1
|
Yu Z, Wang X, Wang Y, Lu J, Chen H, Li X, Xu H, Li F, Chen W, Xu Q. Epigenetic regulation of ISPL10 enhances regional adaptability of rice varieties. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70109. [PMID: 40131265 DOI: 10.1111/tpj.70109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 03/01/2025] [Accepted: 03/05/2025] [Indexed: 03/26/2025]
Abstract
Suppressing the heading date of rice under short-day (SD) conditions while promoting it under long-day (LD) conditions can significantly enhance the regional adaptability of rice varieties. However, rice germplasm resources with these traits are scarce. In this study, we report the Jumonji C (jmjC) protein-encoding gene ISPL10. The ispl10 mutant exhibited heading 7 days later under SD and 14 days earlier under LD compared with the wild type (WT). ISPL10 decreased H3 lysine 9 dimethylation (H3K9me2) levels at the OsMADS51 locus and activated the expression of OsMADS51, which then enhanced the expression of Ehd1 and up-regulated Hd3a under SD conditions. By contrast, ISPL10 is directly bound to the promoter of OsVIL2 to suppress its expression, thereby inhibiting Ehd1 expression and reducing RFT1 expression under LD conditions. Additionally, ISPL10 interacted with Se14, another jmjC protein that controlled H3K4me3 states in the RFT1 chromatin. The field tests showed that the ispl10 mutant not only extended the growth period in low-latitude regions but also shortened the maturity duration in high-latitude regions, and thus significantly increased grain yield in both low- and high-latitude regions compared with WT. Therefore, the ISPL10 locus could be a crucial factor in improving the regional adaptability of rice varieties.
Collapse
Affiliation(s)
- Zhiwen Yu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoche Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Yongzheng Wang
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Jiahao Lu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hao Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiang Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Hai Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Fengcheng Li
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
2
|
He X, Liu J, Ren X, Wei S, Zhu Z, Zhang F, Hu S, Ding Y, Sun F, Han D, Bai G, Ni Z, Sun Q, Su Z. Mapping and validation of QTkw.cau-3DL, a major QTL controlling thousand-kernel weight in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:46. [PMID: 39907799 DOI: 10.1007/s00122-025-04824-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025]
Abstract
KEY MESSAGE A novel major QTL, QTkw.cau-3DL, for thousand-kernel weight has been identified on the wheat chromosome arm 3DL and enhances grain yield by 6.2% under field conditions. Increasing kernel weight is an effective way to improve yield potential in wheat. The identification of major quantitative trait loci (QTL) for kernel weight, without negative effects on other yield-related traits, is crucial for continuous yield improvement. We developed a population of F6 recombinant inbred lines from Jimai 120 × Jimai 325 and identified eight QTL for thousand-kernel weight, kernel length, and kernel width across five environments. The population was genotyped using Wheat15K SNP arrays and QTL analysis found that one QTL, QTkw.cau-3DL, on the chromosome arm 3DL consistently showed major effects on TKW and KL in five field experiments. This QTL accounted for up to 16.43% and 13.87% of phenotypic variation, respectively. QTkw.cau-3DL was confined to a 5.72-Mb (3.48 cM) interval between 554.39 Mb and 560.11 Mb. This QTL was validated in a pair of NILs and in a new population. QTkw.cau-3DL increased kernel weight per spike without any negative effect on heading data, plant height, spike length, spikelet number per spike, or kernels number per spike. It increased grain yield by 6.2% under regular field production conditions. Haplotype analysis and geographical distribution in a nationwide collection of 630 wheat cultivars showed that QTkw.cau-3DL has not been widely deployed in Chinese wheat breeding programs. QTkw.cau-3DL is a novel QTL for increasing TKW through increasing KL; therefore, it is an important locus for enhancing wheat grain yield. The tightly linked, user-friendly markers developed in this study should facilitate map-based cloning and marker-assisted selection of the QTL in wheat breeding programs.
Collapse
Affiliation(s)
- Xi He
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Jilu Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Xiaomeng Ren
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Shurong Wei
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Zhenzhen Zhu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Fuping Zhang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Sijia Hu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Yanpeng Ding
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Fangyao Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Dong Han
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Guihua Bai
- US Department of Agriculture, Hard Winter Wheat Genetics Research Unit, Manhattan, KS, 66506, USA
| | - Zhongfu Ni
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Qixin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China
| | - Zhenqi Su
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100083, China.
