1
|
Trenk NK, Pacheco-Moreno A, Arora S. Understanding the root of the problem for tackling pea root rot disease. Front Microbiol 2024; 15:1441814. [PMID: 39512933 PMCID: PMC11540676 DOI: 10.3389/fmicb.2024.1441814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024] Open
Abstract
Pea (Pisum sativum), a crop historically significant in the field of genetics, is regaining momentum in sustainable agriculture due to its high protein content and environmental benefits. However, its cultivation faces significant challenges from root rot, a complex disease caused by multiple soil-borne pathogens prevalent across most pea growing regions. This disease leads to substantial yield losses, further complicated by the dynamic interactions among pathogens, soil conditions, weather, and agricultural practices. Recent advancements in molecular diagnostics provide promising tools for the early and precise detection of these pathogens, which is critical for implementing effective disease management strategies. In this review, we explore how the availability of latest pea genomic resources and emerging technologies, such as CRISPR and cell-specific transcriptomics, will enable a deeper understanding of the molecular basis underlying host-pathogen interactions. We emphasize the need for a comprehensive approach that integrates genetic resistance, advanced diagnostics, cultural practices and the role of the soil microbiome in root rot. By leveraging these strategies, it is possible to develop pea varieties that can withstand root rot, ensuring the crop's resilience and its continued importance in global agriculture.
Collapse
Affiliation(s)
| | | | - Sanu Arora
- Department of Biochemistry and Metabolism, John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
2
|
Augustine L, Varghese L, Kappachery S, Ramaswami VM, Surendrababu SP, Sakuntala M, Thomas G. Comparative analyses reveal a phenylalanine ammonia lyase dependent and salicylic acid mediated host resistance in Zingiber zerumbet against the necrotrophic soft rot pathogen Pythium myriotylum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 340:111972. [PMID: 38176527 DOI: 10.1016/j.plantsci.2023.111972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/14/2023] [Accepted: 12/29/2023] [Indexed: 01/06/2024]
Abstract
Little is known about the molecular basis of host defense in resistant wild species Zingiber zerumbet (L.) Smith against the soil-borne, necrotrophic oomycete pathogen Pythium myriotylum Drechsler, which causes the devastating soft rot disease in the spice crop ginger (Zingiber officinale Roscoe). We investigated the pattern of host defense between Z. zerumbet and ginger in response to P. myriotylum inoculation. Analysis of gene expression microarray data revealed enrichment of phenylpropanoid biosynthetic genes, particularly lignin biosynthesis genes, in pathogen-inoculated Z. zerumbet compared to ginger. RT-qPCR analysis showed the robust activation of phenylpropanoid biosynthesis genes in Z. zerumbet, including the core genes PAL, C4H, 4CL, and the monolignol biosynthesis and polymerization genes such as CCR, CAD, C3H, CCoAOMT, F5H, COMT, and LAC. Additionally, Z. zerumbet exhibited the accumulation of the phenolic acids including p-coumaric acid, sinapic acid, and ferulic acid that are characteristic of the cell walls of commelinoid monocots like Zingiberaceae and are involved in cell wall strengthening by cross linking with lignin. Z. zerumbet also had higher total lignin and total phenolics content compared to pathogen-inoculated ginger. Phloroglucinol staining revealed the enhanced fortification of cell walls in Z. zerumbet, specifically in xylem vessels and surrounding cells. The trypan blue staining indicated inhibition of pathogen growth in Z. zerumbet at the first leaf whorl, while ginger showed complete colonization of the pith within 36 h post inoculation (hpi). Accumulation of salicylic acid (SA) and induction of SA regulator NPR1 and the signaling marker PR1 were observed in Z. zerumbet. Silencing of PAL in Z. zerumbet through VIGS suppressed downstream genes, leading to reduced phenylpropanoid accumulation and SA level, resulting in the susceptibility of plants to P. myriotylum. These findings highlight the essential role of PAL-dependent mechanisms in resistance against P. myriotylum in Z. zerumbet. Moreover, our results suggest an unconventional role for SA in mediating host resistance against a necrotroph. Targeting the phenylpropanoid pathway could be a promising strategy for the effective management of P. myriotylum in ginger.
