1
|
Amouzoune M, Rehman S, Benkirane R, Udupa S, Mamidi S, Kehel Z, Al-Jaboobi M, Amri A. Genome wide association study of seedling and adult plant leaf rust resistance in two subsets of barley genetic resources. Sci Rep 2024; 14:15428. [PMID: 38965257 PMCID: PMC11224298 DOI: 10.1038/s41598-024-53149-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 01/29/2024] [Indexed: 07/06/2024] Open
Abstract
Leaf rust (LR) caused by Puccinia hordei is a serious disease of barley worldwide, causing significant yield losses and reduced grain quality. Discovery and incorporation of new sources of resistance from gene bank accessions into barley breeding programs is essential for the development of leaf rust resistant varieties. To identify Quantitative Trait Loci (QTL) conferring LR resistance in the two barley subsets, the Generation Challenge Program (GCP) reference set of 142 accessions and the leaf rust subset constructed using the Focused Identification of Germplasm Strategy (FIGS) of 76 barley accessions, were genotyped to conduct a genome-wide association study (GWAS). The results revealed a total of 59 QTL in the 218 accessions phenotyped against barley leaf rust at the seedling stage using two P. hordei isolates (ISO-SAT and ISO-MRC), and at the adult plant stage in four environments in Morocco. Out of these 59 QTL, 10 QTL were associated with the seedling resistance (SR) and 49 QTL were associated with the adult plant resistance (APR). Four QTL showed stable effects in at least two environments for APR, whereas two common QTL associated with SR and APR were detected on chromosomes 2H and 7H. Furthermore, 39 QTL identified in this study were potentially novel. Interestingly, the sequences of 27 SNP markers encoded the candidate genes (CGs) with predicted protein functions in plant disease resistance. These results will provide new perspectives on the diversity of leaf rust resistance loci for fine mapping, isolation of resistance genes, and for marker-assisted selection for the LR resistance in barley breeding programs worldwide.
Collapse
Affiliation(s)
- Mariam Amouzoune
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco.
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco.
| | - Sajid Rehman
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
- Field Crop Development Center, The Olds College, Lacombe, AB, T4L 1W8, Canada
| | - Rachid Benkirane
- Faculty of Sciences, University Ibn Tofail, 14000, Kenitra, Morocco
| | - Sripada Udupa
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Sujan Mamidi
- Hudson Alpha Institute for Biotechnology, 601 Genome Way Northwest, Huntsville, AL, 35806, USA
| | - Zakaria Kehel
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Muamer Al-Jaboobi
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| | - Ahmed Amri
- Biodiversity and Crop Improvement Program, International Center for Agricultural Research in the Dry Areas (ICARDA), 10100, Rabat, Morocco
| |
Collapse
|
2
|
Pradhan AK, Budhlakoti N, Chandra Mishra D, Prasad P, Bhardwaj SC, Sareen S, Sivasamy M, Jayaprakash P, Geetha M, Nisha R, Shajitha P, Peter J, Kaur A, Kaur S, Vikas VK, Singh K, Kumar S. Identification of Novel QTLs/Defense Genes in Spring Wheat Germplasm Panel for Seedling and Adult Plant Resistance to Stem Rust and Their Validation Through KASP Marker Assays. PLANT DISEASE 2023:PDIS09222242RE. [PMID: 37311158 DOI: 10.1094/pdis-09-22-2242-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stem rust is one of the major diseases threatening wheat production globally. To identify novel resistance quantitative trait loci (QTLs), we performed 35K Axiom Array SNP genotyping assays on an association mapping panel of 400 germplasm accessions, including Indian landraces, in conjunction with phenotyping for stem rust at seedling and adult plant stages. Association analyses using three genome wide association study (GWAS) models (CMLM, MLMM, and FarmCPU) revealed 20 reliable QTLs for seedling and adult plant resistance. Among these 20 QTLs, five QTLs were found consistent with three models, i.e., four QTLs on chromosome 2AL, 2BL, 2DL, and 3BL for seedling resistance and one QTL on chromosome 7DS for adult plant resistance. Further, we identified a total of 21 potential candidate genes underlying QTLs using gene ontology analysis, including a leucine rich repeat receptor (LRR) and P-loop nucleoside triphosphate hydrolase, which have a role in pathogen recognition and disease resistance. Furthermore, four QTLs (Qsr.nbpgr-3B_11, QSr.nbpgr-6AS_11, QSr.nbpgr-2AL_117-6, and QSr.nbpgr-7BS_APR) were validated through KASP located on chromosomes 3B, 6A, 2A, and 7B. Out of these QTLs, QSr.nbpgr-7BS_APR was identified as a novel QTL for stem rust resistance which has been found effective in both seedling as well as the adult plant stages. Identified novel genomic regions and validated QTLs have the potential to be deployed in wheat improvement programs to develop disease resistant varieties for stem rust and can diversify the genetic basis of resistance.
