Singh K, Yadav RK, Asati R, Chauhan S. Molecular Advances to Combat Different Biotic and Abiotic Stresses in Linseed ( Linum usitatissimum L.): A Comprehensive Review. Genes (Basel) 2023; 14:1461. [PMID: 37510365 PMCID: PMC10379177 DOI: 10.3390/genes14071461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Flax, or linseed, is considered a "superfood", which means that it is a food with diverse health benefits and potentially useful bioactive ingredients. It is a multi-purpose crop that is prized for its seed oil, fibre, nutraceutical, and probiotic qualities. It is suited to various habitats and agro-ecological conditions. Numerous abiotic and biotic stressors that can either have a direct or indirect impact on plant health are experienced by flax plants as a result of changing environmental circumstances. Research on the impact of various stresses and their possible ameliorators is prompted by such expectations. By inducing the loss of specific alleles and using a limited number of selected varieties, modern breeding techniques have decreased the overall genetic variability required for climate-smart agriculture. However, gene banks have well-managed collectionns of landraces, wild linseed accessions, and auxiliary Linum species that serve as an important source of novel alleles. In the past, flax-breeding techniques were prioritised, preserving high yield with other essential traits. Applications of molecular markers in modern breeding have made it easy to identify quantitative trait loci (QTLs) for various agronomic characteristics. The genetic diversity of linseed species and the evaluation of their tolerance to abiotic stresses, including drought, salinity, heavy metal tolerance, and temperature, as well as resistance to biotic stress factors, viz., rust, wilt, powdery mildew, and alternaria blight, despite addressing various morphotypes and the value of linseed as a supplement, are the primary topics of this review.
Collapse
Affiliation(s)
- Shruti Paliwal
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Jabalpur 482004, India
| | - Devendra K Payasi
- All India Coordinated Research Project on Linseed, Jawaharlal Nehru Krishi Vishwa Vidyalaya, Regional Agricultural Research Station, Sagar 470001, India
| | - Prakash N Tiwari
- Department of Plant Molecular Biology and Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Kirti Singh
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Ruchi Asati
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Shailja Chauhan
- Department of Genetics and Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| |
Collapse
|
2
|
Kaur V, Singh M, Wankhede DP, Gupta K, Langyan S, Aravind J, Thangavel B, Yadav SK, Kalia S, Singh K, Kumar A. Diversity of Linum genetic resources in global genebanks: from agro-morphological characterisation to novel genomic technologies - a review. Front Nutr 2023; 10:1165580. [PMID: 37324736 PMCID: PMC10267467 DOI: 10.3389/fnut.2023.1165580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 04/27/2023] [Indexed: 06/17/2023] Open
Abstract
Linseed or flaxseed is a well-recognized nutritional food with nutraceutical properties owing to high omega-3 fatty acid (α-Linolenic acid), dietary fiber, quality protein, and lignan content. Currently, linseed enjoys the status of a 'superfood' and its integration in the food chain as a functional food is evolving continuously as seed constituents are associated with lowering the risk of chronic ailments, such as heart diseases, cancer, diabetes, and rheumatoid arthritis. This crop also receives much attention in the handloom and textile sectors as the world's coolest fabric linen is made up of its stem fibers which are endowed with unique qualities such as luster, tensile strength, density, bio-degradability, and non-hazardous nature. Worldwide, major linseed growing areas are facing erratic rainfall and temperature patterns affecting flax yield, quality, and response to biotic stresses. Amid such changing climatic regimes and associated future threats, diverse linseed genetic resources would be crucial for developing cultivars with a broad genetic base for sustainable production. Furthermore, linseed is grown across the world in varied agro-climatic conditions; therefore it is vital to develop niche-specific cultivars to cater to diverse needs and keep pace with rising demands globally. Linseed genetic diversity conserved in global genebanks in the form of germplasm collection from natural diversity rich areas is expected to harbor genetic variants and thus form crucial resources for breeding tailored crops to specific culinary and industrial uses. Global genebank collections thus potentially play an important role in supporting sustainable agriculture and food security. Currently, approximately 61,000 germplasm accessions of linseed including 1,127 wild accessions are conserved in genebanks/institutes worldwide. This review analyzes the current status of Linum genetic resources in global genebanks, evaluation for agro-morphological traits, stress tolerance, and nutritional profiling to promote their effective use for sustainable production and nutrition enhancement in our modern diets.
