1
|
Nyadanu D, Lowor ST, Pobee P, Dogbatse JA, Akpertey A, Brarko-Marfo M. Heterosis patterns and sources of self-compatibility, cross-compatibility and key nut traits within single and double hybrid crosses of kola [Cola nitida (Vent) Schott and Endl.]. Sci Rep 2023; 13:8036. [PMID: 37198219 PMCID: PMC10192454 DOI: 10.1038/s41598-023-30485-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
Sexual incompatibility among kola genotypes accounted for over 50% yield loss. Compatible and high yielding varieties are in demand to develop commercial orchards. The objective of this study was to assess self-compatibility and cross-compatibility of kola (C. nitida) genotypes within self, single and double hybrid crosses and to determine heterosis pattern in the resulting hybrids for sexual compatibility and key nut yield and quality traits. Crosses among kola genotypes from three field gene banks (JX1, GX1, MX2) and one advanced germplasm (Bunso progeny) in Ghana were evaluated along their parents for sexual compatibility, nut yield and nut quality. Data were collected on pod set, pseudo-pod set, pod weight, number of nuts per pod, nut weight, brix, potential alcohol and nut firmness. Significant (P < 0.001) differential pod set was observed within Bunso progeny, JX1, GX1 and MX2 crosses; while pseudo-pod set differed only within JX1 and MX2 crosses (P < 0.001). Very large prevalence of mid-parent, heterobeltiosis, and economic heterosis was observed for sexual compatibility, outturn and brix for the single and double hybrid crosses. Heterosis was prominent among the double hybrid crosses as compared to the single hybrid crosses suggesting that recurrent selection of compatible varieties from advanced generations could result in genetic gain in kola improvement. The top five crosses with best heterosis for sexual compatibility and an appreciable positive heterosis for outturn and brix were B1/11 × B1/71 × B1/157 × B1/149, B1/11 × B1/71 × B1/296 × B1/177, GX1/46 × GX1/33 × B1/212 × B1/236, JX1/90 × JX1/51 and JX1/51 × JX1/36. These materials could serve as sources of beneficial alleles for improving Ghanaian kola hybrids and populations for yield and sexual compatibility.
Collapse
Affiliation(s)
- Daniel Nyadanu
- Cocoa Research Institute of Ghana, P. O. Box 8, Akim Tafo, Ghana.
| | | | - Prince Pobee
- Cocoa Research Institute of Ghana, P. O. Box 8, Akim Tafo, Ghana
| | | | - Abraham Akpertey
- Cocoa Research Institute of Ghana, P. O. Box 8, Akim Tafo, Ghana
| | | |
Collapse
|
2
|
Rohner M, Manzanares C, Yates S, Thorogood D, Copetti D, Lübberstedt T, Asp T, Studer B. Fine-Mapping and Comparative Genomic Analysis Reveal the Gene Composition at the S and Z Self-incompatibility Loci in Grasses. Mol Biol Evol 2022; 40:6882748. [PMID: 36477354 PMCID: PMC9825253 DOI: 10.1093/molbev/msac259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/12/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
Self-incompatibility (SI) is a genetic mechanism of hermaphroditic plants to prevent inbreeding after self-pollination. Allogamous Poaceae species exhibit a unique gametophytic SI system controlled by two multi-allelic and independent loci, S and Z. Despite intense research efforts in the last decades, the genes that determine the initial recognition mechanism are yet to be identified. Here, we report the fine-mapping of the Z-locus in perennial ryegrass (Lolium perenne L.) and provide evidence that the pollen and stigma components are determined by two genes encoding DUF247 domain proteins (ZDUF247-I and ZDUF247-II) and the gene sZ, respectively. The pollen and stigma determinants are located side-by-side and were genetically linked in 10,245 individuals of two independent mapping populations segregating for Z. Moreover, they exhibited high allelic diversity as well as tissue-specific gene expression, matching the expected characteristics of SI determinants known from other systems. Revisiting the S-locus using the latest high-quality whole-genome assemblies revealed a similar gene composition and structure as found for Z, supporting the hypothesis of a duplicated origin of the two-locus SI system of grasses. Ultimately, comparative genomic analyses across a wide range of self-compatible and self-incompatible Poaceae species revealed that the absence of a functional copy of at least one of the six putative SI determinants is accompanied by a self-compatible phenotype. Our study provides new insights into the origin and evolution of the unique gametophytic SI system in one of the largest and economically most important plant families.