Collapse
Affiliation(s)
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| | | | - Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh 171002, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh 171002, India
| | - Sindhu Sareen
- ICAR-Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - M Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - P Jayaprakash
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - M Geetha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - R Nisha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - P Shajitha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - John Peter
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - Amandeep Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana 141004, India
| | - V K Vikas
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington 643 231, India
| | - Kuldeep Singh
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Telangana 502324, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi 110012, India
| |
Collapse
|
3
|
Ziems LA, Singh L, Dracatos PM, Dieters MJ, Sanchez-Garcia M, Amri A, Verma RPS, Park RF, Singh D. Characterization of Leaf Rust Resistance in International Barley Germplasm Using Genome-Wide Association Studies. PLANTS (BASEL, SWITZERLAND) 2023; 12:862. [PMID: 36840210 PMCID: PMC9963359 DOI: 10.3390/plants12040862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/09/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
A panel of 114 genetically diverse barley lines were assessed in the greenhouse and field for resistance to the pathogen Puccinia hordei, the causal agent of barley leaf rust. Multi-pathotype tests revealed that 16.6% of the lines carried the all-stage resistance (ASR) gene Rph3, followed by Rph2 (4.4%), Rph1 (1.7%), Rph12 (1.7%) or Rph19 (1.7%). Five lines (4.4%) were postulated to carry the gene combinations Rph2+9.am, Rph2+19 and Rph8+19. Three lines (2.6%) were postulated to carry Rph15 based on seedling rust tests and genotyping with a marker linked closely to this gene. Based on greenhouse seedling tests and adult-plant field tests, 84 genotypes (73.7%) were identified as carrying APR, and genotyping with molecular markers linked closely to three known APR genes (Rph20, Rph23 and Rph24) revealed that 48 of the 84 genotypes (57.1%) likely carry novel (uncharacterized) sources of APR. Seven lines were found to carry known APR gene combinations (Rph20+Rph23, Rph23+Rph24 and Rph20+Rph24), and these lines had higher levels of field resistance compared to those carrying each of these three APR genes singly. GWAS identified 12 putative QTLs; strongly associated markers located on chromosomes 1H, 2H, 3H, 5H and 7H. Of these, the QTL on chromosome 7H had the largest effect on resistance response to P. hordei. Overall, these studies detected several potentially novel genomic regions associated with resistance. The findings provide useful information for breeders to support the utilization of these sources of resistance to diversify resistance to leaf rust in barley and increase resistance durability.
Collapse
Affiliation(s)
- Laura A. Ziems
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Lovepreet Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Peter M. Dracatos
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
- Department of Animal, Plant and Soil Sciences, AgriBio, La Trobe University, Bundoora, VIC 3086, Australia
| | - Mark J. Dieters
- School of Agriculture and Food Sciences, The University of Queensland, Brisbane, QLD 4067, Australia
| | - Miguel Sanchez-Garcia
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ahmed Amri
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
| | - Ramesh Pal Singh Verma
- International Centre for Agriculture Research in Dry Areas (ICARDA), Rabat 10170, Morocco
- Indian Institute of Wheat and Barley Research, Karnal 132001, India
| | - Robert F. Park
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| | - Davinder Singh
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW 2570, Australia
| |
Collapse
|
4
|
Dinh HX, Singh D, Gomez de la Cruz D, Hensel G, Kumlehn J, Mascher M, Stein N, Perovic D, Ayliffe M, Moscou MJ, Park RF, Pourkheirandish M. The barley leaf rust resistance gene Rph3 encodes a predicted membrane protein and is induced upon infection by avirulent pathotypes of Puccinia hordei. Nat Commun 2022; 13:2386. [PMID: 35501307 PMCID: PMC9061838 DOI: 10.1038/s41467-022-29840-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 04/03/2022] [Indexed: 01/04/2023] Open
Abstract
Leaf rust, caused by Puccinia hordei, is an economically significant disease of barley, but only a few major resistance genes to P. hordei (Rph) have been cloned. In this study, gene Rph3 was isolated by positional cloning and confirmed by mutational analysis and transgenic complementation. The Rph3 gene, which originated from wild barley and was first introgressed into cultivated Egyptian germplasm, encodes a unique predicted transmembrane resistance protein that differs from all known plant disease resistance proteins at the amino acid sequence level. Genetic profiles of diverse accessions indicated limited genetic diversity in Rph3 in domesticated germplasm, and higher diversity in wild barley from the Eastern Mediterranean region. The Rph3 gene was expressed only in interactions with Rph3-avirulent P. hordei isolates, a phenomenon also observed for transcription activator-like effector-dependent genes known as executors conferring resistance to Xanthomonas spp. Like known transmembrane executors such as Bs3 and Xa7, heterologous expression of Rph3 in N. benthamiana induced a cell death response. The isolation of Rph3 highlights convergent evolutionary processes in diverse plant-pathogen interaction systems, where similar defence mechanisms evolved independently in monocots and dicots. Leaf rust is an economically significant disease of barley. Here the authors describe cloning of the barley Rph3 leaf rust resistance gene and reveal it encodes a predicted transmembrane protein that is expressed upon infection by Rph3-avirulent Puccinia hordei isolates.
Collapse
|
5
|
Vikas VK, Pradhan AK, Budhlakoti N, Mishra DC, Chandra T, Bhardwaj SC, Kumar S, Sivasamy M, Jayaprakash P, Nisha R, Shajitha P, Peter J, Geetha M, Mir RR, Singh K, Kumar S. Multi-locus genome-wide association studies (ML-GWAS) reveal novel genomic regions associated with seedling and adult plant stage leaf rust resistance in bread wheat (Triticum aestivum L.). Heredity (Edinb) 2022; 128:434-449. [PMID: 35418669 DOI: 10.1038/s41437-022-00525-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 01/02/2023] Open
Abstract
Leaf rust is one of the important diseases limiting global wheat production and productivity. To identify quantitative trait nucleotides (QTNs) or genomic regions associated with seedling and adult plant leaf rust resistance, multilocus genome-wide association studies (ML-GWAS) were performed on a panel of 400 diverse wheat genotypes using 35 K single-nucleotide polymorphism (SNP) genotyping assays and trait data of leaf rust resistance. Association analyses using six multi-locus GWAS models revealed a set of 201 significantly associated QTNs for seedling and 65 QTNs for adult plant resistance (APR), explaining 1.98-31.72% of the phenotypic variation for leaf rust. Among these QTNs, 51 reliable QTNs for seedling and 15 QTNs for APR were consistently detected in at least two GWAS models and were considered reliable QTNs. Three genomic regions were pleiotropic, each controlling two to three pathotype-specific seedling resistances to leaf rust. We also identified candidate genes, such as leucine-rich repeat receptor-like (LRR) protein kinases, P-loop containing nucleoside triphosphate hydrolase and serine-threonine/tyrosine-protein kinases (STPK), which have a role in pathogen recognition and disease resistance linked to the significantly associated genomic regions. The QTNs identified in this study can prove useful in wheat molecular breeding programs aimed at enhancing resistance to leaf rust and developing next-generation leaf rust-resistant varieties.