Collapse
Affiliation(s)
- Lesly Augustine
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Lini Varghese
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Sajeesh Kappachery
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India
| | - Vinitha Meenakshy Ramaswami
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - Swathy Puthanvila Surendrababu
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India; Research Centre, University of Kerala, Thiruvananthapuram 695034, India.
| | - Manjula Sakuntala
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India
| | - George Thomas
- Plant Disease Biology and Biotechnology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695014, Kerala, India.
| |
Collapse
|
3
|
Gahagan AC, Shi Y, Radford D, Morrison MJ, Gregorich E, Aris-Brosou S, Chen W. Long-Term Tillage and Crop Rotation Regimes Reshape Soil-Borne Oomycete Communities in Soybean, Corn, and Wheat Production Systems. PLANTS (BASEL, SWITZERLAND) 2023; 12:2338. [PMID: 37375963 DOI: 10.3390/plants12122338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023]
Abstract
Soil-borne oomycetes include devastating plant pathogens that cause substantial losses in the agricultural sector. To better manage this important group of pathogens, it is critical to understand how they respond to common agricultural practices, such as tillage and crop rotation. Here, a long-term field experiment was established using a split-plot design with tillage as the main plot factor (conventional tillage (CT) vs. no till (NT), two levels) and rotation as the subplot factor (monocultures of soybean, corn, or wheat, and corn-soybean-wheat rotation, four levels). Post-harvest soil oomycete communities were characterized over three consecutive years (2016-2018) by metabarcoding the Internal Transcribed Spacer 1 (ITS1) region. The community contained 292 amplicon sequence variants (ASVs) and was dominated by Globisporangium spp. (85.1% in abundance, 203 ASV) and Pythium spp. (10.4%, 51 ASV). NT decreased diversity and community compositional structure heterogeneity, while crop rotation only affected the community structure under CT. The interaction effects of tillage and rotation on most oomycetes species accentuated the complexity of managing these pathogens. Soil and crop health represented by soybean seedling vitality was lowest in soils under CT cultivating soybean or corn, while the grain yield of the three crops responded differently to tillage and crop rotation regimes.
Collapse
Affiliation(s)
- Alison Claire Gahagan
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, 60 Marie Curie Prv., Ottawa, ON K1N 6N5, Canada
| | - Yichao Shi
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Devon Radford
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Malcolm J Morrison
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Edward Gregorich
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
| | - Stéphane Aris-Brosou
- Department of Biology, University of Ottawa, 60 Marie Curie Prv., Ottawa, ON K1N 6N5, Canada
| | - Wen Chen
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON K1A 0C6, Canada
- Department of Biology, University of Ottawa, 60 Marie Curie Prv., Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Jin H, Yang X, Zhao H, Song X, Tsvetkov YD, Wu Y, Gao Q, Zhang R, Zhang J. Genetic analysis of protein content and oil content in soybean by genome-wide association study. FRONTIERS IN PLANT SCIENCE 2023; 14:1182771. [PMID: 37346139 PMCID: PMC10281628 DOI: 10.3389/fpls.2023.1182771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/09/2023] [Indexed: 06/23/2023]
Abstract
Soybean seed protein content (PC) and oil content (OC) have important economic value. Detecting the loci/gene related to PC and OC is important for the marker-assisted selection (MAS) breeding of soybean. To detect the stable and new loci for PC and OC, a total of 320 soybean accessions collected from the major soybean-growing countries were used to conduct a genome-wide association study (GWAS) by resequencing. The PC ranged from 37.8% to 46.5% with an average of 41.1% and the OC ranged from 16.7% to 22.6% with an average of 21.0%. In total, 23 and 29 loci were identified, explaining 3.4%-15.4% and 5.1%-16.3% of the phenotypic variations for PC and OC, respectively. Of these, eight and five loci for PC and OC, respectively, overlapped previously reported loci and the other 15 and 24 loci were newly identified. In addition, nine candidate genes were identified, which are known to be involved in protein and oil biosynthesis/metabolism, including lipid transport and metabolism, signal transduction, and plant development pathway. These results uncover the genetic basis of soybean protein and oil biosynthesis and could be used to accelerate the progress in enhancing soybean PC and OC.