Collapse
Affiliation(s)
- Marius Rohner
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Chloé Manzanares
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, United Kingdom
| | - Dario Copetti
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland,Arizona Genomics Institute, School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Torben Asp
- Center for Quantitative Genetics and Genomics, Faculty of Technical Sciences, Aarhus University, Slagelse, Denmark
| | | |
Collapse
|
3
|
Chapman EA, Thomsen HC, Tulloch S, Correia PMP, Luo G, Najafi J, DeHaan LR, Crews TE, Olsson L, Lundquist PO, Westerbergh A, Pedas PR, Knudsen S, Palmgren M. Perennials as Future Grain Crops: Opportunities and Challenges. FRONTIERS IN PLANT SCIENCE 2022; 13:898769. [PMID: 35968139 PMCID: PMC9372509 DOI: 10.3389/fpls.2022.898769] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Perennial grain crops could make a valuable addition to sustainable agriculture, potentially even as an alternative to their annual counterparts. The ability of perennials to grow year after year significantly reduces the number of agricultural inputs required, in terms of both planting and weed control, while reduced tillage improves soil health and on-farm biodiversity. Presently, perennial grain crops are not grown at large scale, mainly due to their early stages of domestication and current low yields. Narrowing the yield gap between perennial and annual grain crops will depend on characterizing differences in their life cycles, resource allocation, and reproductive strategies and understanding the trade-offs between annualism, perennialism, and yield. The genetic and biochemical pathways controlling plant growth, physiology, and senescence should be analyzed in perennial crop plants. This information could then be used to facilitate tailored genetic improvement of selected perennial grain crops to improve agronomic traits and enhance yield, while maintaining the benefits associated with perennialism.
Collapse
Affiliation(s)
| | | | - Sophia Tulloch
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Pedro M. P. Correia
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Guangbin Luo
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Javad Najafi
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | | | - Lennart Olsson
- Lund University Centre for Sustainability Studies, Lund, Sweden
| | - Per-Olof Lundquist
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anna Westerbergh
- Department of Plant Biology, Uppsala BioCenter, Linnean Centre for Plant Biology in Uppsala, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Pai Rosager Pedas
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Søren Knudsen
- Department of Raw Materials, Carlsberg Research Laboratory, Copenhagen, Denmark
| | - Michael Palmgren
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark
| |
Collapse
|
4
|
Laugerotte J, Baumann U, Sourdille P. Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:812-832. [PMID: 35114064 PMCID: PMC9055826 DOI: 10.1111/pbi.13784] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/26/2021] [Accepted: 01/20/2022] [Indexed: 05/16/2023]
Abstract
In the recent years, the agricultural world has been progressing towards integrated crop protection, in the context of sustainable and reasoned agriculture to improve food security and quality, and to preserve the environment through reduced uses of water, pesticides, fungicides or fertilisers. For this purpose, one possible issue is to cross-elite varieties widely used in fields for crop productions with exotic or wild genetic resources in order to introduce new diversity for genes or alleles of agronomical interest to accelerate the development of new improved cultivars. However, crossing ability (or crossability) often depends on genetic background of the recipient varieties or of the donor, which hampers a larger use of wild resources in breeding programmes of many crops. In this review, we tried to provide a comprehensive summary of genetic factors controlling crossing ability between Triticeae species with a special focus on the crossability between wheat (Triticum aestivum L.) and rye (Secale cereale), which lead to the creation of Triticale (x Triticosecale Wittm.). We also discussed potential applications of newly identified genes or markers associated with crossability for accelerating wheat and Triticale improvement by application of modern genomics technologies in breeding programmes.