Collapse
Affiliation(s)
- Vikender Kaur
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Mamta Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dhammaprakash Pandhari Wankhede
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Kavita Gupta
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sapna Langyan
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Jayaraman Aravind
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Boopathi Thangavel
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Shashank Kumar Yadav
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Sanjay Kalia
- Department of Biotechnology, Ministry of Science and Technology, Government of India, New Delhi, India
| | - Kuldeep Singh
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Ashok Kumar
- Division of Germplasm Evaluation, Indian Council of Agricultural Research-National Bureau of Plant Genetic Resources, New Delhi, India
| |
Collapse
|
3
|
A LuALS Mutation with High Sulfonylurea Herbicide Resistance in Linum usitatissimum L. Int J Mol Sci 2023; 24:ijms24032820. [PMID: 36769141 PMCID: PMC9917167 DOI: 10.3390/ijms24032820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
The cultivation of herbicide-resistant crops is an effective tool for weed management in agriculture. Weed control in flax (Linum usitatissimum L.) remains challenging due to the lack of available herbicide-resistant cultivars. In this study, a mutant resistant to acetolactate synthase (ALS)-inhibiting herbicides was obtained by ethyl methanesulphonate (EMS) mutagenesis using an elite cultivar, Longya10. Whole-plant dose-response assays revealed that, compared to Longya10, the mutant was 11.57-fold more resistant to tribenuron-methyl (TBM) and slightly resistant to imazethapyr (resistance index (mutant/Longya10) < 3). In vitro acetolactate synthase assays showed that the relative resistance of the mutant was 12.63 times more than that of Longya10. A biochemical analysis indicated that there was a Pro197Ser (relative to the Arabidopsis thaliana ALS sequence) substitution within the LuALS1, conferring high resistance to sulfonylurea herbicides in the mutant. Additionally, two cleaved amplified polymorphic sequence (CAPS) markers, BsaI-LuALS1 and EcoO109I-LuALS1, were developed based on the mutation site for marker assistant selection in breeding. Moreover, the mutant did not cause losses in natural field conditions. We find a mutant with ALS-inhibiting herbicide resistance chemically induced by EMS mutagenesis, providing a valuable germplasm for breeding herbicide-resistant flax varieties.
Collapse
|
4
|
Povkhova LV, Melnikova NV, Rozhmina TA, Novakovskiy RO, Pushkova EN, Dvorianinova EM, Zhuchenko AA, Kamionskaya AM, Krasnov GS, Dmitriev AA. Genes Associated with the Flax Plant Type (Oil or Fiber) Identified Based on Genome and Transcriptome Sequencing Data. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122616. [PMID: 34961087 PMCID: PMC8707629 DOI: 10.3390/plants10122616] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
As a result of the breeding process, there are two main types of flax (Linum usitatissimum L.) plants. Linseed is used for obtaining seeds, while fiber flax is used for fiber production. We aimed to identify the genes associated with the flax plant type, which could be important for the formation of agronomically valuable traits. A search for polymorphisms was performed in genes involved in the biosynthesis of cell wall components, lignans, fatty acids, and ion transport based on genome sequencing data for 191 flax varieties. For 143 of the 424 studied genes (4CL, C3'H, C4H, CAD, CCR, CCoAOMT, COMT, F5H, HCT, PAL, CTL, BGAL, ABC, HMA, DIR, PLR, UGT, TUB, CESA, RGL, FAD, SAD, and ACT families), one or more polymorphisms had a strong correlation with the flax type. Based on the transcriptome sequencing data, we evaluated the expression levels for each flax type-associated gene in a wide range of tissues and suggested genes that are important for the formation of linseed or fiber flax traits. Such genes were probably subjected to the selection press and can determine not only the traits of seeds and stems but also the characteristics of the root system or resistance to stresses at a particular stage of development, which indirectly affects the ability of flax plants to produce seeds or fiber.
Collapse
Affiliation(s)
- Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Tatiana A. Rozhmina
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Ekaterina M. Dvorianinova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
- Moscow Institute of Physics and Technology, 141701 Moscow, Russia
| | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia; (T.A.R.); (A.A.Z.)
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, 115598 Moscow, Russia
| | - Anastasia M. Kamionskaya
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, 119071 Moscow, Russia;
| | - George S. Krasnov
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia; (L.V.P.); (N.V.M.); (R.O.N.); (E.N.P.); (E.M.D.); (G.S.K.)
| |
Collapse
|
5
|
Soto-Cerda BJ, Aravena G, Cloutier S. Genetic dissection of flowering time in flax (Linum usitatissimum L.) through single- and multi-locus genome-wide association studies. Mol Genet Genomics 2021; 296:877-891. [PMID: 33903955 DOI: 10.1007/s00438-021-01785-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/09/2021] [Indexed: 01/19/2023]
Abstract
In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile.
| | - Gabriela Aravena
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
6
|
Li Z, Chi H, Liu C, Zhang T, Han L, Li L, Pei X, Long Y. Genome-wide identification and functional characterization of LEA genes during seed development process in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2021; 21:193. [PMID: 33882851 PMCID: PMC8059249 DOI: 10.1186/s12870-021-02972-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/06/2021] [Indexed: 05/03/2023]
Abstract
BACKGROUND LEA proteins are widely distributed in the plant and animal kingdoms, as well as in micro-organisms. LEA genes make up a large family and function in plant protection against a variety of adverse conditions. RESULTS Bioinformatics approaches were adopted to identify LEA genes in the flax genome. In total, we found 50 LEA genes in the genome. We also conducted analyses of the physicochemical parameters and subcellular location of the genes and generated a phylogenetic tree. LuLEA genes were unevenly mapped among 15 flax chromosomes and 90% of the genes had less than two introns. Expression profiles of LuLEA showed that most LuLEA genes were expressed at a late stage of seed development. Functionally, the LuLEA1 gene reduced seed size and fatty acid contents in LuLEA1-overexpressed transgenic Arabidopsis lines. CONCLUSION Our study adds valuable knowledge about LEA genes in flax which can be used to improve related genes of seed development.
Collapse
Affiliation(s)
- Zhen Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Hui Chi
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Caiyue Liu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Tianbao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lida Han
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liang Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yan Long
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
7
|
Sertse D, You FM, Ravichandran S, Soto-Cerda BJ, Duguid S, Cloutier S. Loci harboring genes with important role in drought and related abiotic stress responses in flax revealed by multiple GWAS models. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:191-212. [PMID: 33047220 DOI: 10.1007/s00122-020-03691-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 09/18/2020] [Indexed: 05/19/2023]
Abstract
QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.