Collapse
Affiliation(s)
- Hui Jin
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xue Yang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Haibin Zhao
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xizhang Song
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Yordan Dimitrov Tsvetkov
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - YuE Wu
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiang Gao
- Horticultural Branch of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Rui Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jumei Zhang
- Institute of Forage and Grassland Sciences, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
5
|
Lin F, Chhapekar SS, Vieira CC, Da Silva MP, Rojas A, Lee D, Liu N, Pardo EM, Lee YC, Dong Z, Pinheiro JB, Ploper LD, Rupe J, Chen P, Wang D, Nguyen HT. Breeding for disease resistance in soybean: a global perspective. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3773-3872. [PMID: 35790543 PMCID: PMC9729162 DOI: 10.1007/s00122-022-04101-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 04/11/2022] [Indexed: 05/29/2023]
Abstract
KEY MESSAGE This review provides a comprehensive atlas of QTLs, genes, and alleles conferring resistance to 28 important diseases in all major soybean production regions in the world. Breeding disease-resistant soybean [Glycine max (L.) Merr.] varieties is a common goal for soybean breeding programs to ensure the sustainability and growth of soybean production worldwide. However, due to global climate change, soybean breeders are facing strong challenges to defeat diseases. Marker-assisted selection and genomic selection have been demonstrated to be successful methods in quickly integrating vertical resistance or horizontal resistance into improved soybean varieties, where vertical resistance refers to R genes and major effect QTLs, and horizontal resistance is a combination of major and minor effect genes or QTLs. This review summarized more than 800 resistant loci/alleles and their tightly linked markers for 28 soybean diseases worldwide, caused by nematodes, oomycetes, fungi, bacteria, and viruses. The major breakthroughs in the discovery of disease resistance gene atlas of soybean were also emphasized which include: (1) identification and characterization of vertical resistance genes reside rhg1 and Rhg4 for soybean cyst nematode, and exploration of the underlying regulation mechanisms through copy number variation and (2) map-based cloning and characterization of Rps11 conferring resistance to 80% isolates of Phytophthora sojae across the USA. In this review, we also highlight the validated QTLs in overlapping genomic regions from at least two studies and applied a consistent naming nomenclature for these QTLs. Our review provides a comprehensive summary of important resistant genes/QTLs and can be used as a toolbox for soybean improvement. Finally, the summarized genetic knowledge sheds light on future directions of accelerated soybean breeding and translational genomics studies.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Sushil Satish Chhapekar
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| | - Caio Canella Vieira
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Marcos Paulo Da Silva
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Alejandro Rojas
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Dongho Lee
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Nianxi Liu
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Esteban Mariano Pardo
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - Yi-Chen Lee
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Zhimin Dong
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun,, 130033 Jilin China
| | - Jose Baldin Pinheiro
- Departamento de Genética, Escola Superior de Agricultura “Luiz de Queiroz” (ESALQ/USP), PO Box 9, Piracicaba, SP 13418-900 Brazil
| | - Leonardo Daniel Ploper
- Instituto de Tecnología Agroindustrial del Noroeste Argentino (ITANOA) [Estación Experimental Agroindustrial Obispo Colombres (EEAOC) – Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)], Av. William Cross 3150, C.P. T4101XAC, Las Talitas, Tucumán, Argentina
| | - John Rupe
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, AR 72701 USA
| | - Pengyin Chen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
- Fisher Delta Research Center, University of Missouri, Portageville, MO 63873 USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824 USA
| | - Henry T. Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, University of Missouri-Columbia, Columbia, MO 65211 USA
| |
Collapse
|
6
|