Collapse
Affiliation(s)
- Julie Laugerotte
- Genetics, Diversity and Ecophysiology of CerealsINRAEUniversité Clermont‐AuvergneClermont‐FerrandFrance
| | - Ute Baumann
- School of Agriculture, Food and WineUniversity of AdelaideGlen OsmondSouth AustraliaAustralia
| | - Pierre Sourdille
- Genetics, Diversity and Ecophysiology of CerealsINRAEUniversité Clermont‐AuvergneClermont‐FerrandFrance
| |
Collapse
|
5
|
Cropano C, Manzanares C, Yates S, Copetti D, Do Canto J, Lübberstedt T, Koch M, Studer B. Identification of Candidate Genes for Self-Compatibility in Perennial Ryegrass ( Lolium perenne L.). FRONTIERS IN PLANT SCIENCE 2021; 12:707901. [PMID: 34721449 PMCID: PMC8554087 DOI: 10.3389/fpls.2021.707901] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 08/30/2021] [Indexed: 05/10/2023]
Abstract
Self-incompatibility (SI) is a genetic mechanism preventing self-pollination in ~40% of plant species. Two multiallelic loci, called S and Z, control the gametophytic SI system of the grass family (Poaceae), which contains all major forage grasses. Loci independent from S and Z have been reported to disrupt SI and lead to self-compatibility (SC). A locus causing SC in perennial ryegrass (Lolium perenne L.) was previously mapped on linkage group (LG) 5 in an F2 population segregating for SC. Using a subset of the same population (n = 68), we first performed low-resolution quantitative trait locus (QTL) mapping to exclude the presence of additional, previously undetected contributors to SC. The previously reported QTL on LG 5 explained 38.4% of the phenotypic variation, and no significant contribution from other genomic regions was found. This was verified by the presence of significantly distorted markers in the region overlapping with the QTL. Second, we fine mapped the QTL to 0.26 centimorgan (cM) using additional 2,056 plants and 23 novel sequence-based markers. Using Italian ryegrass (Lolium multiflorum Lam.) genome assembly as a reference, the markers flanking SC were estimated to span a ~3 Mb region encoding for 57 predicted genes. Among these, seven genes were proposed as relevant candidate genes based on their annotation and function described in previous studies. Our study is a step forward to identify SC genes in forage grasses and provides diagnostic markers for marker-assisted introgression of SC into elite germplasm.
Collapse
Affiliation(s)
- Claudio Cropano
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Deutsche Saatveredelung AG, Lippstadt, Germany
| | - Chloé Manzanares
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Steven Yates
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Dario Copetti
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Zurich, Switzerland
| | - Javier Do Canto
- Instituto Nacional de Investigación Agropecuaria, Tacuarembó, Uruguay
| | | | | | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Cropano C, Place I, Manzanares C, Do Canto J, Lübberstedt T, Studer B, Thorogood D. Characterization and practical use of self-compatibility in outcrossing grass species. ANNALS OF BOTANY 2021; 127:841-852. [PMID: 33755100 PMCID: PMC8225281 DOI: 10.1093/aob/mcab043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 03/12/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Self-incompatibility (SI) systems prevent self-fertilization in several species of Poaceae, many of which are economically important forage, bioenergy and turf grasses. Self-incompatibility ensures cross-pollination and genetic diversity but restricts the ability to fix useful genetic variation. In most inbred crops it is possible to develop high-performing homozygous parental lines by self-pollination, which then enables the creation of F1 hybrid varieties with higher performance, a phenomenon known as heterosis. The inability to fully exploit heterosis in outcrossing grasses is partially responsible for lower levels of improvement in breeding programmes compared with inbred crops. However, SI can be overcome in forage grasses to create self-compatible populations. This is generating interest in understanding the genetical basis of self-compatibility (SC), its significance for reproductive strategies and its exploitation for crop improvement, especially in the context of F1 hybrid breeding. SCOPE We review the literature on SI and SC in outcrossing grass species. We review the currently available genomic tools and approaches used to discover and characterize novel SC sources. We discuss opportunities barely explored for outcrossing grasses that SC facilitates. Specifically, we discuss strategies for wide SC introgression in the context of the Lolium-Festuca complex and the use of SC to develop immortalized mapping populations for the dissection of a wide range of agronomically important traits. The germplasm available is a valuable practical resource and will aid understanding the basis of inbreeding depression and hybrid vigour in key temperate forage grass species. CONCLUSIONS A better understanding of the genetic control of additional SC loci offers new insight into SI systems, their evolutionary origins and their reproductive significance. Heterozygous outcrossing grass species that can be readily selfed facilitate studies of heterosis. Moreover, SC introduction into a range of grass species will enable heterosis to be exploited in innovative ways in genetic improvement programmes.
