1
|
Wu Q, Liu L, Zhang D, Li C, Nie R, Duan J, Wan J, Zhao J, Cao J, Liu D, Liu S, Wang Q, Zheng W, Yao Q, Kang Z, Zhang W, Du J, Han D, Wang C, Wu J, Li C. Genetic dissection and identification of stripe rust resistance genes in the wheat cultivar Lanhangxuan 121, a cultivar selected from a space mutation population. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:23. [PMID: 38449537 PMCID: PMC10912391 DOI: 10.1007/s11032-024-01461-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/22/2024] [Indexed: 03/08/2024]
Abstract
Stripe rust is a devastating disease of wheat worldwide. Chinese wheat cultivar Lanhangxuan 121 (LHX121), selected from an advanced line L92-47 population that had been subjected to space mutation breeding displayed a consistently higher level of resistance to stipe rust than its parent in multiple field environments. The aim of this research was to establish the number and types of resistance genes in parental lines L92-47 and LHX121 using separate segregating populations. The first population developed from a cross between LHX121 and susceptible cultivar Xinong 822 comprised 278 F2:3 lines. The second validation population comprised 301 F2:3 lines from a cross between L92-47 and susceptible cultivar Xinong 979. Lines of two population were evaluated for stripe rust response at three sites during the 2018-2020 cropping season. Affymetrix 660 K SNP arrays were used to genotype the lines and parents. Inclusive composite interval mapping detected QTL QYrLHX.nwafu-2BS, QYrLHX.nwafu-3BS, and QYrLHX.nwafu-5BS for resistance in all three environments. Based on previous studies and pedigree information, QYrLHX.nwafu-2BS and QYrLHX.nwafu-3BS were likely to be Yr27 and Yr30 that are present in the L92-47 parent. QYrLHX.nwafu-5BS (YrL121) detected only in LHX121 was mapped to a 7.60 cM interval and explained 10.67-22.57% of the phenotypic variation. Compared to stripe rust resistance genes previously mapped to chromosome 5B, YrL121 might be a new adult plant resistance QTL. Furthermore, there were a number of variations signals using 35 K SNP array and differentially expressed genes using RNA-seq between L92-47 and LHX121 in the YrL121 region, indicating that they probably impair the presence and/or function of YrL121. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01461-0.
Collapse
Affiliation(s)
- Qimeng Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Lei Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Dandan Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Chenchen Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Ruiqi Nie
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jiangli Duan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jufen Wan
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jiwen Zhao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jianghao Cao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Dan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Shengjie Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Qilin Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Weijun Zheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Qiang Yao
- Key Laboratory of Agricultural Integrated Pest Management, Academy of Agriculture and Forestry Science, Qinghai University, Xining, Qinghai 810016 People’s Republic of China
| | - Zhensheng Kang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Wentao Zhang
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730000 People’s Republic of China
| | - Jiuyuan Du
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, Gansu 730000 People’s Republic of China
| | - Dejun Han
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Changfa Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Jianhui Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| | - Chunlian Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100 People’s Republic of China
| |
Collapse
|
2
|
Mao H, Jiang C, Tang C, Nie X, Du L, Liu Y, Cheng P, Wu Y, Liu H, Kang Z, Wang X. Wheat adaptation to environmental stresses under climate change: Molecular basis and genetic improvement. MOLECULAR PLANT 2023; 16:1564-1589. [PMID: 37671604 DOI: 10.1016/j.molp.2023.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/07/2023]
Abstract
Wheat (Triticum aestivum) is a staple food for about 40% of the world's population. As the global population has grown and living standards improved, high yield and improved nutritional quality have become the main targets for wheat breeding. However, wheat production has been compromised by global warming through the more frequent occurrence of extreme temperature events, which have increased water scarcity, aggravated soil salinization, caused plants to be more vulnerable to diseases, and directly reduced plant fertility and suppressed yield. One promising option to address these challenges is the genetic improvement of wheat for enhanced resistance to environmental stress. Several decades of progress in genomics and genetic engineering has tremendously advanced our understanding of the molecular and genetic mechanisms underlying abiotic and biotic stress responses in wheat. These advances have heralded what might be considered a "golden age" of functional genomics for the genetic improvement of wheat. Here, we summarize the current knowledge on the molecular and genetic basis of wheat resistance to abiotic and biotic stresses, including the QTLs/genes involved, their functional and regulatory mechanisms, and strategies for genetic modification of wheat for improved stress resistance. In addition, we also provide perspectives on some key challenges that need to be addressed.
Collapse
Affiliation(s)
- Hude Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Cong Jiang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Linying Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Science, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuling Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Peng Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yunfeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
3
|
Li T, Kong C, Deng P, Li C, Zhao G, Li H, Gao L, Cui D, Jia J. Intra-Varietal Diversity and Its Contribution to Wheat Evolution, Domestication, and Improvement in Wheat. Int J Mol Sci 2023; 24:10217. [PMID: 37373363 DOI: 10.3390/ijms241210217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/10/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Crop genetic diversity is essential for adaptation and productivity in agriculture. A previous study revealed that poor allele diversity in wheat commercial cultivars is a major barrier to its further improvement. Homologs within a variety, including paralogs and orthologs in polyploid, account for a large part of the total genes of a species. Homolog diversity, intra-varietal diversity (IVD), and their functions have not been elucidated. Common wheat, an important food crop, is a hexaploid species with three subgenomes. This study analyzed the sequence, expression, and functional diversity of homologous genes in common wheat based on high-quality reference genomes of two representative varieties, a modern commercial variety Aikang 58 (AK58) and a landrace Chinese Spring (CS). A total of 85,908 homologous genes, accounting for 71.9% of all wheat genes, including inparalogs (IPs), outparalogs (OPs), and single-copy orthologs (SORs), were identified, suggesting that homologs are an important part of the wheat genome. The levels of sequence, expression, and functional variation in OPs and SORs were higher than that of IPs, which indicates that polyploids have more homologous diversity than diploids. Expansion genes, a specific type of OPs, made a great contribution to crop evolution and adaptation and endowed crop with special characteristics. Almost all agronomically important genes were from OPs and SORs, demonstrating their essential functions for polyploid evolution, domestication, and improvement. Our results suggest that IVD analysis is a novel approach for evaluating intra-genomic variations, and exploitation of IVD might be a new road for plant breeding, especially for polyploid crops, such as wheat.
