1
|
Yin Z, Wei X, Cao Y, Dong Z, Long Y, Wan X. Regulatory balance between ear rot resistance and grain yield and their breeding applications in maize and other crops. J Adv Res 2024:S2090-1232(24)00479-X. [PMID: 39447642 DOI: 10.1016/j.jare.2024.10.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 10/19/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024] Open
Abstract
BACKGROUND Fungi are prevalent pathogens that cause substantial yield losses of major crops. Ear rot (ER), which is primarily induced by Fusarium or Aspergillus species, poses a significant challenge to maize production worldwide. ER resistance is regulated by several small effect quantitative trait loci (QTLs). To date, only a few ER-related genes have been identified that impede molecular breeding efforts to breed ER-resistant maize varieties. AIM OF REVIEW Our aim here is to explore the research progress and mine genic resources related to ER resistance, and to propose a regulatory model elucidating the ER-resistant mechanism in maize as well as a trade-off model illustrating how crops balance fungal resistance and grain yield. Key Scientific Concepts of Review: This review presents a comprehensive bibliometric analysis of the research history and current trends in the genetic and molecular regulation underlying ER resistance in maize. Moreover, we analyzed and discovered the genic resources by identifying 162 environmentally stable loci (ESLs) from various independent forward genetics studies as well as 1391 conservatively differentially expressed genes (DEGs) that respond to Fusarium or Aspergillus infection through multi-omics data analysis. Additionally, this review discusses the syntenies found among maize ER, wheat Fusariumhead blight (FHB), and rice Bakanaedisease (RBD) resistance-related loci, along with the significant overlap between fungal resistance loci and reported yield-related loci, thus providing valuable insights into the regulatory mechanisms underlying the trade-offs between yield and defense in crops.
Collapse
Affiliation(s)
- Zechao Yin
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Xun Wei
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China
| | - Yanyong Cao
- Institute of Cereal Crops, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Zhenying Dong
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Yan Long
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Zhongzhi International Institute of Agricultural Biosciences, Beijing 100192, China.
| |
Collapse
|
2
|
Zhou G, Ma L, Zhao C, Xie F, Xu Y, Wang Q, Hao D, Gao X. Genome-wide association study and molecular marker development for susceptibility to Gibberella ear rot in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:222. [PMID: 39276212 DOI: 10.1007/s00122-024-04711-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/04/2024] [Indexed: 09/16/2024]
Abstract
KEY MESSAGES Sixty-nine quantitative trait nucleotides conferring maize resistance to Gibberella ear rot were detected, including eighteen novel loci. Four candidate genes were predicted, and four kompetitive allele-specific PCR markers were developed. Maize Gibberella ear rot (GER), caused by Fusarium graminearum, is one of the most devastating diseases in maize-growing regions worldwide. Enhancing maize cultivar resistance to this disease requires a comprehensive understanding of the genetic basis of resistance to GER. In this study, 334 maize inbred lines were phenotyped for GER resistance in five environments and genotyped using the Affymetrix CGMB56K SNP Array, and a genome-wide association study of resistance to GER was performed using a 3V multi-locus random-SNP-effect mixed linear model. A total of 69 quantitative trait nucleotides (QTNs) conferring resistance to GER were detected, and all of them explained individually less than 10% of the phenotypic variation, suggesting that resistance to GER is controlled by multiple minor-effect genetic loci. A total of 348 genes located around the 200-kb genomic region of these 69 QTNs were identified, and four of them (Zm00001d029648, Zm00001d031449, Zm00001d006397, and Zm00001d053145) were considered candidate genes conferring susceptibility to GER based on gene expression patterns. Moreover, four kompetitive allele-specific PCR markers were developed based on the non-synonymous variation of these four candidate genes and validated in two genetic populations. This study provides useful genetic resources for improving resistance to GER in maize.
Collapse
Affiliation(s)
- Guangfei Zhou
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China.