Collapse
Affiliation(s)
- Claudio Cropano
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
- Deutsche Saatveredelung AG, Lippstadt, Germany
| | - Iain Place
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| | - Chloé Manzanares
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Javier Do Canto
- Instituto Nacional de Investigación Agropecuaria (INIA), 4500 Tacuarembó, Uruguay
| | | | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Daniel Thorogood
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, UK
| |
Collapse
|
7
|
Gruner P, Miedaner T. Perennial Rye: Genetics of Perenniality and Limited Fertility. PLANTS 2021; 10:plants10061210. [PMID: 34198672 PMCID: PMC8232189 DOI: 10.3390/plants10061210] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022]
Abstract
Perenniality, the ability of plants to regrow after seed set, could be introgressed into cultivated rye by crossing with the wild relative and perennial Secale strictum. However, studies in the past showed that Secale cereale × Secale strictum-derived cultivars were also characterized by reduced fertility what was related to so called chromosomal multivalents, bulks of chromosomes that paired together in metaphase I of pollen mother cells instead of only two chromosomes (bivalents). Those multivalents could be caused by ancient translocations that occurred between both species. Genetic studies on perennial rye are quite old and especially the advent of molecular markers and genome sequencing paved the way for new insights and more comprehensive studies. After a brief review of the past research, we used a basic QTL mapping approach to analyze the genetic status of perennial rye. We could show that for the trait perennation 0.74 of the genetic variance in our population was explained by additively inherited QTLs on chromosome 2R, 3R, 4R, 5R and 7R. Fertility on the other hand was with 0.64 of explained genetic variance mainly attributed to a locus on chromosome 5R, what was most probably the self-incompatibility locus S5. Additionally, we could trace the Z locus on chromosome 2R by high segregation distortion of markers. Indications for chromosomal co-segregation, like multivalents, could not be found. This study opens new possibilities to use perennial rye as genetic resource and for alternative breeding methods, as well as a valuable resource for comparative studies of perennation across different species.