Collapse
Affiliation(s)
- Demissew Sertse
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Sridhar Ravichandran
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada
| | - Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Centre (CGNA), Las Heras 350, 4781158, Temuco, Chile
| | - Scott Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, Canada
| | - Sylvie Cloutier
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada.
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON, Canada.
| |
Collapse
|
8
|
You FM, Cloutier S. Mapping Quantitative Trait Loci onto Chromosome-Scale Pseudomolecules in Flax. Methods Protoc 2020; 3:mps3020028. [PMID: 32260372 PMCID: PMC7359702 DOI: 10.3390/mps3020028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 01/07/2023] Open
Abstract
Quantitative trait loci (QTL) are genomic regions associated with phenotype variation of quantitative traits. To date, a total of 313 QTL for 31 quantitative traits have been reported in 14 studies on flax. Of these, 200 QTL from 12 studies were identified based on genetic maps, the scaffold sequences, or the pre-released chromosome-scale pseudomolecules. Molecular markers for QTL identification differed across studies but the most used ones were simple sequence repeats (SSRs) or single nucleotide polymorphisms (SNPs). To uniquely map the SSR and SNP markers from different references onto the recently released chromosome-scale pseudomolecules, methods with several scripts and database files were developed to locate PCR- and SNP-based markers onto the same reference, co-locate QTL, and scan genome-wide candidate genes. Using these methods, 195 out of 200 QTL were successfully sorted onto the 15 flax chromosomes and grouped into 133 co-located QTL clusters; the candidate genes that co-located with these QTL clusters were also predicted. The methods and tools presented in this article facilitate marker re-mapping to a new reference, genome-wide QTL analysis, candidate gene scanning, and breeding applications in flax and other crops.
Collapse
|
9
|
Zhang J, Qi Y, Wang L, Wang L, Yan X, Dang Z, Li W, Zhao W, Pei X, Li X, Liu M, Tan M, Wang L, Long Y, Wang J, Zhang X, Dang Z, Zheng H, Liu T. Genomic Comparison and Population Diversity Analysis Provide Insights into the Domestication and Improvement of Flax. iScience 2020; 23:100967. [PMID: 32240956 PMCID: PMC7114909 DOI: 10.1016/j.isci.2020.100967] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/17/2020] [Accepted: 03/03/2020] [Indexed: 01/23/2023] Open
Abstract
Flax has been cultivated for its oil and fiber for thousands of years. However, it remains unclear how the modifications of agronomic traits occurred on the genetic level during flax cultivation. In this study, we conducted genome-wide variation analyses on multiple accessions of oil-use, fiber-use, landraces, and pale flax to identify the genomic variations during flax cultivation. Our findings indicate that, during flax domestication, genes relevant to flowering, dehiscence, oil production, and plant architecture were preferentially selected. Furthermore, regardless of origins, the improvement of the modern oil-use flax preceded that of the fiber-use flax, although the dual selection on oil-use and fiber-use characteristics might have occurred in the early flax domestication. We also found that the expansion of MYB46/MYB83 genes may have contributed to the unique secondary cell wall biosynthesis in flax and the directional selections on MYB46/MYB83 may have shaped the morphological profile of the current oil-use and fiber-use flax. Assemblies of genomes, including oil-use flax, fiber-use flax and pale flax Comparative genomic analysis between pale flax and cultivated flax Dual-selection mode on oil-use and fiber-use characteristics might be existing Expansion and selection of MYB46/MYB83 may shape the morphological profile of flax
Collapse
Affiliation(s)
- Jianping Zhang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Yanni Qi
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Limin Wang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Lili Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xingchu Yan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhao Dang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wenjuan Li
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Wei Zhao
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xuming Li
- Biomarker Technologies Corporation, Beijing, China
| | - Min Liu
- Biomarker Technologies Corporation, Beijing, China
| | - Meilian Tan
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Lei Wang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Wang
- Biomarker Technologies Corporation, Beijing, China
| | - Xuewen Zhang
- Biomarker Technologies Corporation, Beijing, China
| | - Zhanhai Dang
- Institute of Crop Research, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | | | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha, Hunan, China.