Collapse
Affiliation(s)
- V K Vikas
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | | | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | | | - Tilak Chandra
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Flowerdale, Shimla, Himachal Pradesh, 171002, India
| | - M Sivasamy
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Jayaprakash
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - R Nisha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - P Shajitha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - John Peter
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - M Geetha
- ICAR-Indian Agricultural Research Institute, Regional Station, Wellington, 643 231, India
| | - Reyazul Rouf Mir
- Division of Genetics and Plant Breeding, Faculty of Agriculture (FoA), Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir (SKUAST-K), Srinagar, India
| | - Kuldeep Singh
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.,Genetic Resource Division, ICRISAT, Patancheru, Hyderabad, India
| | - Sundeep Kumar
- ICAR-National Bureau of Plant Genetic Resources, New Delhi, 110012, India.
| |
Collapse
|
6
|
Jambuthenne DT, Riaz A, Athiyannan N, Alahmad S, Ng WL, Ziems L, Afanasenko O, Periyannan SK, Aitken E, Platz G, Godwin I, Voss-Fels KP, Dinglasan E, Hickey LT. Mining the Vavilov wheat diversity panel for new sources of adult plant resistance to stripe rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1355-1373. [PMID: 35113190 PMCID: PMC9033734 DOI: 10.1007/s00122-022-04037-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
Multi-year evaluation of the Vavilov wheat diversity panel identified new sources of adult plant resistance to stripe rust. Genome-wide association studies revealed the key genomic regions influencing resistance, including seven novel loci. Wheat stripe rust (YR) caused by Puccinia striiformis f. sp. tritici (Pst) poses a significant threat to global food security. Resistance genes commonly found in many wheat varieties have been rendered ineffective due to the rapid evolution of the pathogen. To identify novel sources of adult plant resistance (APR), 292 accessions from the N.I. Vavilov Institute of Plant Genetic Resources, Saint Petersburg, Russia, were screened for known APR genes (i.e. Yr18, Yr29, Yr46, Yr33, Yr39 and Yr59) using linked polymerase chain reaction (PCR) molecular markers. Accessions were evaluated against Pst (pathotype 134 E16 A + Yr17 + Yr27) at seedling and adult plant stages across multiple years (2014, 2015 and 2016) in Australia. Phenotypic analyses identified 132 lines that potentially carry novel sources of APR to YR. Genome-wide association studies (GWAS) identified 68 significant marker-trait associations (P < 0.001) for YR resistance, representing 47 independent quantitative trait loci (QTL) regions. Fourteen genomic regions overlapped with previously reported Yr genes, including Yr29, Yr56, Yr5, Yr43, Yr57, Yr30, Yr46, Yr47, Yr35, Yr36, Yrxy1, Yr59, Yr52 and YrYL. In total, seven QTL (positioned on chromosomes 1D, 2A, 3A, 3D, 5D, 7B and 7D) did not collocate with previously reported genes or QTL, indicating the presence of promising novel resistance factors. Overall, the Vavilov diversity panel provides a rich source of new alleles which could be used to broaden the genetic bases of YR resistance in modern wheat varieties.
Collapse
Affiliation(s)
- Dilani T Jambuthenne
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Naveenkumar Athiyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Samir Alahmad
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Wei Ling Ng
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Laura Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Olga Afanasenko
- Department of Plant Resistance To Diseases, All Russian Research Institute for Plant Protection, St Petersburg, Russia, 196608
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food,, Canberra, ACT, Australia
| | - Elizabeth Aitken
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Ian Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Eric Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| |
Collapse
|
7
|
Yadav S, Ross EM, Aitken KS, Hickey LT, Powell O, Wei X, Voss-Fels KP, Hayes BJ. A linkage disequilibrium-based approach to position unmapped SNPs in crop species. BMC Genomics 2021; 22:773. [PMID: 34715779 PMCID: PMC8555328 DOI: 10.1186/s12864-021-08116-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 10/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High-density SNP arrays are now available for a wide range of crop species. Despite the development of many tools for generating genetic maps, the genome position of many SNPs from these arrays is unknown. Here we propose a linkage disequilibrium (LD)-based algorithm to allocate unassigned SNPs to chromosome regions from sparse genetic maps. This algorithm was tested on sugarcane, wheat, and barley data sets. We calculated the algorithm's efficiency by masking SNPs with known locations, then assigning their position to the map with the algorithm, and finally comparing the assigned and true positions. RESULTS In the 20-fold cross-validation, the mean proportion of masked mapped SNPs that were placed by the algorithm to a chromosome was 89.53, 94.25, and 97.23% for sugarcane, wheat, and barley, respectively. Of the markers that were placed in the genome, 98.73, 96.45 and 98.53% of the SNPs were positioned on the correct chromosome. The mean correlations between known and new estimated SNP positions were 0.97, 0.98, and 0.97 for sugarcane, wheat, and barley. The LD-based algorithm was used to assign 5920 out of 21,251 unpositioned markers to the current Q208 sugarcane genetic map, representing the highest density genetic map for this species to date. CONCLUSIONS Our LD-based approach can be used to accurately assign unpositioned SNPs to existing genetic maps, improving genome-wide association studies and genomic prediction in crop species with fragmented and incomplete genome assemblies. This approach will facilitate genomic-assisted breeding for many orphan crops that lack genetic and genomic resources.