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Liang Ma
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Caihong Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fugui Xie
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yang Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou, 225009, China
| | - Qing Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Derong Hao
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong, 226012, China
| | - Xiquan Gao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
- Collaborative Innovation Center for Modern Crop Production Co-sponsored by Province and Ministry/College of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
3
|
Mesterhazy A. Food Safety Aspects of Breeding Maize to Multi-Resistance against the Major (Fusarium graminearum, F. verticillioides, Aspergillus flavus) and Minor Toxigenic Fungi ( Fusarium spp.) as Well as to Toxin Accumulation, Trends, and Solutions-A Review. J Fungi (Basel) 2024; 10:40. [PMID: 38248949 PMCID: PMC10817526 DOI: 10.3390/jof10010040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/23/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Maize is the crop which is most commonly exposed to toxigenic fungi that produce many toxins that are harmful to humans and animals alike. Preharvest grain yield loss, preharvest toxin contamination (at harvest), and storage loss are estimated to be between 220 and 265 million metric tons. In the past ten years, the preharvest mycotoxin damage was stable or increased mainly in aflatoxin and fumonisins. The presence of multiple toxins is characteristic. The few breeding programs concentrate on one of the three main toxigenic fungi. About 90% of the experiments except AFB1 rarely test toxin contamination. As disease resistance and resistance to toxin contamination often differ in regard to F. graminearum, F. verticillioides, and A. flavus and their toxins, it is not possible to make a food safety evaluation according to symptom severity alone. The inheritance of the resistance is polygenic, often mixed with epistatic and additive effects, but only a minor part of their phenotypic variation can be explained. All tests are made by a single inoculum (pure isolate or mixture). Genotype ranking differs between isolates and according to aggressiveness level; therefore, the reliability of such resistance data is often problematic. Silk channel inoculation often causes lower ear rot severity than we find in kernel resistance tests. These explain the slow progress and raise skepticism towards resistance breeding. On the other hand, during genetic research, several effective putative resistance genes were identified, and some overlapped with known QTLs. QTLs were identified as securing specific or general resistance to different toxicogenic species. Hybrids were identified with good disease and toxin resistance to the three toxigenic species. Resistance and toxin differences were often tenfold or higher, allowing for the introduction of the resistance and resistance to toxin accumulation tests in the variety testing and the evaluation of the food safety risks of the hybrids within 2-3 years. Beyond this, resistance breeding programs and genetic investigations (QTL-analyses, GWAM tests, etc.) can be improved. All other research may use it with success, where artificial inoculation is necessary. The multi-toxin data reveal more toxins than we can treat now. Their control is not solved. As limits for nonregulated toxins can be introduced, or the existing regulations can be made to be stricter, the research should start. We should mention that a higher resistance to F. verticillioides and A. flavus can be very useful to balance the detrimental effect of hotter and dryer seasons on aflatoxin and fumonisin contamination. This is a new aspect to secure food and feed safety under otherwise damaging climatic conditions. The more resistant hybrids are to the three main agents, the more likely we are to reduce the toxin losses mentioned by about 50% or higher.
Collapse
Affiliation(s)
- Akos Mesterhazy
- Cereal Research Non-Profit Ltd., Alsokikotosor 9, 6726 Szeged, Hungary
| |
Collapse
|
4
|
Akohoue F, Miedaner T. Meta-analysis and co-expression analysis revealed stable QTL and candidate genes conferring resistances to Fusarium and Gibberella ear rots while reducing mycotoxin contamination in maize. FRONTIERS IN PLANT SCIENCE 2022; 13:1050891. [PMID: 36388551 PMCID: PMC9662303 DOI: 10.3389/fpls.2022.1050891] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Fusarium (FER) and Gibberella ear rots (GER) are the two most devastating diseases of maize (Zea mays L.) which reduce yield and affect grain quality worldwide, especially by contamination with mycotoxins. Genetic improvement of host resistance to effectively tackle FER and GER diseases requires the identification of stable quantitative trait loci (QTL) to facilitate the application of genomics-assisted breeding for improving selection efficiency in breeding programs. We applied improved meta-analysis algorithms to re-analyze 224 QTL identified in 15 studies based on dense genome-wide single nucleotide polymorphisms (SNP) in order to identify meta-QTL (MQTL) and colocalized genomic loci for fumonisin (FUM) and deoxynivalenol (DON) accumulation, silk (SR) and kernel (KR) resistances of both FER and GER, kernel dry-down rate (KDD) and husk coverage (HC). A high-resolution genetic consensus map with 36,243 loci was constructed and enabled the projection of 164 of the 224 collected QTL. Candidate genes (CG) mining was performed within the most refined MQTL, and identified CG were cross-validated using publicly available transcriptomic data of maize under Fusarium graminearum infection. The meta-analysis revealed 40 MQTL, of which 29 were associated each with 2-5 FER- and/or GER-related traits. Twenty-eight of the 40 MQTL were common to both FER and GER resistances and 19 MQTL were common to silk and kernel resistances. Fourteen most refined MQTL on chromosomes 1, 2, 3, 4, 7 and 9 harbored a total of 2,272 CG. Cross-validation identified 59 of these CG as responsive to FER and/or GER diseases. MQTL ZmMQTL2.2, ZmMQTL9.2 and ZmMQTL9.4 harbored promising resistance genes, of which GRMZM2G011151 and GRMZM2G093092 were specific to the resistant line for both diseases and encoded "terpene synthase21 (tps21)" and "flavonoid O-methyltransferase2 (fomt2)", respectively. Our findings revealed stable refined MQTL harboring promising candidate genes for use in breeding programs for improving FER and GER resistances with reduced mycotoxin accumulation. These candidate genes can be transferred into elite cultivars by integrating refined MQTL into genomics-assisted backcross breeding strategies.