Collapse
Affiliation(s)
- Tianbao Li
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuizheng Kong
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Pingchuan Deng
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Guangyao Zhao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hongjie Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Lifeng Gao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Dangqun Cui
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
| | - Jizeng Jia
- The College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, 63 Nongye Road, Zhengzhou 450002, China
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Wan H, Yang M, Li J, Wang Q, Liu Z, Zheng J, Li S, Yang N, Yang W. Cytological and genetic effects of rye chromosomes 1RS and 3R on the wheat-breeding founder parent Chuanmai 42 from southwestern China. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:40. [PMID: 37312750 PMCID: PMC10248656 DOI: 10.1007/s11032-023-01386-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 04/13/2023] [Indexed: 06/15/2023]
Abstract
Rye (Secale cereale L.) is an important genetic resource for improving the disease resistance of wheat. An increasing number of rye chromosome segments have been transferred into modern wheat cultivars via chromatin insertions. In this study, 185 recombinant inbred lines (RILs) derived from a cross between a wheat accession containing rye chromosomes 1RS and 3R and a wheat-breeding founder parent Chuanmai 42 from southwestern China were used to decipher the cytological and genetic effects of 1RS and 3R via fluorescence/genomic in situ hybridization and quantitative trait locus (QTL) analyses. Chromosome centromere breakage and fusion were detected in the RIL population. Additionally, the recombination of chromosomes 1BS and 3D from Chuanmai 42 was completely suppressed by 1RS and 3R in the RIL population. In contrast to chromosome 3D of Chuanmai 42, rye chromosome 3R was significantly associated with white seed coats and decreased yield-related traits, as revealed by QTL and single marker analyses, whereas it had no effect on stripe rust resistance. Rye chromosome 1RS did not affect yield-related traits and it increased the susceptibility of plants to stripe rust. Most of the detected QTLs that positively affected yield-related traits were from Chuanmai 42. The findings of this study suggest that the negative effects of rye-wheat substitutions or translocations, including the suppression of the pyramiding of favorable QTLs on paired wheat chromosomes from different parents and the transfer of disadvantageous alleles to filial generations, should be considered when selecting alien germplasm to enhance wheat-breeding founder parents or to breed new varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01386-0.
Collapse
Affiliation(s)
- Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066 China
- Key Laboratory of Wheat Biology and Genetic Improvement On Southwestern China (MARA), Chengdu, 610066 China
- Environment-Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, 610066 China
| |
Collapse
|
5
|
Zhao R, Liu B, Wan W, Jiang Z, Chen T, Wang L, Bie T. Mapping and characterization of a novel adult-plant leaf rust resistance gene LrYang16G216 via bulked segregant analysis and conventional linkage method. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:1. [PMID: 36645449 DOI: 10.1007/s00122-023-04270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 11/07/2022] [Indexed: 06/17/2023]
Abstract
A novel adult-plant leaf rust resistance gene LrYang16G216 on wheat chromosome 6BL was identified and mapped to a 0.59 cM genetic interval by BSA and conventional linkage method. Leaf rust (Puccinia triticina) is one of the most devastating fungal diseases of wheat (Triticum aestivum L.). Discovery and identification of new resistance genes is essential to develop disease-resistant cultivars. An advanced breeding line Yang16G216 was previously identified to confer adult-plant resistance (APR) to leaf rust. In this research, a recombinant inbred line (RIL) population was constructed from the cross between Yang16G216 and a highly susceptible line Yang16M6393, and genotyped with exome capture sequencing and 55 K SNP array. Through bulked segregant analysis (BSA) and genetic linkage mapping, a stable APR gene, designated as LrYang16G216, was detected and mapped to the distal region of chromosome arm 6BL with a genetic interval of 2.8 cM. For further verification, another RIL population derived from the cross between Yang16G216 and a susceptible wheat variety Yangmai 29 was analyzed using the enriched markers in the target interval, and LrYang16G216 was further narrowed to a 0.59 cM genetic interval flanked by the KASP markers Ax109403980 and Ax95083494, corresponding to the physical position 712.34-713.94 Mb in the Chinese Spring reference genome, in which twenty-six disease resistance-related genes were annotated. Based on leaf rust resistance spectrum, mapping data and physical location, LrYang16G216 was identified to be a novel and effective APR gene. The LrYang16G216 with linked markers will be useful for marker-assisted selection in wheat resistance breeding.
Collapse
Affiliation(s)
- Renhui Zhao
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Bingliang Liu
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225007, China
| | - Wentao Wan
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Zhengning Jiang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tiantian Chen
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Ling Wang
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China
| | - Tongde Bie
- Key Laboratory of Wheat Biology and Genetic Improvement On Low & Middle Yangtze River Valley Wheat Region (Ministry of Agriculture), Yangzhou Academy of Agricultural Sciences, Yangzhou, 225007, China.