| |
Collapse
|
10
|
Porokhovinova EA, Pavlov AV, Kutuzova SN, Brutch NB. Interaction of Genes Controlling Some Morphological Features of Flax (Linum usitatissimum L.). RUSS J GENET+ 2019. [DOI: 10.1134/s1022795419110103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
He L, Xiao J, Rashid KY, Yao Z, Li P, Jia G, Wang X, Cloutier S, You FM. Genome-Wide Association Studies for Pasmo Resistance in Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2019; 9:1982. [PMID: 30693010 PMCID: PMC6339956 DOI: 10.3389/fpls.2018.01982] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 12/20/2018] [Indexed: 05/04/2023]
Abstract
Pasmo is one of the most widespread diseases threatening flax production. To identify genetic regions associated with pasmo resistance (PR), a genome-wide association study was performed on 370 accessions from the flax core collection. Evaluation of pasmo severity was performed in the field from 2012 to 2016 in Morden, MB, Canada. Genotyping-by-sequencing has identified 258,873 single nucleotide polymorphisms (SNPs) distributed on all 15 flax chromosomes. Marker-trait associations were identified using ten different statistical models. A total of 692 unique quantitative trait nucleotides (QTNs) associated with 500 putative quantitative trait loci (QTL) were detected from six phenotypic PR datasets (five individual years and average across years). Different QTNs were identified with various statistical models and from individual PR datasets, indicative of the complementation between analytical methods and/or genotype × environment interactions of the QTL effects. The single-locus models tended to identify large-effect QTNs while the multi-loci models were able to detect QTNs with smaller effects. Among the putative QTL, 67 had large effects (3-23%), were stable across all datasets and explained 32-64% of the total variation for PR in the various datasets. Forty-five of these QTL spanned 85 resistance gene analogs including a large toll interleukin receptor, nucleotide-binding site, leucine-rich repeat (TNL) type gene cluster on chromosome 8. The number of QTL with positive-effect or favorite alleles (NPQTL) in accessions was significantly correlated with PR (R 2 = 0.55), suggesting that these QTL effects are mainly additive. NPQTL was also significantly associated with morphotype (R 2 = 0.52) and major QTL with positive effect alleles were present in the fiber type accessions. The 67 large effect QTL are suited for marker-assisted selection and the 500 QTL for effective genomic prediction in PR molecular breeding.
Collapse
Affiliation(s)
- Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Jin Xiao
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Khalid Y. Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Pingchuan Li
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Gaofeng Jia
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiue Wang
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Frank M. You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
- Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Agriculture, Nanjing Agricultural University/JCIC-MCP, Nanjing, China
| |
Collapse
|
12
|
Makkar C, Singh J, Parkash C. Modulatory role of vermicompost and vermiwash on growth, yield and nutritional profiling of Linum usitatissimum L. (Linseed): a field study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:3006-3018. [PMID: 30506382 DOI: 10.1007/s11356-018-3845-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/23/2018] [Indexed: 06/09/2023]
Abstract
Vermicompost, recommended inorganic fertiliser, vermiwash and their combinations were used in the present study to know their impact on the germination, growth, yield, oil content and nutritional status in seeds of two varieties of Linum usitatissimum L. LC-54 and LC-2063. Eight treatments, in 48 plots with three replicates, were studied and compared with control. Application of vermicompost enhanced growth and yield in both varieties of Linum. Vermicompost modulated the ratio of ω-3 and ω-6 fatty acids in seeds of Linseed. Growing degree days (GDD) indicated the significantly shortened of crop life cycle with vermiwash. Vermiwash particularly increased the yield indices. Fatty acid profile through GC-FID showed the increase in polyunsaturated fatty acids (ƩPUFA), monounsaturated fatty acids (ƩMUFA) and saturated fatty acids (ƩSFA) with Integrated Nutrient Management (INM). Different effects on nutritional status of LC-54 and LC-2063 seeds can be attributed to their unique genotypes. INM proved to be nutritionally balanced strategy with enhanced yield leading to better soil health. INM can be hypothesised as a transitional step to the organic agriculture after the green revolution, when compared with recommended inorganic fertiliser treatment and control. In terms of oil yield, highest oil content 34.85% and 33.67% was obtained with Integrated Nutrient Management in both the varieties, whereas treatments with vermicompost and vermiwash produced modulated and most suited ratio of omega-3 and omega-6 in Linseed seeds.
Collapse
Affiliation(s)
- Cinny Makkar
- Department of Applied Sciences, I.K.G. Punjab Technical University, Jalandhar, Punjab, India
| | - Jaswinder Singh
- Department of Zoology, Khalsa College, Amritsar, Punjab, India.
| | - Chander Parkash
- Department of Applied Sciences, I.K.G. Punjab Technical University, Jalandhar, Punjab, India
- Department of Chemical Sciences, I.K.G. Punjab Technical University, Jalandhar, Punjab, India
| |
Collapse
|
13
|
Miart F, Fontaine JX, Pineau C, Demailly H, Thomasset B, Van Wuytswinkel O, Pageau K, Mesnard F. MuSeeQ, a novel supervised image analysis tool for the simultaneous phenotyping of the soluble mucilage and seed morphometric parameters. PLANT METHODS 2018; 14:112. [PMID: 30568724 PMCID: PMC6297999 DOI: 10.1186/s13007-018-0377-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The mucilage is a model to study the polysaccharide biosynthesis since it is produced in large amounts and composed of complex polymers. In addition, it is of great economic interest for its technical and nutritional value. A fast method for phenotyping the released mucilage and the seed morphometric parameters will be useful for fundamental, food, pharmaceutical and breeding researches. Current strategies to phenotype soluble mucilage are restricted to visual evaluations or are highly time-consuming. RESULTS Here, we developed a high-throughput phenotyping method for the simultaneous measurement of the soluble mucilage content released on a gel and the seed morphometric parameters. Within this context, we combined a biochemical assay and an open-source computer-aided image analysis tool, MuSeeQ. The biochemical assay consists in sowing seeds on an agarose medium containing the dye toluidine blue O, which specifically stains the mucilage once it is released on the gel. The second part of MuSeeQ is a macro developed in ImageJ allowing to quickly extract and analyse 11 morphometric data of seeds and their respective released mucilages. As an example, MuSeeQ was applied on a flax recombinant inbred lines population (previously screened for fatty acids content.) and revealed significant correlations between the soluble mucilage shape and the concentration of some fatty acids, e.g. C16:0 and C18:2. Other fatty acids were also found to correlate with the seed shape parameters, e.g. C18:0 and C18:2. MuSeeQ was then showed to be used for the analysis of other myxospermous species, including Arabidopsis thaliana and Camelina sativa. CONCLUSIONS MuSeeQ is a low-cost and user-friendly method which may be used by breeders and researchers for phenotyping simultaneously seeds of specific cultivars, natural variants or mutants and their respective soluble mucilage area released on a gel. The script of MuSeeQ and video tutorials are freely available at http://MuSeeQ.free.fr.