Collapse
|
5
|
Zhou G, Li S, Ma L, Wang F, Jiang F, Sun Y, Ruan X, Cao Y, Wang Q, Zhang Y, Fan X, Gao X. Mapping and Validation of a Stable Quantitative Trait Locus Conferring Maize Resistance to Gibberella Ear Rot. PLANT DISEASE 2021; 105:1984-1991. [PMID: 33616427 DOI: 10.1094/pdis-11-20-2487-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Gibberella ear rot (GER), a prevalent disease caused by Fusarium graminearum, can result in significant yield loss and carcinogenic mycotoxin contamination in maize worldwide. However, only a few quantitative trait loci (QTLs) for GER resistance have been reported. In this study, we evaluated a Chinese recombinant inbred line (RIL) population comprising 204 lines, developed from a cross between a resistant parent DH4866 and a susceptible line T877, in three field trials under artificial inoculation with F. graminearum. The RIL population and their parents were genotyped with an Affymetrix microarray CGMB56K SNP Array. Based on the genetic linkage map constructed using 1,868 bins as markers, 11 QTLs, including five stable QTLs, were identified by individual environment analysis. Joint multiple environments analysis and epistatic interaction analysis revealed six additive and six epistatic (additive × additive) QTLs, respectively. None of the QTLs could explain more than 10% of phenotypic variation, suggesting that multiple minor-effect QTLs contributed to the genetic component of resistance to GER, and both additive and epistatic effects contributed to the genetic architecture of resistance to GER. A novel QTL, qGER4.09, with the largest effect, identified and validated using 588 F2 individuals, was colocalized with genomic regions for Fusarium ear rot and Aspergillus ear rot, indicating that this genetic locus likely confers resistance to multiple pathogens and can potentially be utilized in breeding maize varieties aimed at improving the resistance not only to GER but also other ear rot diseases.
Collapse
Affiliation(s)
- Guangfei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Yanjiang Institute of Agricultural Sciences, Nantong 226541, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Shunfa Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Liang Ma
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fang Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Fuyan Jiang
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, 650205, P.R. China
| | - Yali Sun
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xinsen Ruan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yu Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Qing Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Yingying Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | - Xingming Fan
- Institute of Food Crops, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan Province, 650205, P.R. China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, P.R. China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing 210095, P.R. China
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, P.R. China
| |
Collapse
|
6
|
Miedaner T, Boeven ALGC, Gaikpa DS, Kistner MB, Grote CP. Genomics-Assisted Breeding for Quantitative Disease Resistances in Small-Grain Cereals and Maize. Int J Mol Sci 2020; 21:E9717. [PMID: 33352763 PMCID: PMC7766114 DOI: 10.3390/ijms21249717] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/31/2022] Open
Abstract
Generating genomics-driven knowledge opens a way to accelerate the resistance breeding process by family or population mapping and genomic selection. Important prerequisites are large populations that are genomically analyzed by medium- to high-density marker arrays and extensive phenotyping across locations and years of the same populations. The latter is important to train a genomic model that is used to predict genomic estimated breeding values of phenotypically untested genotypes. After reviewing the specific features of quantitative resistances and the basic genomic techniques, the possibilities for genomics-assisted breeding are evaluated for six pathosystems with hemi-biotrophic fungi: Small-grain cereals/Fusarium head blight (FHB), wheat/Septoria tritici blotch (STB) and Septoria nodorum blotch (SNB), maize/Gibberella ear rot (GER) and Fusarium ear rot (FER), maize/Northern corn leaf blight (NCLB). Typically, all quantitative disease resistances are caused by hundreds of QTL scattered across the whole genome, but often available in hotspots as exemplified for NCLB resistance in maize. Because all crops are suffering from many diseases, multi-disease resistance (MDR) is an attractive aim that can be selected by specific MDR QTL. Finally, the integration of genomic data in the breeding process for introgression of genetic resources and for the improvement within elite materials is discussed.