Collapse
Affiliation(s)
- Seema Yadav
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia.
| | - Elizabeth M Ross
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Karen S Aitken
- Agriculture and Food, CSIRO, Queensland Bioscience Precinct, St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Owen Powell
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Xianming Wei
- Sugar Research Australia, Mackay, QLD, 4741, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia
| | - Ben J Hayes
- Queensland Alliance for Agriculture and Food Innovation, Queensland Bioscience Precinct, 306 Carmody Rd., St. Lucia, Brisbane, Queensland, 4067, Australia.
| |
Collapse
|
8
|
Dyda M, Tyrka M, Gołębiowska G, Rapacz M, Wędzony M. Genetic mapping of adult-plant resistance genes to powdery mildew in triticale. J Appl Genet 2021; 63:73-86. [PMID: 34561842 PMCID: PMC8755695 DOI: 10.1007/s13353-021-00664-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/21/2022]
Abstract
Triticale is a cereal of high economic importance; however, along with the increase in the area of this cereal, it is more often infected by the fungal pathogen Blumeria graminis, which causes powdery mildew. The rapid development of molecular biology techniques, in particular methods based on molecular markers may be an important tool used in modern plant breeding. Development of genetic maps, location of the QTLs defining the region of the genome associated with resistance and selection of markers linked to particular trait can be used to select resistant genotypes as well as to pyramidize several resistance genes in one variety. In this paper, we present a new, high-density genetic map of triticale doubled haploids (DH) population “Grenado” × “Zorro” composed of DArT, silicoDArT, and SNP markers. Composite interval mapping method was used to detect eight QTL regions associated with the area under disease progress curve (AUDPC) and 15 regions with the average value of powdery mildew infection (avPM) based on observation conducted in 3-year period in three different locations across the Poland. Two regions on rye chromosome 4R, and single loci on 5R and 6R were reported for the first time as regions associated with powdery mildew resistance. Among all QTLs, 14 candidate genes were identified coded cyclin-dependent kinase, serine/threonine-protein kinase-like protein as well as AMEIOTIC 1 homolog DYAD-like protein, DETOXIFICATION 16-like protein, and putative disease resistance protein RGA3. Three of identified candidate genes were found among newly described QTL regions associated with powdery mildew resistance in triticale.
Collapse
Affiliation(s)
- Mateusz Dyda
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland.
| | - Mirosław Tyrka
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszów University of Technology, Rzeszów, Poland
| | - Gabriela Gołębiowska
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| | - Marcin Rapacz
- Department of Plant Breeding, Physiology and Seed Science, University of Agriculture in Kraków, Podłużna 3, 30-239, Krakow, Poland
| | - Maria Wędzony
- Chair of Genetics, Institute of Biology, Pedagogical University of Cracow, Podchorążych 2, 30-084, Kraków, Poland
| |
Collapse
|
9
|
Dinglasan EG, Singh D, Shankar M, Afanasenko O, Platz G, Godwin ID, Voss-Fels KP, Hickey LT. Discovering new alleles for yellow spot resistance in the Vavilov wheat collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:149-162. [PMID: 30327845 DOI: 10.1007/s00122-018-3204-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/09/2018] [Indexed: 06/08/2023]
Abstract
GWAS detected 11 yellow spot resistance QTL in the Vavilov wheat collection. Promising adult-plant resistance loci could provide a sustainable genetic solution to yellow spot in modern wheat varieties. Yellow spot, caused by the fungal pathogen Pyrenophora tritici-repentis (Ptr), is the most economically damaging foliar disease of wheat in Australia. Genetic resistance is considered to be the most sustainable means for disease management, yet the genomic regions underpinning resistance to Ptr, particularly adult-plant resistance (APR), remain vastly unknown. In this study, we report results of a genome-wide association study using 295 accessions from the Vavilov wheat collection which were extensively tested for response to Ptr infections in glasshouse and field trials at both seedling an adult growth stages. Combining phenotypic datasets from multiple experiments in Australia and Russia with 25,286 genome-wide, high-quality DArTseq markers, we detected a total of 11 QTL, of which 5 were associated with seedling resistance, 3 with all-stage resistance, and 3 with APR. Interestingly, the novel APR QTL were effective even in the presence of host sensitivity gene Tsn1. These genomic regions could offer broad-spectrum yellow spot protection, not just to ToxA but also other pathogenicity or virulence factors. Vavilov wheat accessions carrying APR QTL combinations displayed enhanced levels of resistance highlighting the potential for QTL stacking through breeding. We propose that the APR genetic factors discovered in our study could be used to improve resistance levels in modern wheat varieties and contribute to the sustainable control of yellow spot.
Collapse
Affiliation(s)
- Eric G Dinglasan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Dharmendra Singh
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
| | - Manisha Shankar
- Department of Primary Industries and Regional Development, South Perth, WA, Australia
- School of Agriculture and Environment, University of Western Australia, Crawley, WA, Australia
| | - Olga Afanasenko
- Department of Plant Resistance to Diseases, All-Russian Research Institute of Plant Protection, St. Petersburg, Russia
| | - Greg Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility (HRF), Warwick, QLD, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia
- School of Agriculture and Food Sciences, The University of Queensland, St. Lucia, QLD, Australia
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia, QLD, Australia.
| |
Collapse
|
10
|
Looseley ME, Griffe LL, Büttner B, Wright KM, Middlefell-Williams J, Bull H, Shaw PD, Macaulay M, Booth A, Schweizer G, Russell JR, Waugh R, Thomas WTB, Avrova A. Resistance to Rhynchosporium commune in a collection of European spring barley germplasm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:2513-2528. [PMID: 30151748 DOI: 10.1007/s00122-018-3168-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 08/17/2018] [Indexed: 05/02/2023]
Abstract
Association analyses of resistance to Rhynchosporium commune in a collection of European spring barley germplasm detected 17 significant resistance quantitative trait loci. The most significant association was confirmed as Rrs1. Rhynchosporium commune is a fungal pathogen of barley which causes a highly destructive and economically important disease known as rhynchosporium. Genome-wide association mapping was used to investigate the genetic control of host resistance to R. commune in a collection of predominantly European spring barley accessions. Multi-year disease nursery field trials revealed 8 significant resistance quantitative trait loci (QTL), whilst a separate association mapping analysis using historical data from UK national and recommended list trials identified 9 significant associations. The most significant association identified in both current and historical data sources, collocated with the known position of the major resistance gene Rrs1. Seedling assays with R. commune single-spore isolates expressing the corresponding avirulence protein NIP1 confirmed that this locus is Rrs1. These results highlight the significant and continuing contribution of Rrs1 to host resistance in current elite spring barley germplasm. Varietal height was shown to be negatively correlated with disease severity, and a resistance QTL was identified that co-localised with the semi-dwarfing gene sdw1, previously shown to contribute to disease escape. The remaining QTL represent novel resistances that are present within European spring barley accessions. Associated markers to Rrs1 and other resistance loci, identified in this study, represent a set of tools that can be exploited by breeders for the sustainable deployment of varietal resistance in new cultivars.