Collapse
Affiliation(s)
- Fabien Miart
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
- Present Address: Institut Jean-Pierre Bourgin, UMR1318, INRA/AgroParisTech, Saclay Plant Sciences, INRA Centre de Versailles, 78026 Versailles Cedex, France
| | - Jean-Xavier Fontaine
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Christophe Pineau
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Hervé Demailly
- Centre de ressources régionales en biologie moléculaire, Bâtiment Serrres-Transfert, rue Dallery, 80039 Amiens Cedex 1, France
| | - Brigitte Thomasset
- Sorbonne Universités, Génie Enzymatique et Cellulaire, UMR CNRS 7025, Université de Technologie de Compiègne, CS 60319, 60203 Compiègne Cedex, France
| | - Olivier Van Wuytswinkel
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - Karine Pageau
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| | - François Mesnard
- Laboratoire de Biologie des Plantes et Innovation, EA-3900, UPJV, UFR des Sciences, 33 rue St Leu, 80039 Amiens, France
| |
Collapse
|
14
|
Soto-Cerda BJ, Cloutier S, Quian R, Gajardo HA, Olivos M, You FM. Genome-Wide Association Analysis of Mucilage and Hull Content in Flax ( Linum usitatissimum L.) Seeds. Int J Mol Sci 2018; 19:ijms19102870. [PMID: 30248911 PMCID: PMC6213135 DOI: 10.3390/ijms19102870] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 09/14/2018] [Accepted: 09/18/2018] [Indexed: 01/20/2023] Open
Abstract
New flaxseed cultivars differing in seed mucilage content (MC) with low hull content (HC) represent an attractive option to simultaneously target the food and feed markets. Here, a genome-wide association study (GWAS) was conducted for MC and HC in 200 diverse flaxseed accessions genotyped with 1.7 million single nucleotide polymorphism (SNP) markers. The data obtained for MC and HC indicated a broad phenotypic variation and high (~70%) and a moderate (~49%) narrow sense heritability, respectively. MC and HC did not differ statistically between fiber and oil morphotypes, but yellow-seeded accessions had 2.7% less HC than brown-seeded ones. The genome-wide linkage disequilibrium (LD) decayed to r2 = 0.1 at a physical distance of ~100 kb. Seven and four quantitative trait loci (QTL) were identified for MC and HC, respectively. Promising candidate genes identified include Linum usitatissimum orthologs of the Arabidopsis thaliana genes TRANSPARENT TESTA 8, SUBTILISIN-LIKE SERINE PROTEASE, GALACTUROSYL TRANSFERASE-LIKE 5, MUCILAGE-MODIFIED 4, AGAMOUS-LIKE MADS-BOX PROTEIN AGL62, GLYCOSYL HYDROLASE FAMILY 17, and UDP-GLUCOSE FLAVONOL 3-O-GLUCOSYLTRANSFERASE. These genes have been shown to play a role in mucilage synthesis and release, seed coat development and anthocyanin biosynthesis in A. thaliana. The favorable alleles will be useful in flaxseed breeding towards the goal of achieving the ideal MC and HC composition for food and feed by genomic-based breeding.
Collapse
Affiliation(s)
- Braulio J Soto-Cerda
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Rocío Quian
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Humberto A Gajardo
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Marcos Olivos
- Agriaquaculture Nutritional Genomic Center (CGNA), Las Heras 350, Temuco 4781158, Chile.
| | - Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| |
Collapse
|
15
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018. [PMID: 30086718 DOI: 10.1186/s128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070, China.
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
16
|
Zhang J, Long Y, Wang L, Dang Z, Zhang T, Song X, Dang Z, Pei X. Consensus genetic linkage map construction and QTL mapping for plant height-related traits in linseed flax (Linum usitatissimum L.). BMC PLANT BIOLOGY 2018; 18:160. [PMID: 30086718 PMCID: PMC6081803 DOI: 10.1186/s12870-018-1366-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/16/2018] [Indexed: 05/14/2023]
Abstract
BACKGROUND Flax is an important field crop that can be used for either oilseed or fiber production. Plant height and technical length are important characters for flax. For linseed flax, plants usually have a short technical length and plant height than those for fiber flax. As an important agronomical character for fiber and linseed flax, plant height is usually a selection target for breeding. However, because of limited technologies and methods available, there has been little research focused on discovering the molecular mechanism controlling plant height. RESULTS In this study, two related recombinant inbred line (RIL) populations developed from crosses of linseed and fiber parents were developed and phenotyped for plant height and technical length in four environments. A consensus linkage map based on two RIL populations was constructed using SNP markers generated by genotyping by sequencing (GBS) technology. A total of 4497 single nucleotide polymorphism (SNP) markers were included on 15 linkage groups with an average marker density of one marker every 2.71 cM. Quantitative trait locus (QTL) mapping analysis was performed for plant height and technical length using the two populations. A total of 19 QTLs were identified for plant height and technical length. For the MH population, eight plant height QTLs and seven technical length QTLs were identified, five of which were common QTLs for both traits. For the PH population, six plant height and three technical length QTLs were identified. By comparing the QTLs and candidate gene information in the two population, two common QTLs and three candidate genes were discovered. CONCLUSIONS This study provides a foundation for map-based cloning of QTLs and marker-assisted selection for plant height-related traits in linseed and fiber flax.