Wohor OZ, Rispail N, Ojiewo CO, Rubiales D. Pea Breeding for Resistance to Rhizospheric Pathogens. PLANTS (BASEL, SWITZERLAND) 2022; 11:2664. [PMID: 36235530 PMCID: PMC9572552 DOI: 10.3390/plants11192664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 09/30/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Pea (Pisum sativum L.) is a grain legume widely cultivated in temperate climates. It is important in the race for food security owing to its multipurpose low-input requirement and environmental promoting traits. Pea is key in nitrogen fixation, biodiversity preservation, and nutritional functions as food and feed. Unfortunately, like most crops, pea production is constrained by several pests and diseases, of which rhizosphere disease dwellers are the most critical due to their long-term persistence in the soil and difficulty to manage. Understanding the rhizosphere environment can improve host plant root microbial association to increase yield stability and facilitate improved crop performance through breeding. Thus, the use of various germplasm and genomic resources combined with scientific collaborative efforts has contributed to improving pea resistance/cultivation against rhizospheric diseases. This improvement has been achieved through robust phenotyping, genotyping, agronomic practices, and resistance breeding. Nonetheless, resistance to rhizospheric diseases is still limited, while biological and chemical-based control strategies are unrealistic and unfavourable to the environment, respectively. Hence, there is a need to consistently scout for host plant resistance to resolve these bottlenecks. Herein, in view of these challenges, we reflect on pea breeding for resistance to diseases caused by rhizospheric pathogens, including fusarium wilt, root rots, nematode complex, and parasitic broomrape. Here, we will attempt to appraise and harmonise historical and contemporary knowledge that contributes to pea resistance breeding for soilborne disease management and discuss the way forward.
Collapse
Affiliation(s)
- Osman Z. Wohor
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
- Savanna Agriculture Research Institute, CSIR, Nyankpala, Tamale Post TL52, Ghana
| | - Nicolas Rispail
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| | - Chris O. Ojiewo
- International Maize and Wheat Improvement Center (CIMMYT), ICRAF House, United Nations Avenue—Gigiri, Nairobi P.O. Box 1041-00621, Kenya
| | - Diego Rubiales
- Instituto de Agricultura Sostenible, CSIC, Avenida Menéndez Pidal s/n, 14004 Córdoba, Spain
| |
Collapse
|
7
|
Lin F, Li W, McCoy AG, Wang K, Jacobs J, Zhang N, Huo X, Wani SH, Gu C, Chilvers MI, Wang D. Identification and characterization of pleiotropic and epistatic QDRL conferring partial resistance to Pythium irregulare and P. sylvaticum in soybean. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3571-3582. [PMID: 36087141 DOI: 10.1007/s00122-022-04201-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 08/17/2022] [Indexed: 06/15/2023]
Abstract
Pleiotropic and epistatic quantitative disease resistance loci (QDRL) were identified for soybean partial resistance to different isolates of Pythium irregulare and Pythium sylvaticum. Pythium root rot is an important seedling disease of soybean [Glycine max (L.) Merr.], a crop grown worldwide for protein and oil content. Pythium irregulare and P. sylvaticum are two of the most prevalent and aggressive Pythium species in soybean producing regions in the North Central U.S. Few studies have been conducted to identify soybean resistance for management against these two pathogens. In this study, a mapping population (derived from E13390 x E13901) with 228 F4:5 recombinant inbred lines were screened against P. irregulare isolate MISO 11-6 and P. sylvaticum isolate C-MISO2-2-30 for QDRL mapping. Correlation analysis indicated significant positive correlations between soybean responses to the two pathogens, and a pleiotropic QDRL (qPirr16.1) was identified. Further investigation found that the qPirr16.1 imparts dominant resistance against P. irregulare, but recessive resistance against P. sylvaticum. In addition, two QDRL, qPsyl15.1, and qPsyl18.1 were identified for partial resistance to P. sylvaticum. Further analysis revealed epistatic interactions between qPirr16.1 and qPsyl15.1 for RRW and DRX, whereas qPsyl18.1 contributed resistance to RSE. Marker-assisted resistance spectrum analysis using F6:7 progeny lines verified the resistance of qPirr16.1 against four additional P. irregulare isolates. Intriguingly, although the epistatic interaction of qPirr16.1 and qPsyl15.1 can be confirmed using two additional isolates of P. sylvaticum, the interaction appears to be suppressed for the other two P. sylvaticum isolates. An 'epistatic gene-for-gene' model was proposed to explain the isolate-specific epistatic interactions. The integration of the QDRL into elite soybean lines containing all the desirable alleles has been initiated.