Collapse
|
8
|
Crain J, Larson S, Dorn K, Hagedorn T, DeHaan L, Poland J. Sequenced-based paternity analysis to improve breeding and identify self-incompatibility loci in intermediate wheatgrass (Thinopyrum intermedium). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3217-3233. [PMID: 32785739 PMCID: PMC7547974 DOI: 10.1007/s00122-020-03666-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/03/2020] [Indexed: 05/28/2023]
Abstract
KEY MESSAGE Paternity assignment and genome-wide association analyses for fertility were applied to a Thinopyrum intermedium breeding program. A lack of progeny between combinations of parents was associated with loci near self-incompatibility genes. In outcrossing species such as intermediate wheatgrass (IWG, Thinopyrum intermedium), polycrossing is often used to generate novel recombinants through each cycle of selection, but it cannot track pollen-parent pedigrees and it is unknown how self-incompatibility (SI) genes may limit the number of unique crosses obtained. This study investigated the potential of using next-generation sequencing to assign paternity and identify putative SI loci in IWG. Using a reference population of 380 individuals made from controlled crosses of 64 parents, paternity was assigned with 92% agreement using Cervus software. Using this approach, 80% of 4158 progeny (n = 3342) from a polycross of 89 parents were assigned paternity. Of the 89 pollen parents, 82 (92%) were represented with 1633 unique full-sib families representing 42% of all potential crosses. The number of progeny per successful pollen parent ranged from 1 to 123, with number of inflorescences per pollen parent significantly correlated to the number of progeny (r = 0.54, p < 0.001). Shannon's diversity index, assessing the total number and representation of families, was 7.33 compared to a theoretical maximum of 8.98. To test our hypothesis on the impact of SI genes, a genome-wide association study of the number of progeny observed from the 89 parents identified genetic effects related to non-random mating, including marker loci located near putative SI genes. Paternity testing of polycross progeny can impact future breeding gains by being incorporated in breeding programs to optimize polycross methodology, maintain genetic diversity, and reveal genetic architecture of mating patterns.
Collapse
Affiliation(s)
- Jared Crain
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA
| | - Steve Larson
- USDA-ARS, Forage and Range Research, Utah State University, Logan, UT, 84322, USA
| | - Kevin Dorn
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA
- USDA-ARS, Soil Management and Sugarbeet Research, Fort Collins, CO, 80526, USA
| | - Traci Hagedorn
- AAAS Science and Technology Policy Fellow, USDA-APHIS, 4700 River Road, Riverdale, MD, 20737, USA
- Quantitative Scientific Solutions LLC, Arlington, VA, 22203, USA
| | - Lee DeHaan
- The Land Institute, 2440 E. Water Well Rd, Salina, KS, 67401, USA
| | - Jesse Poland
- Department of Plant Pathology, 4024 Throckmorton Plant Sciences Center, Kansas State University, Manhattan, KS, 66506, USA.
- Wheat Genetics Resource Center, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
9
|
Muñoz-Sanz JV, Zuriaga E, Cruz-García F, McClure B, Romero C. Self-(In)compatibility Systems: Target Traits for Crop-Production, Plant Breeding, and Biotechnology. FRONTIERS IN PLANT SCIENCE 2020; 11:195. [PMID: 32265945 PMCID: PMC7098457 DOI: 10.3389/fpls.2020.00195] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Accepted: 02/10/2020] [Indexed: 05/13/2023]
Abstract
Self-incompatibility (SI) mechanisms prevent self-fertilization in flowering plants based on specific discrimination between self- and non-self pollen. Since this trait promotes outcrossing and avoids inbreeding it is a widespread mechanism of controlling sexual plant reproduction. Growers and breeders have effectively exploited SI as a tool for manipulating domesticated crops for thousands of years. However, only within the past thirty years have studies begun to elucidate the underlying molecular features of SI. The specific S-determinants and some modifier factors controlling SI have been identified in the sporophytic system exhibited by Brassica species and in the two very distinct gametophytic systems present in Papaveraceae on one side and in Solanaceae, Rosaceae, and Plantaginaceae on the other. Molecular level studies have enabled SI to SC transitions (and vice versa) to be intentionally manipulated using marker assisted breeding and targeted approaches based on transgene integration, silencing, and more recently CRISPR knock-out of SI-related factors. These scientific advances have, in turn, provided a solid basis to implement new crop production and plant breeding practices. Applications of self-(in)compatibility include widely differing objectives such as crop yield and quality improvement, marker-assisted breeding through SI genotyping, and development of hybrids for overcoming intra- and interspecific reproductive barriers. Here, we review scientific progress as well as patented applications of SI, and also highlight future prospects including further elucidation of SI systems, deepening our understanding of SI-environment relationships, and new perspectives on plant self/non-self recognition.