Collapse
Affiliation(s)
- Mark E Looseley
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK.
| | - Lucie L Griffe
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- RAGT Seeds Ltd, Grange Road, Ickleton, Saffron Walden, Essex, CB10 1TA, UK
| | - Bianca Büttner
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Kathryn M Wright
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Hazel Bull
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
- Syngenta UK Ltd, Market Stainton, Market Rasen, Lincolnshire, LN8 5LJ, UK
| | - Paul D Shaw
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Malcolm Macaulay
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Allan Booth
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Günther Schweizer
- Bavarian State Research Center for Agriculture, Institute for Crop Science and Plant Breeding, Am Gereuth 2, 85354, Freising, Germany
| | - Joanne R Russell
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | - Robbie Waugh
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| | | | - Anna Avrova
- The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, Scotland, UK
| |
Collapse
|
11
|
Vatter T, Maurer A, Perovic D, Kopahnke D, Pillen K, Ordon F. Identification of QTL conferring resistance to stripe rust (Puccinia striiformis f. sp. hordei) and leaf rust (Puccinia hordei) in barley using nested association mapping (NAM). PLoS One 2018; 13:e0191666. [PMID: 29370232 PMCID: PMC5784946 DOI: 10.1371/journal.pone.0191666] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 01/09/2018] [Indexed: 11/18/2022] Open
Abstract
The biotrophic rust fungi Puccinia hordei and Puccinia striiformis are important barley pathogens with the potential to cause high yield losses through an epidemic spread. The identification of QTL conferring resistance to these pathogens is the basis for targeted breeding approaches aiming to improve stripe rust and leaf rust resistance of modern cultivars. Exploiting the allelic richness of wild barley accessions proved to be a valuable tool to broaden the genetic base of resistance of barley cultivars. In this study, SNP-based nested association mapping (NAM) was performed to map stripe rust and leaf rust resistance QTL in the barley NAM population HEB-25, comprising 1,420 lines derived from BC1S3 generation. By scoring the percentage of infected leaf area, followed by calculation of the area under the disease progress curve and the average ordinate during a two-year field trial, a large variability of resistance across and within HEB-25 families was observed. NAM based on 5,715 informative SNPs resulted in the identification of twelve and eleven robust QTL for resistance against stripe rust and leaf rust, respectively. Out of these, eight QTL for stripe rust and two QTL for leaf rust are considered novel showing no overlap with previously reported resistance QTL. Overall, resistance to both pathogens in HEB-25 is most likely due to the accumulation of numerous small effect loci. In addition, the NAM results indicate that the 25 wild donor QTL alleles present in HEB-25 strongly differ in regard to their individual effect on rust resistance. In future, the NAM concept will allow to select and combine individual wild barley alleles from different HEB parents to increase rust resistance in barley. The HEB-25 results will support to unravel the genetic basis of rust resistance in barley, and to improve resistance against stripe rust and leaf rust of modern barley cultivars.
Collapse
Affiliation(s)
- Thomas Vatter
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Andreas Maurer
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Dragan Perovic
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Doris Kopahnke
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
| | - Klaus Pillen
- Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Chair of Plant Breeding, Halle, Germany
| | - Frank Ordon
- Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Julius Kuehn-Institute (JKI), Quedlinburg, Germany
- * E-mail:
| |
Collapse
|
12
|
Riaz A, Athiyannan N, Periyannan SK, Afanasenko O, Mitrofanova OP, Platz GJ, Aitken EAB, Snowdon RJ, Lagudah ES, Hickey LT, Voss-Fels KP. Unlocking new alleles for leaf rust resistance in the Vavilov wheat collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:127-144. [PMID: 28980023 DOI: 10.1007/s00122-017-2990-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/21/2017] [Indexed: 05/06/2023]
Abstract
Thirteen potentially new leaf rust resistance loci were identified in a Vavilov wheat diversity panel. We demonstrated the potential of allele stacking to strengthen resistance against this important pathogen. Leaf rust (LR) caused by Puccinia triticina is an important disease of wheat (Triticum aestivum L.), and the deployment of genetically resistant cultivars is the most viable strategy to minimise yield losses. In this study, we evaluated a diversity panel of 295 bread wheat accessions from the N. I. Vavilov Institute of Plant Genetic Resources (St Petersburg, Russia) for LR resistance and performed genome-wide association studies (GWAS) using 10,748 polymorphic DArT-seq markers. The diversity panel was evaluated at seedling and adult plant growth stages using three P. triticina pathotypes prevalent in Australia. GWAS was applied to 11 phenotypic data sets which identified a total of 52 significant marker-trait associations representing 31 quantitative trait loci (QTL). Among them, 29 QTL were associated with adult plant resistance (APR). Of the 31 QTL, 13 were considered potentially new loci, whereas 4 co-located with previously catalogued Lr genes and 14 aligned to regions reported in other GWAS and genomic prediction studies. One seedling LR resistance QTL located on chromosome 3A showed pronounced levels of linkage disequilibrium among markers (r 2 = 0.7), suggested a high allelic fixation. Subsequent haplotype analysis for this region found seven haplotype variants, of which two were strongly associated with LR resistance at seedling stage. Similarly, analysis of an APR QTL on chromosome 7B revealed 22 variants, of which 4 were associated with resistance at the adult plant stage. Furthermore, most of the tested lines in the diversity panel carried 10 or more combined resistance-associated marker alleles, highlighting the potential of allele stacking for long-lasting resistance.
Collapse
Affiliation(s)
- Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
| | - Naveenkumar Athiyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sambasivam K Periyannan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Olga Afanasenko
- Department of Plant Resistance to Diseases, All-Russian Research Institute for Plant Protection, St Petersburg, Russia
| | - Olga P Mitrofanova
- N. I. Vavilov Institute of Plant Genetic Resources, St Petersburg, Russia
| | - Gregory J Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, Australia
| | - Elizabeth A B Aitken
- School of Agriculture and Food Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Rod J Snowdon
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany
| | - Evans S Lagudah
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
| | - Kai P Voss-Fels
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, Australia.