Collapse
Affiliation(s)
- Jianping Zhang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Yan Long
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Liming Wang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Zhao Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Tianbao Zhang
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaxia Song
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Zhanhai Dang
- Crop Institute, Gansu Academy of Agricultural Sciences, Lanzhou, 730070 China
| | - Xinwu Pei
- Institute of Biotechnology, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
17
|
You FM, Xiao J, Li P, Yao Z, Jia G, He L, Kumar S, Soto-Cerda B, Duguid SD, Booker HM, Rashid KY, Cloutier S. Genome-Wide Association Study and Selection Signatures Detect Genomic Regions Associated with Seed Yield and Oil Quality in Flax. Int J Mol Sci 2018; 19:ijms19082303. [PMID: 30082613 PMCID: PMC6121305 DOI: 10.3390/ijms19082303] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/31/2022] Open
Abstract
A genome-wide association study (GWAS) was performed on a set of 260 lines which belong to three different bi-parental flax mapping populations. These lines were sequenced to an averaged genome coverage of 19× using the Illumina Hi-Seq platform. Phenotypic data for 11 seed yield and oil quality traits were collected in eight year/location environments. A total of 17,288 single nucleotide polymorphisms were identified, which explained more than 80% of the phenotypic variation for days to maturity (DTM), iodine value (IOD), palmitic (PAL), stearic, linoleic (LIO) and linolenic (LIN) acid contents. Twenty-three unique genomic regions associated with 33 quantitative trait loci (QTL) for the studied traits were detected, thereby validating four genomic regions previously identified. The 33 QTL explained 48–73% of the phenotypic variation for oil content, IOD, PAL, LIO and LIN but only 8–14% for plant height, DTM and seed yield. A genome-wide selective sweep scan for selection signatures detected 114 genomic regions that accounted for 7.82% of the flax pseudomolecule and overlapped with the 11 GWAS-detected genomic regions associated with 18 QTL for 11 traits. The results demonstrate the utility of GWAS combined with selection signatures for dissection of the genetic structure of traits and for pinpointing genomic regions for breeding improvement.
Collapse
Affiliation(s)
- Frank M You
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Jin Xiao
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Department of Agronomy, Nanjing Agricultural University, Nanjing 210095, China.
| | - Pingchuan Li
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Zhen Yao
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Gaofeng Jia
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Liqiang He
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB R7A 5Y3, Canada.
| | - Braulio Soto-Cerda
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
- Agriaquaculture Nutritional Genomic Center, CGNA, Temuco 4871158, Chile.
| | - Scott D Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Helen M Booker
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK S7N 5A8, Canada.
| | - Khalid Y Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB R6M 1Y5, Canada.
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON K1A 0C6, Canada.
- Department of Plant Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada.
| |
Collapse
|
18
|
You FM, Jia G, Xiao J, Duguid SD, Rashid KY, Booker HM, Cloutier S. Genetic Variability of 27 Traits in a Core Collection of Flax ( Linum usitatissimum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1636. [PMID: 28993783 PMCID: PMC5622609 DOI: 10.3389/fpls.2017.01636] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 09/06/2017] [Indexed: 05/20/2023]
Abstract
Assessment of genetic variability of plant core germplasm is needed for efficient germplasm utilization in breeding improvement. A total of 391 accessions of a flax core collection, which preserves the variation present in the world collection of 3,378 accessions maintained by Plant Gene Resources of Canada (PGRC) and represents a broad range of geographical origins, different improvement statuses and two morphotypes, was evaluated in field trials in up to 8 year-location environments for 10 agronomic, eight seed quality, six fiber and three disease resistance traits. The large phenotypic variation in this subset was explained by morphotypes (22%), geographical origins (11%), and other variance components (67%). Both divergence and similarity between two basic morphotypes, namely oil or linseed and fiber types, were observed, whereby linseed accessions had greater thousand seed weight, seeds m-2, oil content, branching capability and resistance to powdery mildew while fiber accessions had greater straw weight, plant height, protein content and resistance to pasmo and fusarium wilt diseases, but they had similar performance in many traits and some of them shared common characteristics of fiber and linseed types. Weak geographical patterns within either fiber or linseed accessions were confirmed, but specific trait performance was identified in East Asia for fiber type, and South Asia and North America for linseed type. Relatively high broad-sense heritability was obtained for seed quality traits, followed by agronomic traits and resistance to powdery mildew and fusarium wilt. Diverse phenotypic and genetic variability in the flax core collection constitutes a useful resource for breeding.