| |
Collapse
|
6
|
Liu T, Liu X, He J, Dong K, Pan W, Zhang L, Ren R, Zhang Z, Yang T. Identification and fine-mapping of a major QTL ( PH1.1) conferring plant height in broomcorn millet ( Panicum miliaceum). FRONTIERS IN PLANT SCIENCE 2022; 13:1010057. [PMID: 36304390 PMCID: PMC9593001 DOI: 10.3389/fpls.2022.1010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The plant height of broomcorn millet (Panicum miliaceum) is a significant agronomic trait that is closely related to its plant architecture, lodging resistance, and final yield. However, the genes underlying the regulation of plant height in broomcorn millet are rarely reported. Here, an F2 population derived from a cross between a normal variety, "Longmi12," and a dwarf mutant, "Zhang778," was constructed. Genetic analysis for the F2 and F2:3 populations revealed that the plant height was controlled by more than one locus. A major quantitative trait locus (QTL), PH1.1, was preliminarily identified in chromosome 1 using bulked segregant analysis sequencing (BSA-seq). PH1.1 was fine-mapped to a 109-kb genomic region with 15 genes using a high-density map. Among them, longmi011482 and longmi011489, containing nonsynonymous variations in their coding regions, and longmi011496, covering multiple insertion/deletion sequences in the promoter regions, may be possible candidate genes for PH1.1. Three diagnostic markers closely linked to PH1.1 were developed to validate the PH1.1 region in broomcorn millet germplasm. These findings laid the foundation for further understanding of the molecular mechanism of plant height regulation in broomcorn millet and are also beneficial to the breeding program for developing new varieties with optimal height.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wanxiang Pan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
7
|
Macho A, Wang P, Zhu JK. Modification of the susceptibility gene TaPsIPK1 - a win-win for wheat disease resistance and yield. STRESS BIOLOGY 2022; 2:40. [PMID: 37676463 PMCID: PMC10441897 DOI: 10.1007/s44154-022-00060-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 08/21/2022] [Indexed: 09/08/2023]
Abstract
Wheat is one of the most important cereal crops, and it is essential for worldwide food security. However, wheat production is threatened by various diseases, including wheat stripe rust caused by the fungus Puccinia striiformis f. sp. tritici (Pst). The development of plant resistance against disease is usually challenged by potential reduction in crop yield due to the enhancement of plant immunity. In a recent article, Wang et al. found that TaPsIPK1 is a susceptibility gene targeted by rust effectors. Editing of TaPsIPK1 increases resistance to stripe rust without any developmental effects or yield penalty, providing an exceptional resource for developing disease resistance in wheat.
Collapse
Affiliation(s)
- Alberto Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Pengcheng Wang
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Kang Zhu
- Institute of Advanced Biotechnology and School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China.
- Center for Advanced Bioindustry Technologies, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
8
|
Liu S, Wang X, Zhang Y, Jin Y, Xia Z, Xiang M, Huang S, Qiao L, Zheng W, Zeng Q, Wang Q, Yu R, Singh RP, Bhavani S, Kang Z, Han D, Wang C, Wu J. Enhanced stripe rust resistance obtained by combining Yr30 with a widely dispersed, consistent QTL on chromosome arm 4BL. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:351-365. [PMID: 34665265 DOI: 10.1007/s00122-021-03970-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
YrFDC12 and PbcFDC, co-segregated in chromosome 4BL, and significantly interacted with Yr30/Pbc1 to enhance stripe rust resistance and to promote pseudo-black chaff development. Cultivars with durable resistance are the most popular means to control wheat stripe rust. Durable resistance can be achieved by stacking multiple adult plant resistance (APR) genes that individually have relatively small effect. Chinese wheat cultivars Ruihua 520 (RH520) and Fengdecun 12 (FDC12) confer partial APR to stripe rust across environments. One hundred and seventy recombinant inbred lines from the cross RH520 × FDC12 were used to determine the genetic basis of resistance and identify genomic regions associated with stripe rust resistance. Genotyping was carried out using 55 K SNP array, and eight quantitative trait loci (QTL) were detected on chromosome arms 2AL, 2DS, 3BS, 4BL, 5BL (2), and 7BL (2) by inclusive composite interval mapping. Only QYr.nwafu-3BS from RH520 and QYr.nwafu-4BL.2 (named YrFDC12 for convenience) from FDC12 were consistent across the four testing environments. QYr.nwafu-3BS is likely the pleiotropic resistance gene Sr2/Yr30. YrFDC12 was mapped in a 2.1-cM interval corresponding to 12 Mb and flanked by SNP markers AX-111121224 and AX-89518393. Lines harboring both Yr30 and YrFDC12 displayed higher resistance than the parents and expressed pseudo-black chaff (PBC) controlled by loci Pbc1 and PbcFDC12, which co-segregated with Yr30 and YrFDC12, respectively. Both marker-based and pedigree-based kinship analyses revealed that YrFDC12 was inherited from founder parent Zhou 8425B. Fifty-four other wheat cultivars shared the YrFDC12 haplotype. These results suggest an effective pyramiding strategy to acquire highly effective, durable stripe rust resistance in breeding.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yayun Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Yangang Jin
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Zhonghua Xia
- Jiangsu Ruihua Agricultural Science and Technology Co. Ltd, Suqian, 223800, Jiangsu, People's Republic of China
| | - Mingjie Xiang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Linyi Qiao
- Shanxi Key Laboratory of Crop Genetics and Molecular Improvement, College of Agriculture, Shanxi Agricultural University, Taiyuan, 030031, Shanxi, China
| | - Weijun Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Changfa Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
9
|
Liu S, Huang S, Zeng Q, Wang X, Yu R, Wang Q, Singh RP, Bhavani S, Kang Z, Wu J, Han D. Refined mapping of stripe rust resistance gene YrP10090 within a desirable haplotype for wheat improvement on chromosome 6A. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2005-2021. [PMID: 33683400 DOI: 10.1007/s00122-021-03801-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
A large genomic region spanning over 300 Mb on chromosome 6A under intense artificial selection harbors multiple loci associated with favorable traits including stripe rust resistance in wheat. The development of resistance cultivars can be an optimal strategy for controlling wheat stripe rust disease. Although loci for stripe rust resistance have been identified on chromosome 6A in previous studies, it is unclear whether these loci span a common genetic interval, and few studies have attempted to analyze the haplotype changes that have accompanied wheat improvement over the period of modern breeding. In this study, we used F2:3 families and F6:7 recombinant inbred lines (RILs) derived from a cross between a resistant CIMMYT wheat accession P10090 and the susceptible landrace Mingxian 169 to improve the resolution of the QTL on chromosome 6A. The co-located QTL, designated as YrP10090, was flanked by SNP markers AX-94460938 and AX-110585473 with a genetic interval of 3.5 cM, however, corresponding to a large physical distance of over 300 Mb in RefSeq v.1.0 (positions 107.1-446.5 Mb). More than 1,300 SNP markers in this genetic region were extracted for haplotype analysis in a panel of 1,461 worldwide common wheat accessions, and three major haplotypes (Hap1, Hap2, and Hap3) were identified. The favorable haplotype Hap1 associated with stripe rust resistance exhibited a large degree of linkage disequilibrium. Selective sweep analyses were performed between different haplotype groups, revealing specific genomic regions with strong artificial selection signals. These regions harbored multiple desirable traits associated with resilience to environmental stress, different yield components, and quality characteristics. P10090 and its derivatives that carry the desirable haplotype can provide a concrete foundation for bread wheat improvement including the genomic selection.