Collapse
Affiliation(s)
| | - Elena Zuriaga
- Centro de Citricultura y Producción Vegetal, Instituto Valenciano de Investigaciones Agrarias (IVIA), Valencia, Spain
| | - Felipe Cruz-García
- Departmento de Bioquímica, Facultad de Química, Universidad Nacional Autonoma de Mexico, Mexico City, Mexico
| | - Bruce McClure
- Department of Biochemistry, University of Missouri, Columbia, MO, United States
| | - Carlos Romero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Consejo Superior de Investigaciones Científicas (CSIC)—Universitat Politécnica de València (UPV), Valencia, Spain
- *Correspondence: Carlos Romero,
| |
Collapse
|
10
|
|
11
|
Alagna F, Caceres ME, Pandolfi S, Collani S, Mousavi S, Mariotti R, Cultrera NGM, Baldoni L, Barcaccia G. The Paradox of Self-Fertile Varieties in the Context of Self-Incompatible Genotypes in Olive. FRONTIERS IN PLANT SCIENCE 2019; 10:725. [PMID: 31293602 PMCID: PMC6606695 DOI: 10.3389/fpls.2019.00725] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 05/16/2019] [Indexed: 05/09/2023]
Abstract
Olive, representing one of the most important fruit crops of the Mediterranean area, is characterized by a general low fruit yield, due to numerous constraints, including alternate bearing, low flower viability, male-sterility, inter-incompatibility, and self-incompatibility (SI). Early efforts to clarify the genetic control of SI in olive gave conflicting results, and only recently, the genetic control of SI has been disclosed, revealing that olive possesses an unconventional homomorphic sporophytic diallelic system of SI, dissimilar from other described plants. This system, characterized by the presence of two SI groups, prevents self-fertilization and regulates inter-compatibility between cultivars, such that cultivars bearing the same incompatibility group are incompatible. Despite the presence of a functional SI, some varieties, in particular conditions, are able to set seeds following self-fertilization, a mechanism known as pseudo-self-compatibility (PSC), as widely reported in previous literature. Here, we summarize the results of previous works on SI in olive, particularly focusing on the occurrence of self-fertility, and offer a new perspective in view of the recent elucidation of the genetic architecture of the SI system in olive. Recent advances in research aimed at unraveling the molecular bases of SI and its breakdown in olive are also presented. The clarification of these mechanisms may have a huge impact on orchard management and will provide fundamental information for the future of olive breeding programs.
Collapse
Affiliation(s)
- F. Alagna
- Dipartimento Tecnologie Energetiche (DTE), Centro Ricerche Trisaia, ENEA Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile, Rotondella, Italy
| | - M. E. Caceres
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - S. Pandolfi
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - S. Collani
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå, Sweden
| | - S. Mousavi
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - R. Mariotti
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - N. G. M. Cultrera
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
| | - L. Baldoni
- Dipartimento di Scienze Bio Agroalimentari (DiSBA), Istituto di Bioscienze e Biorisorse (IBBR), Consiglio Nazionale Delle Ricerche (CNR), Perugia, Italy
- *Correspondence: L. Baldoni,
| | - G. Barcaccia
- Laboratorio di Genomica, Dipartimento di Agronomia, Animali, Alimenti, Risorse naturali e Ambiente (DAFNAE), Università di Padova, Legnaro, Italy
| |
Collapse
|
12
|
Enciso-Rodriguez F, Manrique-Carpintero NC, Nadakuduti SS, Buell CR, Zarka D, Douches D. Overcoming Self-Incompatibility in Diploid Potato Using CRISPR-Cas9. FRONTIERS IN PLANT SCIENCE 2019; 10:376. [PMID: 31001300 PMCID: PMC6454193 DOI: 10.3389/fpls.2019.00376] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/12/2019] [Indexed: 05/19/2023]
Abstract
Potato breeding can be redirected to a diploid inbred/F1 hybrid variety breeding strategy if self-compatibility can be introduced into diploid germplasm. However, the majority of diploid potato clones (Solanum spp.) possess gametophytic self-incompatibility that is primarily controlled by a single multiallelic locus called the S-locus which is composed of tightly linked genes, S-RNase (S-locus RNase) and multiple SLFs (S-locus F-box proteins), which are expressed in the style and pollen, respectively. Using S-RNase genes known to function in the Solanaceae gametophytic SI mechanism, we identified S-RNase alleles with flower-specific expression in two diploid self-incompatible potato lines using genome resequencing data. Consistent with the location of the S-locus in potato, we genetically mapped the S-RNase gene using a segregating population to a region of low recombination within the pericentromere of chromosome 1. To generate self-compatible diploid potato lines, a dual single-guide RNA (sgRNA) strategy was used to target conserved exonic regions of the S-RNase gene and generate targeted knockouts (KOs) using a Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated protein 9 (Cas9) approach. Self-compatibility was achieved in nine S-RNase KO T0 lines which contained bi-allelic and homozygous deletions/insertions in both genotypes, transmitting self compatibility to T1 progeny. This study demonstrates an efficient approach to achieve stable, consistent self-compatibility through S-RNase KO for use in diploid potato breeding approaches.