Collapse
Affiliation(s)
- Frank M. You
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
- *Correspondence: Frank M. You
| | - Gaofeng Jia
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
- Crop Development Centre, Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Jin Xiao
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
- Department of Agronomy, Nanjing Agricultural UniversityNanjing, China
| | - Scott D. Duguid
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
| | - Khalid Y. Rashid
- Morden Research and Development Centre, Agriculture and Agri-Food CanadaMorden, MB, Canada
| | - Helen M. Booker
- Crop Development Centre, Department of Plant Sciences, University of SaskatchewanSaskatoon, SK, Canada
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food CanadaOttawa, ON, Canada
- Sylvie Cloutier
| |
Collapse
|
19
|
Singh N, Kumar R, Kumar S, Singh PK, Yadav VK, Ranade SA, Yadav HK. Genetic diversity, population structure and association analysis in linseed ( Linum usitatissimum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2017; 23:207-219. [PMID: 28250596 PMCID: PMC5313412 DOI: 10.1007/s12298-016-0408-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/15/2016] [Accepted: 12/23/2016] [Indexed: 05/16/2023]
Abstract
The present investigation aimed to explore the level of genetic diversity, determine the population structure in a larger set of germplasm of linseed using microsatellite marker and identify linked markers through association mapping. A total of 168 accessions of linseed were evaluated for major agro-economic traits and SSRs markers deployed for diversity assessment. A total of 337 alleles were amplified by 50 SSRs ranging from 2 to 13 with an average of 6.74 ± 2.8 alleles per loci. The neighbor joining based clustering grouped all the accessions into three major clusters that were also confirmed by scatter plot of PCoA. While model based clustering determined four sub-populations (K = 4). Further, analysis of molecular variance analysis considering three population showed that maximum variation (79%) was within the population. We identified one putative SSR marker (Lu_3043) linked with days to 50% flowering through both GLM and MLM analysis of association mapping. The results of this preliminary study revealed genetic diversity, population structure in linseed and linked marker which could be utilized in future breeding program.
Collapse
Affiliation(s)
- Neha Singh
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226001 India
| | - Rajendra Kumar
- Uttar Pradesh Council of Agricultural Research (UPCAR), Vibhuti Khand, Gomatinagar, Lucknow, 226010 India
| | - Sujit Kumar
- Uttar Pradesh Council of Agricultural Research (UPCAR), Vibhuti Khand, Gomatinagar, Lucknow, 226010 India
| | | | - V. K. Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226001 India
- Academy of Scientific and Innovative Research, New Delhi, India
| | - S. A. Ranade
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226001 India
| | - Hemant Kumar Yadav
- CSIR-National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226001 India
- Academy of Scientific and Innovative Research, New Delhi, India
| |
Collapse
|
20
|
Frank MY, Gaofeng J, Sylvie C, Helen MB, Scott DD, Khalid YR. A method of estimating broad-sense heritability for quantitative traits in the type 2 modified augmented design. ACTA ACUST UNITED AC 2016. [DOI: 10.5897/jpbcs2016.0614] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
|
22
|
Association Mapping in Turkish Olive Cultivars Revealed Significant Markers Related to Some Important Agronomic Traits. Biochem Genet 2016; 54:506-533. [PMID: 27209034 DOI: 10.1007/s10528-016-9738-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/07/2016] [Indexed: 10/21/2022]
Abstract
Olive (Olea europaea L.) is one of the most important fruit trees especially in the Mediterranean countries due to high consumption of table olive and olive oil. In olive breeding, the phenotypic traits associated to fruit are the key factors that determine productivity. Association mapping has been used in some tree species and a lot of crop plant species, and here, we perform an initial effort to detect marker-trait associations in olive tree. In the current study, a total of 96 olive genotypes, including both oil and table olive genotypes from Turkish Olive GenBank Resources, were used to examine marker-trait associations. For olive genotyping, SNP, AFLP, and SSR marker data were selected from previously published study and association analysis was performed between these markers and 5 yield-related traits. Three different approaches were used to check for false-positive results in association tests, and association results obtained from these models were compared. Using the model utilizing both population structure and relative kinship, eleven associations were significant with FDR ≤ 0.05. The largest number of significant associations was detected for fruit weight and stone weight. Our results suggested that association mapping could be an effective approach for identifying marker-trait associations in olive genotypes, without the development of mapping populations. This study shows for the first time the use of association mapping for identifying molecular markers linked to important traits in olive tree.