Collapse
Affiliation(s)
- Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, 56237, Texcoco, Estado de Mexico, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
10
|
Bai X, Huang X, Tian S, Peng H, Zhan G, Goher F, Guo J, Kang Z, Guo J. RNAi-mediated stable silencing of TaCSN5 confers broad-spectrum resistance to Puccinia striiformis f. sp. tritici. MOLECULAR PLANT PATHOLOGY 2021; 22:410-421. [PMID: 33486803 PMCID: PMC7938628 DOI: 10.1111/mpp.13034] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 05/03/2023]
Abstract
The constitutive photomorphogenesis 9 (COP9) signalosome (CSN) is a versatile regulator of plant growth, development, and response to diverse pathogens. However, little research has been done to understand the function of those CSN genes in broad-spectrum resistance to pathogens. In this study, we found that the transcript levels of wheat TaCSN5 were induced in response to inoculation with Puccinia striiformis f. sp. tritici (Pst) and treatment with salicylic acid (SA). Overexpression of TaCSN5 in Arabidopsis resulted in increased susceptibility to Pseudomonas syringae pv. tomato DC3000 infection accompanied by down-regulation of AtPR1 expression. Overexpression of TaCSN5 in wheat lines significantly increased susceptibility to Pst accompanied by decreased SA accumulation, whereas TaCSN5-RNAi wheat lines exhibited opposite trends. Moreover, we found that TaCSN5 negatively regulated TaG3NPR1 genes involved in the SA signalling pathway. In addition, TaCSN5-RNAi lines showed increased resistance to multiple races of Pst. Taken together, we demonstrate that TaCSN5 contributes to negative regulation of wheat resistance to Pst in an SA-dependent manner.
Collapse
Affiliation(s)
- Xingxuan Bai
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Xueling Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Shuxin Tian
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Huan Peng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Gangming Zhan
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Farhan Goher
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jia Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
11
|
Ward BP, Merrill K, Bulli P, Pumphrey M, Mason RE, Mergoum M, Johnson J, Sapkota S, Lopez B, Marshall D, Brown-Guedira G. Analysis of the primary sources of quantitative adult plant resistance to stripe rust in U.S. soft red winter wheat germplasm. THE PLANT GENOME 2021; 14:e20082. [PMID: 33595199 DOI: 10.1002/tpg2.20082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Stripe rust, or yellow rust (Puccinia striiformis Westend. f. sp. tritic), is a disease of wheat (Triticum aestivum L.) historically causing significant economic losses in cooler growing regions. Novel isolates of stripe rust with increased tolerance for high temperatures were detected in the United States circa 2000. This increased heat tolerance puts geographic regions, such as the soft red winter wheat (SRWW) growing region of the southeastern United States, at greater risk of stripe rust induced losses. In order to identify sources of stripe rust resistance in contemporary germplasm, we conducted genome-wide association (GWA) studies on stripe rust severity measured in two panels. The first consisted of 273 older varieties, landraces, and some modern elite breeding lines and was evaluated in environments in the U.S. Pacific Northwest and the southeastern United States. The second panel consisted of 588 modern, elite SRWW breeding lines and was evaluated in four environments in Arkansas and Georgia. The analyses identified three major resistance loci on chromosomes: 2AS (presumably the 2NS:2AS alien introgression from Aegilops ventricosa Tausch; syn. Ae. caudata L.), 3BS, and 4BL. The 4BL locus explained a greater portion of variance in resistance than either the 2AS or 3BS loci in southeastern environments. However, its effects were unstable across different environments and sets of germplasm, possibly a result of its involvement in epistatic interactions. Relatively few lines carry resistance alleles at all three loci, suggesting that there is a pre-existing reservoir of enhanced stripe rust resistance that may be further exploited by regional breeding programs.
Collapse
Affiliation(s)
- Brian P Ward
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
- Current Address: Department of Horticulture and Crop Science, The Ohio State University, Wooster, OH, 44691, USA
| | - Keith Merrill
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27607, USA
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Mike Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Richard Esten Mason
- Department of Crop, Soil and Environmental Sciences, University of Arkansas, Fayetteville, AR, 72701, USA
- Current Address: Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Mohamed Mergoum
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Jerry Johnson
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Suraj Sapkota
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - Benjamin Lopez
- Department of Crop and Soil Sciences and Institute of Plant Breeding, Genetics & Genomics, University of Georgia, Griffin, GA, 30223, USA
| | - David Marshall
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
| | - Gina Brown-Guedira
- USDA Agricultural Research Service Plant Science Research Unit, Raleigh, NC, 27607, USA
| |
Collapse
|
12
|
Wang Y, Yu C, Cheng Y, Yao F, Long L, Wu Y, Li J, Li H, Wang J, Jiang Q, Li W, Pu Z, Qi P, Ma J, Deng M, Wei Y, Chen X, Chen G, Kang H, Jiang Y, Zheng Y. Genome-wide association mapping reveals potential novel loci controlling stripe rust resistance in a Chinese wheat landrace diversity panel from the southern autumn-sown spring wheat zone. BMC Genomics 2021; 22:34. [PMID: 33413106 PMCID: PMC7791647 DOI: 10.1186/s12864-020-07331-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 12/15/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Stripe rust, caused by the fungal pathogen Puccinia striiformis f. sp. tritici (Pst), is a serious foliar disease of wheat. Identification of novel stripe rust resistance genes and cultivation of resistant cultivars are considered to be the most effective approaches to control this disease. In this study, we evaluated the infection type (IT), disease severity (DS) and area under the disease progress curve (AUDPC) of 143 Chinese wheat landrace accessions for stripe rust resistance. Assessments were undertaken in five environments at the adult-plant stage with Pst mixture races under field conditions. In addition, IT was assessed at the seedling stage with two prevalent Pst races (CYR32 and CYR34) under a controlled greenhouse environment. RESULTS Seventeen accessions showed stable high-level resistance to stripe rust across all environments in the field tests. Four accessions showed resistance to the Pst races CYR32 and CYR34 at the seedling stage. Combining phenotypic data from the field and greenhouse trials with 6404 markers that covered the entire genome, we detected 17 quantitative trait loci (QTL) on 11 chromosomes for IT associated with seedling resistance and 15 QTL on seven chromosomes for IT, final disease severity (FDS) or AUDPC associated with adult-plant resistance. Four stable QTL detected on four chromosomes, which explained 9.99-23.30% of the phenotypic variation, were simultaneously associated with seedling and adult-plant resistance. Integrating a linkage map of stripe rust resistance in wheat, 27 QTL overlapped with previously reported genes or QTL, whereas four and one QTL conferring seedling and adult-plant resistance, respectively, were mapped distantly from previously reported stripe rust resistance genes or QTL and thus may be novel resistance loci. CONCLUSIONS Our results provided an integrated overview of stripe rust resistance resources in a wheat landrace diversity panel from the southern autumn-sown spring wheat zone of China. The identified resistant accessions and resistance loci will be useful in the ongoing effort to develop new wheat cultivars with strong resistance to stripe rust.