Collapse
Affiliation(s)
- Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Ana Luisa Galiano-Carneiro Boeven
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Kleinwanzlebener Saatzucht (KWS) SAAT SE & Co. KGaA, 37574 Einbeck, Germany
| | - David Sewodor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| | - Maria Belén Kistner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
- Estación Experimental Pergamino, Instituto Nacional de Tecnología Agropecuaria (INTA), CC31, B2700WAA Pergamino, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, C1425FQB Buenos Aires, Argentina
| | - Cathérine Pauline Grote
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599 Stuttgart, Germany; (A.L.G.-C.B.); (D.S.G.); (M.B.K.); (C.P.G.)
| |
Collapse
|
7
|
Wang Y, Xu Y, Gupta S, Zhou Y, Wallwork H, Zhou G, Broughton S, Zhang XQ, Tan C, Westcott S, Moody D, Sun D, Loughman R, Zhang W, Li C. Fine mapping QSc.VR4, an effective and stable scald resistance locus in barley (Hordeum vulgare L.), to a 0.38-Mb region enriched with LRR-RLK and GLP genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2307-2321. [PMID: 32405768 DOI: 10.1007/s00122-020-03599-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
An effective and stable quantitative resistance locus, QSc.VR4, was fine mapped, characterized and physically anchored to the short arm of 4H, conferring adult plant resistance to the fungus Rhynchosporium commune in barley. Scald caused by Rhynchosporium commune is one of the most destructive barley diseases worldwide. Accumulation of adult plant resistance (APR) governed by multiple resistance alleles is predicted to be effective and long-lasting against a broad spectrum of pathotypes. However, the molecular mechanisms that control APR remain poorly understood. Here, quantitative trait loci (QTL) analysis of APR and fine mapping were performed on five barley populations derived from a common parent Vlamingh, which expresses APR to scald. Two QTLs, designated QSc.VR4 and QSc.BR7, were detected from a cross between Vlamingh and Buloke. Our data confirmed that QSc.VR4 is an effective and stable APR locus, residing on the short arm of chromosome 4H, and QSc.BR7 derived from Buloke may be an allele of reported Rrs2. High-resolution fine mapping revealed that QSc.VR4 is located in a 0.38 Mb genomic region between InDel markers 4H2282169 and 4H2665106. The gene annotation analysis and sequence comparison suggested that a gene cluster containing two adjacent multigene families encoding leucine-rich repeat receptor kinase-like proteins (LRR-RLKs) and germin-like proteins (GLPs), respectively, is likely contributing to scald resistance. Adult plant resistance (APR) governed by QSc.VR4 may confer partial levels of resistance to the fungus Rhynchosporium commune and, furthermore, be an important resource for gene pyramiding that may contribute broad-based and more durable resistance.
Collapse
Affiliation(s)
- Yonggang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yanhao Xu
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Sanjiv Gupta
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Yi Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Hugh Wallwork
- South Australian Research and Development Institute, Hartley Grove, Urrbrae, SA, Australia
| | - Gaofeng Zhou
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Sue Broughton
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Xiao-Qi Zhang
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Cong Tan
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
| | - Sharon Westcott
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - David Moody
- InterGrain Pty Ltd, South Perth, WA, Australia
| | - Dongfa Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China
| | - Robert Loughman
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia
| | - Wenying Zhang
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA, Australia.
- Hubei Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, Hubei, China.