- Department of Plant Breeding, IFZ Research Centre for Biosystems, Land Use and Nutrition, Justus Liebig University, Giessen, Germany.
| |
Collapse
|
13
|
Ziems LA, Franckowiak JD, Platz GJ, Mace ES, Park RF, Singh D, Jordan DR, Hickey LT. Investigating successive Australian barley breeding populations for stable resistance to leaf rust. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:2463-2477. [PMID: 28836114 DOI: 10.1007/s00122-017-2970-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Genome-wide association studies of barley breeding populations identified candidate minor genes for pairing with the adult plant resistance gene Rph20 to provide stable leaf rust resistance across environments. Stable resistance to barley leaf rust (BLR, caused by Puccinia hordei) was evaluated across environments in barley breeding populations (BPs). To identify genomic regions that can be combined with Rph20 to improve adult plant resistance (APR), two BPs genotyped with the Diversity Arrays Technology genotyping-by-sequencing platform (DArT-seq) were examined for reaction to BLR at both seedling and adult growth stages in Australian environments. An integrated consensus map comprising both first- and second-generation DArT platforms was used to integrate QTL information across two additional BPs, providing a total of four interrelated BPs and 15 phenotypic data sets. This enabled identification of key loci underpinning BLR resistance. The APR gene Rph20 was the only active resistance region consistently detected across BPs. Of the QTL identified, RphQ27 on chromosome 6HL was considered the best candidate for pairing with Rph20. RphQ27 did not align or share proximity with known genes and was detected in three of the four BPs. The combination of RphQ27 and Rph20 was of low frequency in the breeding material; however, strong resistance responses were observed for the lines carrying this pairing. This suggests that the candidate minor gene RphQ27 can interact additively with Rph20 to provide stable resistance to BLR across diverse environments.
Collapse
Affiliation(s)
- L A Ziems
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - J D Franckowiak
- Department of Agronomy and Plant Genetics, University of Minnesota, St Paul, MN, 55108, USA
| | - G J Platz
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - E S Mace
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
- Department of Agriculture and Fisheries, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - R F Park
- The University of Sydney, Plant Breeding Institute, Narellan, NSW, 2567, Australia
| | - D Singh
- The University of Sydney, Plant Breeding Institute, Narellan, NSW, 2567, Australia
| | - D R Jordan
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - L T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD, 4072, Australia
| |
Collapse
|
14
|
Ziems LA, Hickey LT, Platz GJ, Franckowiak JD, Dracatos PM, Singh D, Park RF. Characterization of Rph24: A Gene Conferring Adult Plant Resistance to Puccinia hordei in Barley. PHYTOPATHOLOGY 2017; 107:834-841. [PMID: 28430019 DOI: 10.1094/phyto-08-16-0295-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We identified Rph24 as a locus in barley (Hordeum vulgare L.) controlling adult plant resistance (APR) to leaf rust, caused by Puccinia hordei. The locus was previously reported as a quantitative trait locus in barley line ND24260-1 and named qRphND. We crossed ND24260-1 to the leaf-rust-susceptible standard Gus and determined inheritance patterns in the progeny. For the comparative marker frequency analysis (MFA), resistant and susceptible tails of the F2 were genotyped with Diversity Arrays Technology genotyping-by-sequencing (DArT-Seq) markers. The Rph24 locus was positioned at 55.5 centimorgans on chromosome 6H on the DArT-Seq consensus map. Evaluation of F2:3 families confirmed that a single locus from ND24260-1 conferred partial resistance. The haploblock strongly associated with the Rph24 locus was used to estimate the allele frequency in a collection of 282 international barley cultivars. Rph24 was frequently paired with APR locus Rph20 in cultivars displaying high levels of APR to leaf rust. The markers identified in this study for Rph24 should be useful for marker-assisted selection.
Collapse
Affiliation(s)
- Laura A Ziems
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Lee T Hickey
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Gregory J Platz
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Jerome D Franckowiak
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Peter M Dracatos
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Davinder Singh
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| | - Robert F Park
- First and second authors: The University of Queensland, Queensland Alliance for Agriculture and Food Innovation, St. Lucia, QLD 4072, Australia; third author: Department of Agriculture and Fisheries, Hermitage Research Facility, 604 Yangan Rd, Warwick, QLD 4370, Australia; fourth author: Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul 55108; and fifth and sixth authors: The University of Sydney, Plant Breeding Institute Cobbitty, Private Bag 4011, Narellan, NSW 2167, Australia
| |
Collapse
|
15
|
Richards JK, Friesen TL, Brueggeman RS. Association mapping utilizing diverse barley lines reveals net form net blotch seedling resistance/susceptibility loci. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2017; 130:915-927. [PMID: 28184981 DOI: 10.1007/s00122-017-2860-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
A diverse collection of barley lines was phenotyped with three North American Pyrenophora teres f. teres isolates and association analyses detected 78 significant marker-trait associations at 16 genomic loci. Pyrenophora teres f. teres is a necrotrophic fungal pathogen and the causal agent of the economically important foliar disease net form net blotch (NFNB) of barley. The deployment of effective and durable resistance against P. teres f. teres has been hindered by the complexity of quantitative resistance and susceptibility. Several bi-parental mapping populations have been used to identify QTL associated with NFNB disease on all seven barley chromosomes. Here, we report the first genome-wide association study (GWAS) to detect marker-trait associations for resistance or susceptibility to P. teres f. teres. Geographically diverse barley genotypes from a world barley core collection (957) were genotyped with the Illumina barley iSelect chip and phenotyped with three P. teres f. teres isolates collected in two geographical regions of the USA (15A, 6A and LDNH04Ptt19). The best of nine regression models tested were identified for each isolate and used for association analysis resulting in the identification of 78 significant marker-trait associations (MTA; -log10p value >3.0). The MTA identified corresponded to 16 unique genomic loci as determined by analysis of local linkage disequilibrium between markers that did not meet a correlation threshold of R 2 ≥ 0.1, indicating that the markers represented distinct loci. Five loci identified represent novel QTL and were designated QRptts-3HL, QRptts-4HS, QRptts-5HL.1, QRptts-5HL.2, and QRptts-7HL.1. In addition, 55 of the barley lines examined exhibited a high level of resistance to all three isolates and the SNP markers identified will provide useful genetic resources for barley breeding programs.