Collapse
Affiliation(s)
- Felix Enciso-Rodriguez
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | | | - Satya Swathi Nadakuduti
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - C. Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
| | - Daniel Zarka
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
| | - David Douches
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, United States
- AgBioResearch, Michigan State University, East Lansing, MI, United States
- *Correspondence: David Douches,
| |
Collapse
|
13
|
Do Canto J, Studer B, Frei U, Lübberstedt T. Fine mapping a self-fertility locus in perennial ryegrass. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2018; 131:817-827. [PMID: 29247258 DOI: 10.1007/s00122-017-3038-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 12/11/2017] [Indexed: 05/25/2023]
Abstract
A self-fertility locus was fine mapped to a 1.6 cM region on linkage group 5 in a perennial ryegrass population. This locus was the main determinant of pollen self-compatibility. In grasses, self-incompatibility (SI) is characterized by a two-loci gametophytic (S and Z) mechanism acting together in the recognition and inhibition of self-pollen. Mutations affecting the expression of SI have been reported in a few grass species. In perennial ryegrass (Lolium perenne L.), a mutation independent from S and Z, and mapping on linkage group 5 (LG 5), was previously reported to produce self-fertile plants. Here, we describe fine mapping of the self-fertility (SF) gene in a perennial ryegrass population and determine whether there is any effect of other genomic regions on the pollen compatibility. The phenotypic segregation of SF showed a bimodal distribution with one mean at 49% pollen compatibility and the other at 91%. Marker-trait association analysis showed that only markers on LG 5 were significantly associated with the trait. A single gene model explained 82% of the observed variability and no effects of the other regions were detected. Using segregation and linkage analysis, the SF locus was located to a 1.6 cM region on LG 5. The flanking marker sequences were aligned to rice and Brachypodium distachyon reference genomes to estimate the physical distance. We provide markers tightly linked to SF that can be used for introgression of this trait into advanced breeding germplasm. Moreover, our results represent a further step towards the identification of the SF gene in LG 5.
Collapse
Affiliation(s)
- Javier Do Canto
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA.
- Instituto Nacional de Investigación Agropecuaria (INIA), Estación Experimental INIA Tacuarembó, Ruta 5 km 386, Tacuarembó, Uruguay.
| | - Bruno Studer
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Universitaetstrasse 2, 8092, Zurich, Switzerland
| | - Ursula Frei
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA
| | - Thomas Lübberstedt
- Department of Agronomy, Iowa State University, 1204 Agronomy Hall, Ames, IA, 50011‑1010, USA
| |
Collapse
|
14
|
Haploid and Doubled Haploid Techniques in Perennial Ryegrass (Lolium perenne L.) to Advance Research and Breeding. AGRONOMY-BASEL 2016. [DOI: 10.3390/agronomy6040060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|