Collapse
Affiliation(s)
- Feng Lin
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Wenlong Li
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071001, Hebei Province, China
| | - Austin G McCoy
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Kelly Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Janette Jacobs
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Na Zhang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Xiaobo Huo
- North China Key Laboratory for Germplasm Resources of Education Ministry, Hebei Agricultural University, Lekai South Street 2596, Baoding, 071001, Hebei Province, China
| | - Shabir H Wani
- Mountain Research Centre for Field Crops, Sher-E-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, 192101, J&K, India
| | - Cuihua Gu
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA
| | - Dechun Wang
- Department of Plant, Soil and Microbial Sciences, Michigan State University, 1066 Bogue Street, Rm. A384-E, East Lansing, MI, 48824-1325, USA.
| |
Collapse
|
8
|
Pimentel MF, Arnao E, Warner AJ, Rocha LF, Subedi A, Elsharif N, Chilvers MI, Matthiesen R, Robertson AE, Bradley CA, Neves DL, Pedersen DK, Reuter-Carlson U, Lacey JV, Bond JP, Fakhoury AM. Reduction of Pythium Damping-Off in Soybean by Biocontrol Seed Treatment. PLANT DISEASE 2022; 106:2403-2414. [PMID: 35171634 DOI: 10.1094/pdis-06-21-1313-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.
Collapse
Affiliation(s)
- Mirian F Pimentel
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Erika Arnao
- College of Public Health, University of Iowa, Iowa City, IA 52242
| | | | - Leonardo F Rocha
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Arjun Subedi
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Nariman Elsharif
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Martin I Chilvers
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Rashelle Matthiesen
- Department of Plant Pathology and Microbiology, Iowa State University, IA 50010
| | - Alison E Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, IA 50010
| | - Carl A Bradley
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Danilo L Neves
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Dianne K Pedersen
- Department of Crop Sciences, University of Illinois, Urbana, IL 61801
| | | | - Jonathan V Lacey
- Department of Plant Pathology, University of Kentucky, Princeton, KY 42445
| | - Jason P Bond
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| | - Ahmad M Fakhoury
- School of Agricultural Sciences, Southern Illinois University, Carbondale, IL 62901
| |
Collapse
|
9
|
Arora H, Sharma A, Sharma S, Haron FF, Gafur A, Sayyed RZ, Datta R. Pythium Damping-Off and Root Rot of Capsicum annuum L.: Impacts, Diagnosis, and Management. Microorganisms 2021; 9:microorganisms9040823. [PMID: 33924471 PMCID: PMC8069622 DOI: 10.3390/microorganisms9040823] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 11/16/2022] Open
Abstract
Capsicum annuum L. is a significant horticulture crop known for its pungent varieties and used as a spice. The pungent character in the plant, known as capsaicinoid, has been discovered to have various health benefits. However, its production has been affected due to various exogenous stresses, including diseases caused by a soil-borne pathogen, Pythium spp. predominantly affecting the Capsicum plant in younger stages and causing damping-off, this pathogen can incite root rot in later plant growth stages. Due to the involvement of multiple Pythium spp. and their capability to disperse through various routes, their detection and diagnosis have become crucial. However, the quest for a point-of-care technology is still far from over. The use of an integrated approach with cultural and biological techniques for the management of Pythium spp. can be the best and most sustainable alternative to the traditionally used and hazardous chemical approach. The lack of race-specific resistance genes against Pythium spp. can be compensated with the candidate quantitative trait loci (QTL) genes in C. annuum L. This review will focus on the epidemiological factors playing a major role in disease spread, the currently available diagnostics in species identification, and the management strategies with a special emphasis on Pythium spp. causing damping-off and root rot in different cultivars of C. annuum L.