Collapse
Affiliation(s)
- Yuqi Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Can Yu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yukun Cheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Fangjie Yao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Li Long
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yu Wu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jing Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Hao Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Wei Li
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Zhien Pu
- College of Agronomy, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Pengfei Qi
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Jian Ma
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Xianming Chen
- US Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit; and Department of Plant Pathology, Washington State University, Pullman, WA, 99164-6430, USA
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China
| | - Houyang Kang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Yunfeng Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
- State Key Laboratory of Crop Gene Exploitation and Utilization in Southwest China, Wenjiang, Chengdu, Sichuan, 611130, P. R. China.
| |
Collapse
|
13
|
Wu J, Yu R, Wang H, Zhou C, Huang S, Jiao H, Yu S, Nie X, Wang Q, Liu S, Weining S, Singh RP, Bhavani S, Kang Z, Han D, Zeng Q. A large-scale genomic association analysis identifies the candidate causal genes conferring stripe rust resistance under multiple field environments. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:177-191. [PMID: 32677132 PMCID: PMC7769225 DOI: 10.1111/pbi.13452] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 06/24/2020] [Accepted: 07/09/2020] [Indexed: 05/02/2023]
Abstract
The incorporation of resistance genes into wheat commercial varieties is the ideal strategy to combat stripe or yellow rust (YR). In a search for novel resistance genes, we performed a large-scale genomic association analysis with high-density 660K single nucleotide polymorphism (SNP) arrays to determine the genetic components of YR resistance in 411 spring wheat lines. Following quality control, 371 972 SNPs were screened, covering over 50% of the high-confidence annotated gene space. Nineteen stable genomic regions harbouring 292 significant SNPs were associated with adult-plant YR resistance across nine environments. Of these, 14 SNPs were localized in the proximity of known loci widely used in breeding. Obvious candidate SNP variants were identified in certain confidence intervals, such as the cloned gene Yr18 and the major locus on chromosome 2BL, despite a large extent of linkage disequilibrium. The number of causal SNP variants was refined using an independent validation panel and consideration of the estimated functional importance of each nucleotide polymorphism. Interestingly, four natural polymorphisms causing amino acid changes in the gene TraesCS2B01G513100 that encodes a serine/threonine protein kinase (STPK) were significantly involved in YR responses. Gene expression and mutation analysis confirmed that STPK played an important role in YR resistance. PCR markers were developed to identify the favourable TraesCS2B01G513100 haplotype for marker-assisted breeding. These results demonstrate that high-resolution SNP-based GWAS enables the rapid identification of putative resistance genes and can be used to improve the efficiency of marker-assisted selection in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingShaanxiChina
| | - Cai'e Zhou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Hanxuan Jiao
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiaojun Nie
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Song Weining
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Ravi Prakash Singh
- International Maize and Wheat Improvement Center (CIMMYT)TexcocoEstado de MexicoMexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT)TexcocoEstado de MexicoMexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of AgronomyNorthwest A&F UniversityYanglingShaanxiChina
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
14
|
Zhao D, Yang L, Xu K, Cao S, Tian Y, Yan J, He Z, Xia X, Song X, Zhang Y. Identification and validation of genetic loci for tiller angle in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3037-3047. [PMID: 32685984 DOI: 10.1007/s00122-020-03653-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Two major QTL for tiller angle were identified on chromosomes 1AL and 5DL, and TaTAC-D1 might be the candidate gene for QTA.caas-5DL. An ideal plant architecture is important for achieving high grain yield in crops. Tiller angle (TA) is an important factor influencing yield. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) was used to map TA by extreme pool-genotyping and inclusive composite interval mapping (ICIM). Two quantitative trait loci (QTL) on chromosomes 1AL and 5DL were identified with reduced tiller angle alleles contributed by ZM895. QTA.caas-1AL was detected in six environments, explaining 5.4-11.2% of the phenotypic variances. The major stable QTL, QTA.caas-5DL, was identified in all eight environments, accounting for 13.8-24.8% of the phenotypic variances. The two QTL were further validated using BC1F4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines). Gene TraesCS5D02G322600, located in the 5DL QTL and designated TaTAC-D1, had a SNP in the third exon with 'A' and 'G' in ZM871 and ZM895, respectively, resulting in a Thr169Ala amino acid change. A KASP marker based on this SNP was validated in two sets of germplasm, providing further evidence for the significant effects of TaTAC-D1 on TA. Thus extreme pool-genotyping can be employed to detect QTL for plant architecture traits and KASP markers tightly linked with the QTL can be used in wheat breeding programs targeting improved plant architecture.
Collapse
Affiliation(s)
- Dehui Zhao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China
| | - Li Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kaijie Xu
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yubing Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jun Yan
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- CIMMYT-China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China.