- Agriculture and Food, Department of Primary Industries and Regional Development, South Perth, WA, Australia.
| |
Collapse
|
8
|
Wu Y, Zhou Z, Dong C, Chen J, Ding J, Zhang X, Mu C, Chen Y, Li X, Li H, Han Y, Wang R, Sun X, Li J, Dai X, Song W, Chen W, Wu J. Linkage mapping and genome-wide association study reveals conservative QTL and candidate genes for Fusarium rot resistance in maize. BMC Genomics 2020; 21:357. [PMID: 32398006 PMCID: PMC7218626 DOI: 10.1186/s12864-020-6733-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/14/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Fusarium ear rot (FER) caused by Fusarium verticillioides is a major disease of maize that reduces grain yield and quality globally. However, there have been few reports of major loci for FER were verified and cloned. RESULT To gain a comprehensive understanding of the genetic basis of natural variation in FER resistance, a recombinant inbred lines (RIL) population and one panel of inbred lines were used to map quantitative trait loci (QTL) for resistance. As a result, a total of 10 QTL were identified by linkage mapping under four environments, which were located on six chromosomes and explained 1.0-7.1% of the phenotypic variation. Epistatic mapping detected four pairs of QTL that showed significant epistasis effects, explaining 2.1-3.0% of the phenotypic variation. Additionally, 18 single nucleotide polymorphisms (SNPs) were identified across the whole genome by genome-wide association study (GWAS) under five environments. Compared linkage and association mapping revealed five common intervals located on chromosomes 3, 4, and 5 associated with FER resistance, four of which were verified in different near-isogenic lines (NILs) populations. GWAS identified three candidate genes in these consistent intervals, which belonged to the Glutaredoxin protein family, actin-depolymerizing factors (ADFs), and AMP-binding proteins. In addition, two verified FER QTL regions were found consistent with Fusarium cob rot (FCR) and Fusarium seed rot (FSR). CONCLUSIONS These results revealed that multi pathways were involved in FER resistance, which was a complex trait that was controlled by multiple genes with minor effects, and provided important QTL and genes, which could be used in molecular breeding for resistance.
Collapse
Affiliation(s)
- Yabin Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zijian Zhou
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chaopei Dong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiafa Chen
- College of Life Sciences, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Junqiang Ding
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuecai Zhang
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Apdo 6-641, 06600, Mexico, DF, Mexico
| | - Cong Mu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yuna Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaopeng Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yanan Han
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruixia Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaodong Sun
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jingjing Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaodong Dai
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weibin Song
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Chen
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jianyu Wu
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
9
|
Gaikpa DS, Miedaner T. Genomics-assisted breeding for ear rot resistances and reduced mycotoxin contamination in maize: methods, advances and prospects. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2721-2739. [PMID: 31440772 DOI: 10.1007/s00122-019-03412-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 08/13/2019] [Indexed: 05/26/2023]
Abstract
Genetic mapping, genomic profiling and bioinformatic approaches were used to identify putative resistance genes for ear rots and low mycotoxin contamination in maize. Genomic selection seems to have good perspectives. Maize is globally an indispensable crop for humans and livestock. About 30% of yield is lost by fungal diseases with Gibberella, Fusarium and Aspergillus ear rots (ERs) having a high economic impact in most maize-growing regions of the world. They reduce not only yield, but also contaminate grains with mycotoxins like deoxynivalenol, zearalenone, fumonisins and aflatoxins, respectively. These mycotoxins pose serious health problems to humans and animals. A number of studies have been conducted to dissect the genetic architecture of resistance to these three major ear rots over the past decade. The review concentrates on studies carried out to locate quantitative trait loci (QTL) and candidate genes (CG) on the maize genome as well as the application of genomic selection in maize for resistance against Fusarium graminearum, Fusarium verticillioides and Aspergillus flavus. QTL studies by linkage or genome-wide association mapping, omic technologies (genomics, proteomics, transcriptomics and metabolomics) and bioinformatics are the methods used in the current studies to propose resistance genes against ear rot pathogens. Though a number of QTL and CG are reported, only a few specific genes were found to directly confer ER resistance in maize. A combination of two or more gene identification methods would provide a more powerful and reliable tool. Genomic selection seems to be promising for ER resistance breeding, but there are only a limited number of studies in this area. A strategy that can accurately validate and predict genotypes with major effect QTL and CG for selection will be worthwhile for practical breeding against ERs and mycotoxin contamination in maize.