Collapse
Affiliation(s)
- Jonathan K Richards
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
| | - Timothy L Friesen
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA
- Cereal Crops Research Unit, Red River Valley Agricultural Research Center, USDA-ARS, Fargo, ND, 58102-2765, USA
| | - Robert S Brueggeman
- Department of Plant Pathology, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
16
|
Riaz A, T Hickey L. Rapid Phenotyping Adult Plant Resistance to Stem Rust in Wheat Grown under Controlled Conditions. Methods Mol Biol 2017; 1659:183-196. [PMID: 28856651 DOI: 10.1007/978-1-4939-7249-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
Stem rust (SR) or black rust caused by Puccinia graminis f. sp. tritici is one of the most common diseases of wheat (Triticum aestivum L.) crops globally. Among the various control measures, the most efficient and sustainable approach is the deployment of genetically resistant cultivars. Traditionally, wheat breeding programs deployed genetic resistance in cultivars, but unknowingly this is often underpinned by a single seedling resistance gene, which is readily overcome by the pathogen. Nowadays, adult plant resistance (APR) is a widely adopted form of rust resistance because more durable mechanisms often underpin it. However, only a handful of SR APR genes are available, so breeders currently strive to combine seedling and APR genes. Phenotyping adult wheat plants for resistance to SR typically involves evaluation in the field. But establishing a rust nursery can be challenging, and screening is limited to once a year. This slows down research efforts to isolate new APR genes and breeding of genetically resistant cultivars.In this study, we report a protocol for rapid evaluation of adult wheat plants for resistance to stem rust. We demonstrate the technique by evaluating a panel of 16 wheat genotypes consisting of near isogenic lines (NILs) for known Sr genes (i.e., Sr2, Sr33, Sr45, Sr50, Sr55, Sr57, and Sr58) and three landraces carrying uncharacterized APR from the N. I. Vavilov Institute of Plant Genetic Resources (VIR). The method can be completed in just 10 weeks and involves two inoculations: first conducted at seedling stage and a second at the adult stage (using the same plants). The technique can detect APR, such as that conferred by APR gene Sr2, along with pseudo-black chaff (the morphological marker). Phenotyping can be conducted throughout the year, and is fast and resource efficient. Further, the phenotyping method can be applied to screen breeding populations or germplasm accessions using local or exotic races of SR.
Collapse
Affiliation(s)
- Adnan Riaz
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia.
| | - Lee T Hickey
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, Australia
| |
Collapse
|
17
|
Talbot B, Chen TW, Zimmerman S, Joost S, Eckert AJ, Crow TM, Semizer-Cuming D, Seshadri C, Manel S. Combining Genotype, Phenotype, and Environment to Infer Potential Candidate Genes. J Hered 2016; 108:207-216. [DOI: 10.1093/jhered/esw077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 10/30/2016] [Indexed: 11/13/2022] Open
|
18
|
Riaz A, Periyannan S, Aitken E, Hickey L. A rapid phenotyping method for adult plant resistance to leaf rust in wheat. PLANT METHODS 2016; 12:17. [PMID: 26941830 PMCID: PMC4776422 DOI: 10.1186/s13007-016-0117-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/24/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Leaf rust (LR), caused by Puccinia triticina and is an important disease of wheat (Triticum aestivum L.). The most sustainable method for controlling rust diseases is deployment of cultivars incorporating adult plant resistance (APR). However, phenotyping breeding populations or germplasm collections for resistance in the field is dependent on weather conditions and limited to once a year. In this study, we explored the ability to phenotype APR to LR under accelerated growth conditions (AGC; i.e. constant light and controlled temperature) using a method that integrates assessment at both seedling and adult growth stages. A panel of 21 spring wheat genotypes, including disease standards carrying known APR genes (i.e. Lr34 and Lr46) were characterised under AGC and in the field. RESULTS Disease response displayed by adult wheat plants grown under AGC (i.e. flag-2 leaf) was highly correlated with field-based measures (R(2) = 0.77). The integrated method is more efficient-requiring less time, space, and labour compared to traditional approaches that perform seedling and adult plant assays separately. Further, this method enables up to seven consecutive adult plant LR assays compared to one in the field. CONCLUSION The integrated seedling and adult plant phenotyping method reported in this study provides a great tool for identifying APR to LR. Assessing plants at early growth stages can enable selection for desirable gene combinations and crossing of the selected plants in the same plant generation. The method has the potential to be scaled-up for screening large numbers of fixed lines and segregating populations. This strategy would reduce the time required for moving APR genes into adapted germplasm or combining traits in top crosses in breeding programs. This method could accelerate selection for resistance factors effective across diverse climates by conducting successive cycles of screening performed at different temperature regimes.