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
15
|
Wu J, Wang X, Chen N, Yu R, Yu S, Wang Q, Huang S, Wang H, Singh RP, Bhavani S, Kang Z, Han D, Zeng Q. Association Analysis Identifies New Loci for Resistance to Chinese Yr26-Virulent Races of the Stripe Rust Pathogen in a Diverse Panel of Wheat Germplasm. PLANT DISEASE 2020; 104:1751-1762. [PMID: 32293995 DOI: 10.1094/pdis-12-19-2663-re] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst) is one of the most destructive fungal diseases of wheat worldwide. The expanding Yr26-virulent Pst race (V26) group overcomes almost all currently deployed resistance genes in China and has continued to accumulate new virulence. Investigating the genetic architecture of stripe rust resistance in common wheat is an important basis for a successful utilization of resistance in breeding programs. A panel of 410 exotic wheat germplasms was used for characterizing new stripe rust resistance loci. This panel was genotyped using high-density wheat 660K single-nucleotide polymorphism (SNP) array, and phenotypic evaluation of seedlings for stripe rust resistance was performed using multiple Pst races. Thirty-five loci conferring resistance were identified through genome-wide association mapping, and explained phenotypic variances ranged from 53 to 75%. Of these, 14 were colocated in the proximity of the known loci, including cataloged Yr genes Yr9, Yr10, Yr26, Yr33, Yr47, Yr56, Yr57, Yr64, Yr67, Yr72, and Yr81 and three temporarily designated as YrCen, YrNP63, and YrRC detected in our quantitative trait locus (QTL) mapping studies. Seven of them (Yr9, Yr10, Yr24/26, Yr81, YrCEN, YrNP63, and YrRC) were confirmed by molecular detection or genetic analysis. New loci that were identified to be different from reported Yr genes need further confirmation. Nine QTL with significantly large phenotypic effect on resistance to all tested races were considered as major loci for effective resistance. The identified loci enrich our stripe rust resistance gene pool, and the linked SNPs should be useful for marker-assisted selection in breeding programs.
Collapse
Affiliation(s)
- Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Xiaoting Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Nan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Rui Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Haiying Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center, Texcoco, Mexico
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China
| |
Collapse
|
16
|
Yuan C, Singh RP, Liu D, Randhawa MS, Huerta-Espino J, Lan C. Genome-Wide Mapping of Adult Plant Resistance to Leaf Rust and Stripe Rust in CIMMYT Wheat Line Arableu#1. PLANT DISEASE 2020; 104:1455-1464. [PMID: 32196419 DOI: 10.1094/pdis-10-19-2198-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Leaf (brown) rust (LR) and stripe (yellow) rust (YR), caused by Puccinia triticina and P. striiformis f. sp. tritici, respectively, significantly reduce wheat production worldwide. Disease-resistant wheat varieties offer farmers one of the most effective ways to manage these diseases. The common wheat (Triticum aestivum L.) Arableu#1, developed by the International Maize and Wheat Improvement Center and released as Deka in Ethiopia, shows susceptibility to both LR and YR at the seedling stage but a high level of adult plant resistance (APR) to the diseases in the field. We used 142 F5 recombinant inbred lines (RILs) derived from Apav#1 × Arableu#1 to identify quantitative trait loci (QTLs) for APR to LR and YR. A total of 4,298 genotyping-by-sequencing markers were used to construct a genetic linkage map. The study identified four LR resistance QTLs and six YR resistance QTLs in the population. Among these, QLr.cim-1BL.1/QYr.cim-1BL.1 was located in the same location as Lr46/Yr29, a known pleiotropic resistance gene. QLr.cim-1BL.2 and QYr.cim-1BL.2 were also located on wheat chromosome 1BL at 37 cM from Lr46/Yr29 and may represent a new segment for pleiotropic resistance to both rusts. QLr.cim-7BL is likely Lr68 given its association with the tightly linked molecular marker cs7BLNLRR. In addition, QLr.cim-3DS, QYr.cim-2AL, QYr.cim-4BL, QYr.cim-5AL, and QYr.cim-7DS are probably new resistance loci based on comparisons with published QTLs for resistance to LR and YR. Our results showed the diversity of minor resistance QTLs in Arableu#1 and their role in conferring near-immune levels of APR to both LR and YR, when combined with the pleiotropic APR gene Lr46/Yr29.
Collapse
Affiliation(s)
- Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, Hongshan District, Wuhan, Hubei Province 430070, People's Republic of China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding, Xining 810008, People's Republic of China
| | - Mandeep S Randhawa
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico INIFAP, 56230 Chapingo, Edo. de Mexico, Mexico
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, Hongshan District, Wuhan, Hubei Province 430070, People's Republic of China
| |
Collapse
|
17
|
Gebrewahid TW, Zhou Y, Zhang P, Ren Y, Gao P, Xia X, He Z, Li Z, Liu D. Mapping of Stripe Rust and Leaf Rust Resistance Quantitative Trait Loci in the Chinese Spring Wheat Line Mianyang351-15. PHYTOPATHOLOGY 2020; 110:1074-1081. [PMID: 32106769 DOI: 10.1094/phyto-08-19-0316-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stripe rust and leaf rust cause wheat yield losses of up to 70% worldwide. The employment of resistant cultivars is the major method to reduce losses from these diseases. The objective of this study was to detect quantitative trait loci (QTL) for stripe rust and leaf rust resistance in 150 F6 recombinant inbred lines (RIL) derived from a cross between Mianyang351-15 and Zhengzhou 5389. Both parents and the RIL population were genotyped with the Wheat55K single nucleotide polymorphism (SNP) array and simple sequence repeat markers, and phenotyped for stripe rust severity at Mianyang in Sichuan Province and Baoding in Hebei Province, and for leaf rust severity at Zhoukou in Henan Province and at Baoding in 2014 to 2017 cropping seasons. Seven and four QTL all contributed from Mianyang351-15 were identified for resistance to stripe rust and leaf rust, respectively. Four of these QTL on chromosomes 1BL, 2AS, 2DS, and 7BL conferred resistance to both stripe rust and leaf rust. The QTL on 1BL, 2AS, and 7BL were identified as Lr46/Yr29, Lr37/Yr17, and Lr68, respectively. QYr.hbau-2DS/QLr.hbau-2DS was detected at similar positions to previously reported loci. QYr.hbau-1DL, QYr.hbau-3AS, and QYr.hbau-3DL are likely to be new. Combined effects of QTL in the RIL population indicated RIL combining all QTL had the highest resistance level compared with those of lower numbers or no QTL. These QTL, with their closely linked SNP markers, are applicable for marker-assisted breeding and candidate gene discovery.