Collapse
Affiliation(s)
- David Sewordor Gaikpa
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, Fruwirthstr. 21, 70599, Stuttgart, Germany.
| |
Collapse
|
10
|
Zhou S, Zhang YK, Kremling KA, Ding Y, Bennett JS, Bae JS, Kim DK, Ackerman HH, Kolomiets MV, Schmelz EA, Schroeder FC, Buckler ES, Jander G. Ethylene signaling regulates natural variation in the abundance of antifungal acetylated diferuloylsucroses and Fusarium graminearum resistance in maize seedling roots. THE NEW PHYTOLOGIST 2019; 221:2096-2111. [PMID: 30289553 DOI: 10.1111/nph.15520] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2018] [Accepted: 09/26/2018] [Indexed: 05/20/2023]
Abstract
The production and regulation of defensive specialized metabolites play a central role in pathogen resistance in maize (Zea mays) and other plants. Therefore, identification of genes involved in plant specialized metabolism can contribute to improved disease resistance. We used comparative metabolomics to identify previously unknown antifungal metabolites in maize seedling roots, and investigated the genetic and physiological mechanisms underlying their natural variation using quantitative trait locus mapping and comparative transcriptomics approaches. Two maize metabolites, smilaside A (3,6-diferuloyl-3',6'-diacetylsucrose) and smiglaside C (3,6-diferuloyl-2',3',6'-triacetylsucrose), were identified that could contribute to maize resistance against Fusarium graminearum and other fungal pathogens. Elevated expression of an ethylene signaling gene, ETHYLENE INSENSITIVE 2 (ZmEIN2), co-segregated with a decreased smilaside A : smiglaside C ratio. Pharmacological and genetic manipulation of ethylene availability and sensitivity in vivo indicated that, whereas ethylene was required for the production of both metabolites, the smilaside A : smiglaside C ratio was negatively regulated by ethylene sensitivity. This ratio, rather than the absolute abundance of these two metabolites, was important for maize seedling root defense against F. graminearum. Ethylene signaling regulates the relative abundance of the two F. graminearum-resistance-related metabolites and affects resistance against F. graminearum in maize seedling roots.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Ying K Zhang
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Karl A Kremling
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14853, USA
| | - Yezhang Ding
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | - John S Bennett
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77840, USA
| | - Justin S Bae
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Dean K Kim
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | | | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, 77840, USA
| | - Eric A Schmelz
- Section of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA, 92093, USA
| | | | - Edward S Buckler
- Plant Breeding and Genetics Section, Cornell University, Ithaca, NY, 14853, USA
- United States Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
11
|
Jiménez-Galindo JC, Malvar RA, Butrón A, Caicedo M, Ordás B. Fine analysis of a genomic region involved in resistance to Mediterranean corn borer. BMC PLANT BIOLOGY 2018; 18:169. [PMID: 30111285 PMCID: PMC6094900 DOI: 10.1186/s12870-018-1385-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Sesamia nonagrioides Lefebvere (Mediterranean corn borer, MCB) is the main pest of maize in the Mediterranean area. QTL for MCB stalk tunneling and grain yield under high MCB infestation had been located at bin 8.03-8.05 (4-21 cM and 10-30 cM respectively) in a previous analysis of the EP42 x EP39 RILs mapping population. The objective of the present work was to study with higher resolution those QTL, and validating and estimating with higher precision their locations and effects. To achieve this objective, we developed a set of 38 heterogeneous inbred families (HIFs) which were near-homozygous in the genome, except in the region under study. The HIFs were evaluated in multiple environments under artificial infestation with MCB and genotyped with SNPs. RESULTS The QTL for grain yield under high infestation was confirmed with higher precision and improved reliability at 112.6-116.9 Mb. On the contrary, the location of the QTL for stalk tunneling was not validated probably due to the fixation of some genomic regions during the development of the HIFs. Our study confirmed that the co-localization of the QTL for stalk tunneling and grain yield in the previous study was due to linked genes, not to pleiotropic effects. So, the QTL for grain yield can be used for improving grain yield without undesirable effect on stalk tunneling. CONCLUSIONS The HIF analysis is useful for validating QTL and for conducting deeper studies in traits related to corn borer resistance.