Collapse
|
23
|
Thambugala D, Ragupathy R, Cloutier S. Structural organization of fatty acid desaturase loci in linseed lines with contrasting linolenic acid contents. Funct Integr Genomics 2016; 16:429-39. [PMID: 27142663 DOI: 10.1007/s10142-016-0494-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 04/12/2016] [Accepted: 04/18/2016] [Indexed: 01/15/2023]
Abstract
Flax (Linum usitatissimum L.), the richest crop source of omega-3 fatty acids (FAs), is a diploid plant with an estimated genome size of ~370 Mb and is well suited for studying genomic organization of agronomically important traits. In this study, 12 bacterial artificial chromosome clones harbouring the six FA desaturase loci sad1, sad2, fad2a, fad2b, fad3a and fad3b from the conventional variety CDC Bethune and the high linolenic acid line M5791 were sequenced, analysed and compared to determine the structural organization of these loci and to gain insights into the genetic mechanisms underlying FA composition in flax. With one gene every 3.2-4.6 kb, the desaturase loci have a higher gene density than the genome's average of one gene per 7.8-8.2 kb. The gene order and orientation across the two genotypes were generally conserved with the exception of the sad1 locus that was predicted to have additional genes in CDC Bethune. High sequence conservation in both genic and intergenic regions of the sad and fad2b loci contrasted with the significant level of variation of the fad2a and fad3 loci, with SNPs being the most frequently observed mutation type. The fad2a locus had 297 SNPs and 36 indels over ~95 kb contrasting with the fad2b locus that had a mere seven SNPs and four indels in ~110 kb. Annotation of the gene-rich loci revealed other genes of known role in lipid or carbohydrate metabolic/catabolic pathways. The organization of the fad2b locus was particularly complex with seven copies of the fad2b gene in both genotypes. The presence of Gypsy, Copia, MITE, Mutator, hAT and other novel repeat elements at the desaturase loci was similar to that of the whole genome. This structural genomic analysis provided some insights into the genomic organization and composition of the main desaturase loci of linseed and of their complex evolution through both tandem and whole genome duplications.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Raja Ragupathy
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada
| | - Sylvie Cloutier
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, R3T 2N2, Canada. .,Ottawa Research and Development Centre, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|
24
|
Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:965-84. [PMID: 25748113 DOI: 10.1007/s00122-015-2483-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 02/11/2015] [Indexed: 05/23/2023]
Abstract
The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed. Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Kumar S, You FM, Duguid S, Booker H, Rowland G, Cloutier S. QTL for fatty acid composition and yield in linseed (Linum usitatissimum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015. [PMID: 25748113 DOI: 10.1007/s00122-015-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The combined SSR-SNP map and 20 QTL for agronomic and quality traits will assist in marker assisted breeding as well as map-based cloning of key genes in linseed. Flax is an important nutraceutical crop mostly because it is a rich source of omega-3 fatty acids and antioxidant compounds. Canada is the largest producer and exporter of oilseed flax (or linseed), creating a growing need to improve crop productivity and quality. In this study, a genetic map was constructed based on selected 329 single nucleotide polymorphic markers and 362 simple sequence repeat markers using a recombinant inbred line population of 243 individuals from a cross between the Canadian varieties CDC Bethune and Macbeth. The genetic map consisted of 15 linkage groups comprising 691 markers with an average marker density of one marker every 1.9 cM. A total of 20 quantitative trait loci (QTL) were identified corresponding to 14 traits. Three QTL each for oleic acid and stearic acid, two QTL each for linoleic acid and iodine value and one each for palmitic acid, linolenic acid, oil content, seed protein, cell wall, straw weight, thousand seed weight, seeds per boll, yield and days to maturity were identified. The QTL for cell wall, straw weight, seeds per boll, yield and days to maturity all co-located on linkage group 4. Analysis of the candidate gene regions underlying the QTL identified proteins involved in cell wall and fibre synthesis, fatty acid biosynthesis as well as their metabolism and yield component traits. This study provides the foundation for assisting in map-based cloning of the QTL and marker assisted selection of a wide range of quality and agronomic traits in linseed and potentially fibre flax.
Collapse
Affiliation(s)
- Santosh Kumar
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB, R3T 2N2, Canada
| | | | | | | | | | | |
Collapse
|
26
|
Lao YW, Mackenzie K, Vincent W, Krokhin OV. Characterization and complete separation of major cyclolinopeptides in flaxseed oil by reversed-phase chromatography. J Sep Sci 2014; 37:1788-96. [DOI: 10.1002/jssc.201400193] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/16/2014] [Accepted: 04/23/2014] [Indexed: 11/09/2022]
Affiliation(s)
- Ying W. Lao
- Department of Chemistry; University of Manitoba; Winnipeg Canada
| | | | | | - Oleg V. Krokhin
- Manitoba Centre for Proteomics and Systems Biology; Winnipeg Canada
- Department of Internal Medicine; University of Manitoba; Winnipeg Canada
| |
Collapse
|
27
|
Thambugala D, Cloutier S. Fatty acid composition and desaturase gene expression in flax (Linum usitatissimum L.). J Appl Genet 2014; 55:423-32. [PMID: 24871199 PMCID: PMC4185102 DOI: 10.1007/s13353-014-0222-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Revised: 04/29/2014] [Accepted: 05/02/2014] [Indexed: 10/29/2022]
Abstract
Little is known about the relationship between expression levels of fatty acid desaturase genes during seed development and fatty acid (FA) composition in flax. In the present study, we looked at promoter structural variations of six FA desaturase genes and their relative expression throughout seed development. Computational analysis of the nucleotide sequences of the sad1, sad2, fad2a, fad2b, fad3a and fad3b promoters showed several basic transcriptional elements including CAAT and TATA boxes, and several putative target-binding sites for transcription factors, which have been reported to be involved in the regulation of lipid metabolism. Using semi-quantitative reverse transcriptase PCR, the expression patterns throughout seed development of the six FA desaturase genes were measured in six flax genotypes that differed for FA composition but that carried the same desaturase isoforms. FA composition data were determined by phenotyping the field grown genotypes over four years in two environments. All six genes displayed a bell-shaped pattern of expression peaking at 20 or 24 days after anthesis. Sad2 was the most highly expressed. The expression of all six desaturase genes did not differ significantly between genotypes (P = 0.1400), hence there were no correlations between FA desaturase gene expression and variations in FA composition in relatively low, intermediate and high linolenic acid genotypes expressing identical isoforms for all six desaturases. These results provide further clues towards understanding the genetic factors responsible for FA composition in flax.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Department of Plant Science, University of Manitoba, 66 Dafoe Rd, Winnipeg, MB, Canada, R3T 2N2
| | | |
Collapse
|