Collapse
Affiliation(s)
- Takele Weldu Gebrewahid
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
- College of Agriculture, Aksum University, Shire-Indaslassie, Tigray 314, Ethiopia
| | - Yue Zhou
- Baoding University, 3027 Qiyi Donglu Street, Baoding 071001, Hebei, China
| | - Peipei Zhang
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Yong Ren
- Mianyang Institute of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan Province, China
| | - Pu Gao
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Xianchun Xia
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS) and International Maize and Wheat Improvement Center (CIMMYT) China Office, 12 Zhongguancun South Street, Beijing 100081, China
| | - Zaifeng Li
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| | - Daqun Liu
- College of Plant Protection, Hebei Agricultural University, 289 Lingyusi Street, Baoding, Hebei 071001, China
| |
Collapse
|
18
|
Zheng X, Tang C, Han R, Zhao J, Qiao L, Zhang S, Qiao L, Ge C, Zheng J, Liu C. Identification, Characterization, and Evaluation of Novel Stripe Rust-Resistant Wheat- Thinopyrum intermedium Chromosome Translocation Lines. PLANT DISEASE 2020; 104:875-881. [PMID: 31935342 DOI: 10.1094/pdis-01-19-0001-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stripe rust is an important disease in wheat, and development of genetic resistance in cultivars is an effective approach to control the disease. Wild species of wheat, such as Thinopyrum intermedium, are an excellent gene source for wheat improvement. In this study, two stripe rust-resistant wheat-Th. intermedium chromosome translocation lines, CH4131 and CH4132, were characterized by cytogenetic and pathological methods. The introgressed chromosome fragment was tagged using amplified fragment-length polymorphism-derived sequence-characterized amplified region (SCAR) markers and intron targeting markers, indicating that CH4131 and CH4132 both possess a homologous group 3 chromatin of Th. intermedium. Genomic in situ hybridization results suggested that a very small Th. intermedium chromosome segment was translocated to the terminal region of wheat 1BS for both lines, forming a configuration of T3Ai-1BS.1BL. The two translocation lines were resistant to stripe rust, and the resistance gene, temporarily designated YrCH-1BS, was likely derived from Th. intermedium. The translocated chromosome fragments have no genetic linkage drag to agronomic performance. The grain quality indexes of these two translocations were higher than local wheat varieties. Therefore, CH4131 and CH4132 could be used as potential gene sources in wheat improvement programs. The SCAR markers are useful to select stripe rust resistance from Th. intermedium.
Collapse
Affiliation(s)
- Xingwei Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Caiguo Tang
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China
| | - Jiajia Zhao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Ling Qiao
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Shuwei Zhang
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Linyi Qiao
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Chuan Ge
- Institute of Crop Science, Shanxi Agricultural University, Taiyuan 030031, China
| | - Jun Zheng
- Institute of Wheat Research, Shanxi Agricultural University, Linfen 041000, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in the North Yellow & Huai River Valley, Ministry of Agriculture/National Engineering Laboratory for Wheat & Maize, Jinan 250100, China
| |
Collapse
|
19
|
Mu J, Wu J, Liu S, Dai M, Sun D, Huang S, Wang Q, Zeng Q, Yu S, Chen L, Kang Z, Han D. Genome-Wide Linkage Mapping Reveals Stripe Rust Resistance in Common Wheat ( Triticum aestivum) Xinong1376. PLANT DISEASE 2019; 103:2742-2750. [PMID: 31509495 DOI: 10.1094/pdis-12-18-2264-re] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, also known as yellow rust, is a significant threat to wheat yield worldwide. Adult plant resistance (APR) is the preferred way to obtain durable protection. Chinese winter wheat cultivar Xinong1376 has maintained acceptable APR to stripe rust in field environments. To characterize APR in this cultivar, 190 F10 recombinant inbred lines (RILs) developed from Xiaoyan81 × Xinong1376 were evaluated for infection type and disease severity in fields either artificially or naturally inoculated. The population along with parents were genotyped using the Illumina 90K single-nucleotide polymorphism arrays. Six quantitative trait loci (QTL) were detected using the inclusive composite interval mapping method. QYr.nwafu-4AL and QYr.nwafu-6BL.3 conferred stable resistance in all environments, and likely corresponded to a gene-rich region on the long arm of chromosomes 4A and 6B. QYr.nwafu-5AL, QYr.nwafu-5BL, QYr.nwafu-3BL.1, and QYr.nwafu-3BL.2 were detected only in some environments but enhanced the level of resistance conferred by QYr.nwafu-4AL and QYr.nwafu-6BL.3. Kompetitive allele-specific PCR (KASP) markers developed for QYr.nwafu-4AL and QYr.nwafu-6BL.3 were confirmed in a subset of RILs and 133 wheat genotypes. The QTL on 4AL and 6BL with their linked KASP markers would be useful for marker-assisted selection to improve stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Miaofei Dai
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Daojie Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Li Chen
- Extension Center for Agriculture Technology, Agriculture Department of Tibetan Autonomous Region, China
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, China
| |
Collapse
|
20
|
Huang S, Wu J, Wang X, Mu J, Xu Z, Zeng Q, Liu S, Wang Q, Kang Z, Han D. Utilization of the Genomewide Wheat 55K SNP Array for Genetic Analysis of Stripe Rust Resistance in Common Wheat Line P9936. PHYTOPATHOLOGY 2019; 109:819-827. [PMID: 30644331 DOI: 10.1094/phyto-10-18-0388-r] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Breeding for resistance to stripe rust (caused by Puccinia striiformis f. tritici) is essential for reducing losses in yield and quality in wheat. To identify genes for use in breeding, a biparental population of 186 recombinant inbred lines (RILs) from a cross of the Chinese landrace Mingxian 169 and CIMMYT-derived line P9936 was evaluated in field nurseries either artificially or naturally inoculated in two crop seasons. Each of the RILs and parents was genotyped with the wheat 55K single-nucleotide polymorphism (SNP) 'Breeders' array and a genetic linkage map with 8,225 polymorphic SNP markers spanning 3,593.37 centimorgans was constructed. Two major quantitative trait loci (QTL) and two minor QTL were identified. The major QTL QYr.nwafu-3BS.2 and QYr.nwafu-7BL on chromosomes arms 3BS and 7BL were detected in all field locations and explained an average 20.4 and 38.9% of phenotypic variation stripe rust severity, respectively. QYr.nwafu-3BS.2 likely corresponds to the locus Yr30/Sr2 and QYr.nwafu-7BL may be a resistance allele identified previously in CIMMYT germplasm. The other minor QTL had limited individual effects but increased resistance when in combinations with other QTL. Markers linked to QYr.nwafu-7BL were converted to kompetitive allele-specific polymerase chain reaction markers and validated in a panel of wheat accessions. Wheat accessions carrying the same haplotype as P9936 at the identified SNP loci had lower average stripe rust severity than the average severity of all other haplotypes.