Collapse
Affiliation(s)
- Himanshu Arora
- Centre for Rural Development and Technology, Indian Institute of Technology, New Delhi 110016, India; (H.A.); (S.S.)
| | - Abhishek Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| | - Satyawati Sharma
- Amity Food and Agriculture Foundation, Amity University, Noida 201313, Uttar Pradesh, India
| | - Farah Farhanah Haron
- Pest and Disease Management Program, Horticulture Research Center, Malaysian Agriculture Research and Development Institute (MARDI), Persiaran MARDI-UPM, Serdang 43400, Selangor, Malaysia;
| | - Abdul Gafur
- Sinarmas Forestry Corporate Research and Development, Perawang 28772, Indonesia;
| | - R. Z. Sayyed
- Department of Microbiology, PSGVP Mandal’s Arts, Science, Commerce College, Shahada 425409, Maharashtra, India
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| | - Rahul Datta
- Department of Geology and Pedology, Mendel University in Brno, 613 00 Brno-sever-Černá Pole, Czech Republic
- Correspondence: (A.S.); (R.Z.S.); (R.D.)
| |
Collapse
|
10
|
Clevinger EM, Biyashev R, Lerch-Olson E, Yu H, Quigley C, Song Q, Dorrance AE, Robertson AE, Saghai Maroof MA. Identification of Quantitative Disease Resistance Loci Toward Four Pythium Species in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:644746. [PMID: 33859662 PMCID: PMC8042330 DOI: 10.3389/fpls.2021.644746] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/08/2021] [Indexed: 06/01/2023]
Abstract
In this study, four recombinant inbred line (RIL) soybean populations were screened for their response to infection by Pythium sylvaticum, Pythium irregulare, Pythium oopapillum, and Pythium torulosum. The parents, PI 424237A, PI 424237B, PI 408097, and PI 408029, had higher levels of resistance to these species in a preliminary screening and were crossed with "Williams," a susceptible cultivar. A modified seed rot assay was used to evaluate RIL populations for their response to specific Pythium species selected for a particular population based on preliminary screenings. Over 2500 single-nucleotide polymorphism (SNP) markers were used to construct chromosomal maps to identify regions associated with resistance to Pythium species. Several minor and large effect quantitative disease resistance loci (QDRL) were identified including one large effect QDRL on chromosome 8 in the population of PI 408097 × Williams. It was identified by two different disease reaction traits in P. sylvaticum, P. irregulare, and P. torulosum. Another large effect QDRL was identified on chromosome 6 in the population of PI 408029 × Williams, and conferred resistance to P. sylvaticum and P. irregulare. These large effect QDRL will contribute toward the development of improved soybean cultivars with higher levels of resistance to these common soil-borne pathogens.
Collapse
Affiliation(s)
- Elizabeth M. Clevinger
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Ruslan Biyashev
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Elizabeth Lerch-Olson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - Haipeng Yu
- Department of Animal Science, Iowa State University, Ames, IA, United States
| | - Charles Quigley
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Qijian Song
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, MD, United States
| | - Anne E. Dorrance
- Center for Applied Plant Sciences and Soybean Research, Department of Plant Pathology, Ohio State Sustainability Institute, The Ohio State University, Wooster, OH, United States
| | - Alison E. Robertson
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, IA, United States
| | - M. A. Saghai Maroof
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
11
|
Abstract
Root rot diseases remain a major global threat to the productivity of agricultural crops. They are usually caused by more than one type of pathogen and are thus often referred to as a root rot complex. Fungal and oomycete species are the predominant participants in the complex, while bacteria and viruses are also known to cause root rot. Incorporating genetic resistance in cultivated crops is considered the most efficient and sustainable solution to counter root rot, however, resistance is often quantitative in nature. Several genetics studies in various crops have identified the quantitative trait loci associated with resistance. With access to whole genome sequences, the identity of the genes within the reported loci is becoming available. Several of the identified genes have been implicated in pathogen responses. However, it is becoming apparent that at the molecular level, each pathogen engages a unique set of proteins to either infest the host successfully or be defeated or contained in attempting so. In this review, a comprehensive summary of the genes and the potential mechanisms underlying resistance or susceptibility against the most investigated root rots of important agricultural crops is presented.
Collapse
|