Collapse
Affiliation(s)
- Adnan Riaz
- />Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Sambasivam Periyannan
- />Commonwealth Scientific and Industrial Research Organization (CSIRO) Agriculture, General Post Office Box 1600, Canberra, ACT 2601 Australia
| | - Elizabeth Aitken
- />School of Agriculture and Food Science, The University of Queensland, St Lucia, QLD 4072 Australia
| | - Lee Hickey
- />Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
19
|
Röper AC, Orabi J, Lütken H, Christensen B, Thonning Skou AM, Müller R. Phenotypic and Genotypic Analysis of Newly Obtained Interspecific Hybrids in the Campanula Genus. PLoS One 2015; 10:e0137537. [PMID: 26352688 PMCID: PMC4564236 DOI: 10.1371/journal.pone.0137537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Accepted: 08/18/2015] [Indexed: 12/29/2022] Open
Abstract
Interspecific hybridisation creates new phenotypes within several ornamental plant species including the Campanula genus. We have employed phenotypic and genotypic methods to analyse and evaluate interspecific hybridisation among cultivars of four Campanula species, i.e. C. cochleariifolia, C. isophylla, C. medium and C. formanekiana. Hybrids were analysed using amplified fragment length polymorphism (AFLP), flow cytometry and biometrical measurements. Results of correlation matrices demonstrated heterogeneous phenotypes for the parental species, which confirmed our basic premise for new phenotypes of interspecific hybrids. AFLP assays confirmed the hybridity and identified self-pollinated plants. Limitation of flow cytometry analysis detection was observed while detecting the hybridity status of two closely related parents, e.g. C. cochleariiafolia × C. isophylla. Phenotypic characteristics such as shoot habitus and flower colour were strongly influenced by one of the parental species in most crosses. Rooting analysis revealed that inferior rooting quality occurred more often in interspecific hybrids than in the parental species. Only interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ showed a high rooting level. Phenotype analyses demonstrated a separation from the interspecific hybrid lines of C. formanekiana ‘White’ × C. medium ‘Pink’ to the other clustered hybrids of C. formanekiana and C. medium. In our study we demonstrated that the use of correlation matrices is a suitable tool for identifying suitable cross material. This study presents a comprehensive overview for analysing newly obtained interspecific hybrids. The chosen methods can be used as guidance for analyses for further interspecific hybrids in Campanula, as well as in other ornamental species.
Collapse
Affiliation(s)
- Anna-Catharina Röper
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
- * E-mail:
| | - Jihad Orabi
- Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871, Frederiksberg, Denmark
| | - Henrik Lütken
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
| | - Brian Christensen
- AgroTech A/S, Institute for Agri-Technology and Food Innovation, Højbakkegaard Allé 21, 2630, Taastrup, Denmark
| | - Anne-Marie Thonning Skou
- AgroTech A/S, Institute for Agri-Technology and Food Innovation, Højbakkegaard Allé 21, 2630, Taastrup, Denmark
| | - Renate Müller
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 9-13, 2630, Taastrup, Denmark
| |
Collapse
|
20
|
Johnston PA, Meiyalaghan V, Forbes ME, Habekuß A, Butler RC, Pickering R. Marker assisted separation of resistance genes Rph22 and Rym16 (Hb) from an associated yield penalty in a barley: Hordeum bulbosum introgression line. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:1137-1149. [PMID: 25800008 DOI: 10.1007/s00122-015-2495-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 03/07/2015] [Indexed: 05/29/2023]
Abstract
The resistance genes Rph22 and Rym16 (Hb) transferred into barley from Hordeum bulbosum have been separated from a large yield penalty locus that was present in the original introgression line '182Q20'. The Hordeum bulbosum introgression line '182Q20' possesses resistance to barley leaf rust (Rph22) and Barley mild mosaic virus (Rym16 (Hb) ) located on chromosome 2HL. Unfortunately, this line also carries a considerable yield penalty compared with its barley genetic background 'Golden Promise'. Quantitative trait locus (QTL) mapping of the components of yield (total yield, thousand grain weight, hectolitre weight, percentage screenings and screened yield) was performed using 75 recombinant lines derived from the original '182Q20' introgression line. A QTL for the yield penalty was located in the proximal region of the introgressed segment. Marker assisted selection targeting intraspecific recombination events between overlapping H. bulbosum introgression segments was used to develop the lines '372E' and '372H' which feature genetically small introgressions around Rph22. Further yield trials validated the separation of both Rph22 and Rym16 (Hb) from the proximal yield penalty. These results, combined with molecular markers closely linked to Rph22 and Rym16 (Hb) , make these resistance genes more attractive for barley breeding.
Collapse
Affiliation(s)
- Paul A Johnston
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, 7608, New Zealand,
| | | | | | | | | | | |
Collapse
|
21
|
Wang X, Mace ES, Platz GJ, Hunt CH, Hickey LT, Franckowiak JD, Jordan DR. Spot form of net blotch resistance in barley is under complex genetic control. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:489-99. [PMID: 25575837 DOI: 10.1007/s00122-014-2447-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 12/17/2014] [Indexed: 05/12/2023]
Abstract
Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.
Collapse
Affiliation(s)
- Xuemin Wang
- Queensland Alliance for Agriculture and Food Innovation, Hermitage Research Facility, The University of Queensland, Warwick, QLD, 4370, Australia
| | | | | | | | | | | | | |
Collapse
|
22
|
Park RF, Golegaonkar PG, Derevnina L, Sandhu KS, Karaoglu H, Elmansour HM, Dracatos PM, Singh D. Leaf rust of cultivated barley: pathology and control. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:565-89. [PMID: 26047566 DOI: 10.1146/annurev-phyto-080614-120324] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Leaf rust of barley is caused by the macrocyclic, heteroecious rust pathogen Puccinia hordei, with aecia reported from selected species of the genera Ornithogalum, Leopoldia, and Dipcadi, and uredinia and telia occurring on Hordeum vulgare, H. vulgare ssp. spontaneum, Hordeum bulbosum, and Hordeum murinum, on which distinct parasitic specialization occurs. Although Puccinia hordei is sporadic in its occurrence, it is probably the most common and widely distributed rust disease of barley. Leaf rust has increased in importance in recent decades in temperate barley-growing regions, presumably because of more intensive agricultural practices. Although total crop loss does not occur, under epidemic conditions yield reductions of up to 62% have been reported in susceptible varieties. Leaf rust is primarily controlled by the use of resistant cultivars, and, to date, 21 seedling resistance genes and two adult plant resistance (APR) genes have been identified. Virulence has been detected for most seedling resistance genes but is unknown for the APR genes Rph20 and Rph23. Other potentially new sources of APR have been reported, and additivity has been described for some of these resistances. Approaches to achieving durable resistance to leaf rust in barley are discussed.
Collapse
Affiliation(s)
- Robert F Park
- Plant Breeding Institute Cobbitty, The University of Sydney, Narellan, NSW 2567, Australia;
| | | | | | | | | | | | | | | |
Collapse
|