Collapse
Affiliation(s)
- Shuo Huang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Jianhui Wu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Xiaoting Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Jingmei Mu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Zhi Xu
- 2 Department of Plant Disease, Institute of Plant Protection, Sichuan Academy of Agricultural Sciences, Jingjusi Road 20, Jinjiang District, Chengdu, Sichuan610066, P.R. China
| | - Qingdong Zeng
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Shengjie Liu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Qilin Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Zhensheng Kang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| | - Dejun Han
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, Shaanxi 712100, P. R. China; and
| |
Collapse
|
21
|
Zeng Q, Wu J, Liu S, Huang S, Wang Q, Mu J, Yu S, Han D, Kang Z. A major QTL co-localized on chromosome 6BL and its epistatic interaction for enhanced wheat stripe rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:1409-1424. [PMID: 30707240 DOI: 10.1007/s00122-019-03288-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 01/16/2019] [Indexed: 05/27/2023]
Abstract
Co-localization of a major QTL for wheat stripe rust resistance to a 3.9-cM interval on chromosome 6BL across both populations and another QTL on chromosome 2B with epistatic interaction. Cultivars with diverse resistance are the optimal strategy to minimize yield losses caused by wheat stripe rust (Puccinia striiformis f. sp. tritici). Two wheat populations involving resistant wheat lines P10078 and Snb"S" from CIMMYT were evaluated for stripe rust response in multiple environments. Pool analysis by Wheat660K SNP array showed that the overlapping interval on chromosome 6B likely harbored a major QTL between two populations. Then, linkage maps were constructed using KASP markers, and a co-localized locus with large effect on chromosome 6BL was detected using QTL analysis in both populations. The coincident QTL, named QYr.nwafu-6BL.2, explained 59.7% of the phenotypic maximum variation in the Mingxian 169 × P10078 and 52.5% in the Zhengmai 9023 × Snb"S" populations, respectively. This co-localization interval spanning 3.9 cM corresponds to ~ 30.5-Mb genomic region of the newest common wheat reference genome (IWGSC RefSeq v.1.0). In addition, another QTL was also detected on chromosome 2B in Zhengmai 9023 × Snb"S" population and it can accelerate expression of QYr.nwafu-6BL.2 to enhance resistance with epistatic interaction. Allowing for Pst response, marker genotypes, pedigree analysis and relative genetic distance, QYr.nwafu-6BL.2 is likely to be a distinct adult plant resistance QTL. Haplotype analysis of QYr.nwafu-6BL.2 revealed specific SNPs or alleles in the target region from a diversity panel of 176 unrelated wheat accessions. This QTL region provides opportunity for further map-based cloning, and haplotypes analysis enables pyramiding favorable alleles into commercial cultivars by marker-assisted selection.
Collapse
Affiliation(s)
- Qingdong Zeng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jianhui Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shengjie Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shuo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Qilin Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jingmei Mu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Shizhou Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Dejun Han
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- College of Plant Protection, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
22
|
Chao K, Su W, Wu L, Su B, Li Q, Wang B, Ma D. Molecular Mapping of a Recessive Powdery Mildew Resistance Gene in Wheat Cultivar Tian Xuan 45 Using Bulked Segregant Analysis with Polymorphic Single Nucleotide Polymorphism Relative Ratio Distribution. PHYTOPATHOLOGY 2019; 109:828-838. [PMID: 30261151 DOI: 10.1094/phyto-03-18-0092-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Powdery mildew is a destructive foliar disease of wheat worldwide. Wheat cultivar Tian Xuan 45 exhibits resistance to the highly virulent isolate HY5. Genetic analysis of the F2 and F2:3 populations of a cultivar Ming Xian 169/Tian Xuan 45 cross revealed that the resistance to HY5 was controlled by a single recessive gene, temporarily designated as PmTx45. A Manhattan plot with the relative frequency distribution of single nucleotide polymorphisms (SNPs) was used to rapidly narrow down the possible chromosomal regions of the associated genes. This microarray-based bulked segregant analysis (BSA) largely improved traditional analytical methods. PmTx45 was located in chromosomal bin 4BL5-0.86-1.00 and was flanked by SNP marker AX-110673642 and intron length polymorphism (ILP) marker ILP-4B01G269900 with genetic distances of 3.0 and 2.6 cM, respectively. Molecular detection in a panel of wheat cultivars using the markers linked to PmTx45 showed that the presence of PmTx45 in commercial wheat cultivars was rare. Resistance spectrum and chromosomal position analyses indicated that PmTx45 may be a novel recessive gene with moderate powdery mildew resistance. This new microarray-based BSA method is feasible and effective and has the potential application for mapping genes in wheat in marker-assisted breeding.
Collapse
Affiliation(s)
- Kaixiang Chao
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
- 2 College of Chemistry Biology and Environment, Yuxi Normal University, Yuxi, 653100, Yunnan, China; and
| | - Wenwen Su
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Lei Wu
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Bei Su
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Qiang Li
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Baotong Wang
- 1 State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, 712100 Shaanxi, China
| | - Dongfang Ma
- 3 Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434025 Hubei, China
| |
Collapse
|