Collapse
Affiliation(s)
- José Cruz Jiménez-Galindo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Forestry, Agriculture and Livestock Research (INIFAP), Ave. Hidalgo 1213, Cd., 31500 Cuauhtémoc, Chihuahua, Mexico
| | - Rosa Ana Malvar
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| | - Marlon Caicedo
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
- National Institute of Agricultural Research (INIAP), 170315 Quito, Ecuador
| | - Bernardo Ordás
- Misión Biológica de Galicia, Spanish National Research Council (CSIC), Apartado 28, 36080 Pontevedra, Spain
| |
Collapse
|
12
|
Zhou S, Bae JS, Bergstrom GC, Jander G. Fusarium graminearum-induced shoot elongation and root reduction in maize seedlings correlate with later seedling blight severity. PLANT DIRECT 2018; 2:e00075. [PMID: 31245738 PMCID: PMC6508817 DOI: 10.1002/pld3.75] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/21/2018] [Accepted: 05/21/2018] [Indexed: 05/29/2023]
Abstract
Fusarium graminearum seedling blight is a common disease of maize (Zea mays). Development of genetic resistance to seedling blight in maize germplasm requires efficient and accurate quantitative assessment of disease severity. Through artificial inoculation experiments under controlled growth conditions, we determined that host genotype, pathogen genotype, and infection dose influence the extent to which F. graminearum induces shoot elongation and inhibits root growth in maize seedlings. A comparison of 15 maize inbred lines showed independent variation of these two fungus-induced effects on seedling growth. In a broader survey with nine commercial maize hybrids and three field-collected fungal isolates, there was significant correlation between these seedling growth responses, as well as with later seedling blight severity. Analysis of variance suggested that this variation and the observed correlative relationships were primarily driven by differing pathogenicity of the three fungal isolates. Together, our results indicate that F. graminearum-induced shoot elongation and root reduction in maize seedlings have distinct underlying physiological mechanisms, and that early observations of seedling growth responses can serve as a proxy for investigating natural variation in host resistance and pathogen aggressiveness at later growth stages.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Boyce Thompson InstituteIthacaNew York
- Plant Biology SectionSchool of Integrated Plant ScienceCornell UniversityIthacaNew York
| | | | - Gary C. Bergstrom
- Plant Pathology and Plant‐Microbe Biology SectionSchool of Integrated Plant ScienceCornell UniversityIthacaNew York
| | | |
Collapse
|
13
|
Kebede AZ, Johnston A, Schneiderman D, Bosnich W, Harris LJ. Transcriptome profiling of two maize inbreds with distinct responses to Gibberella ear rot disease to identify candidate resistance genes. BMC Genomics 2018; 19:131. [PMID: 29426290 PMCID: PMC5807830 DOI: 10.1186/s12864-018-4513-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 01/31/2018] [Indexed: 11/27/2022] Open
Abstract
Background Gibberella ear rot (GER) is one of the most economically important fungal diseases of maize in the temperate zone due to moldy grain contaminated with health threatening mycotoxins. To develop resistant genotypes and control the disease, understanding the host-pathogen interaction is essential. Results RNA-Seq-derived transcriptome profiles of fungal- and mock-inoculated developing kernel tissues of two maize inbred lines were used to identify differentially expressed transcripts and propose candidate genes mapping within GER resistance quantitative trait loci (QTL). A total of 1255 transcripts were significantly (P ≤ 0.05) up regulated due to fungal infection in both susceptible and resistant inbreds. A greater number of transcripts were up regulated in the former (1174) than the latter (497) and increased as the infection progressed from 1 to 2 days after inoculation. Focusing on differentially expressed genes located within QTL regions for GER resistance, we identified 81 genes involved in membrane transport, hormone regulation, cell wall modification, cell detoxification, and biosynthesis of pathogenesis related proteins and phytoalexins as candidate genes contributing to resistance. Applying droplet digital PCR, we validated the expression profiles of a subset of these candidate genes from QTL regions contributed by the resistant inbred on chromosomes 1, 2 and 9. Conclusion By screening global gene expression profiles for differentially expressed genes mapping within resistance QTL regions, we have identified candidate genes for gibberella ear rot resistance on several maize chromosomes which could potentially lead to a better understanding of Fusarium resistance mechanisms. Electronic supplementary material The online version of this article (10.1186/s12864-018-4513-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Aida Z Kebede
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.,Morden Research and Development Centre, Agriculture and Agri-Food Canada, 101 Route 100, Morden, MB, R6M 1Y5, Canada
| | - Anne Johnston
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Danielle Schneiderman
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Whynn Bosnich
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada
| | - Linda J Harris
- Ottawa Research and Development Centre (ORDC), Agriculture and Agri-Food Canada, 960 Carling Ave, Ottawa, ON, K1A 0C6, Canada.
| |
Collapse
|