| |
Collapse
|
3
|
Sohail A. Methyltransferase 1 (OsMTS1) interacts with hydroxycinnamoyltransferase 1 (OsHCT1) and promotes heading by upregulating heading date 1 (Hd1). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 350:112291. [PMID: 39414147 DOI: 10.1016/j.plantsci.2024.112291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 10/18/2024]
Abstract
Heading date determines the distribution and yield potentials of rice, and is an ideal target for crop improvement using CRISPR/Cas9 genome editing system. In this study, we reported the loss-of-function of Methyltransferase 1 (MTS1), which promotes heading in rice. Here, we constructed knockouts and overexpression transgenic plants of OsMTS1 in ZH8015 and Nipponbare (NIP) for the first time to validate its heading date function in rice subspecies Oryza sativa ssp. Indica and O. Sativa ssp. Japonica, respectively. The OsMTS1 knockouts in ZH8015 and NIP rice significantly promoted heading date under both natural short days (NSD) and natural long days (NLD) conditions, while the overexpression of OsMTS1 significantly delayed heading date in ZH8015 and NIP rice under both NSD and NLD conditions. Likewise, the complementation transgenic plants displayed late heading date phenotype. OsMTS1 repressed heading through up-regulating Heading date 1 (Hd1) and down-regulating Early heading date 1 (Ehd1) and Heading date 3a (Hd3a). The OsMTS1 protein interacted with OsHCT1 proteins using a yeast two-hybrid (Y2H) assay. The Y2H and overexpression confirmed that OsMTS1 interacted with OsHCT1, which delayed heading by 4.7 days under NLD. Taken together, CRISPR/Cas9, genetic complementation, and overexpression results validated that OsMTS1 represses heading in Indica and Japonica rice under both NLD and NSD conditions. These results demonstrated that OsMTS1 is a useful target for breeding early maturing rice varieties by CRISPR/Cas9 gene editing of the functional allele.
Collapse
Affiliation(s)
- Amir Sohail
- Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun, Mengla, Yunnan 666303, China.
| |
Collapse
|
4
|
Peng M, Gan F, Pan C, Lin X, Lin F, Ren Y, Na S, Zhu X, Tang W, Wu Z, Fan X, Chen K. Expression of AtNF-YB1 activates early flowering, showing potential in breeding hybrid rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14538. [PMID: 39344294 DOI: 10.1111/ppl.14538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/02/2024] [Indexed: 10/01/2024]
Abstract
The nuclear factor Y (NF-Y) has been shown to be involved in plant growth and development in response to various environmental signals. However, the integration of these mechanisms into breeding practices for new cultivars has not been extensively investigated. In this study, the Arabidopsis gene AtNF-YB1 was introduced into rice, including inbred Kasalath and the hybrids Jinfeng × Chenghui 727 and Jinfeng × Chuanhui 907. The obtained transgenic rice showed early flowering under both natural long day (NLD) and natural short day (NSD) conditions. For the inbred Kasalath, the transgenic lines clearly showed a shorter plant height and lower grain yield, with a decrease in spike length and grain number but more productive panicles. However, the hybrids with AtNF-YB1 had much smaller or even zero reduction in spike length and grain number and more productive panicles. Thus, maintained or even increased grain yields of the transgenic hybrids were recorded under the NLD conditions. Quantitative PCR analysis indicated that the rice flowering initiation pathways were early activated via the suppression of Ghd7 induction in the transgenic rice. RNA-Seq further demonstrated that three pathways related to plant photosynthesis were markedly upregulated in both Jinfeng B and the hybrid Jinfeng × Chuanhui 907 with AtNF-YB1 expression. Moreover, physiological experiments showed an upregulation of photosynthetic rates in the transgenic lines. Taken together, this study suggests that AtNF-YB1 expression in rice not only induces early flowering but also benefits photosynthesis, which might be used to develop hybrid varieties with early ripening.
Collapse
Affiliation(s)
- Meifang Peng
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Gan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Chunmei Pan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaomin Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Feng Lin
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Yuanhang Ren
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Shungui Na
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xinhai Zhu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Wenwen Tang
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhixue Wu
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Xiaoli Fan
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Kegui Chen
- Institute of Biotechnology and Nuclear Technology, Sichuan Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
5
|
Liu J, Yi Q, Dong G, Chen Y, Guo L, Gao Z, Zhu L, Ren D, Zhang Q, Li Q, Li J, Liu Q, Zhang G, Qian Q, Shen L. Improving Rice Quality by Regulating the Heading Dates of Rice Varieties without Yield Penalties. PLANTS (BASEL, SWITZERLAND) 2024; 13:2221. [PMID: 39204657 PMCID: PMC11360702 DOI: 10.3390/plants13162221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 08/08/2024] [Indexed: 09/04/2024]
Abstract
The heading date, a critical trait influencing the rice yield and quality, has always been a hot topic in breeding research. Appropriately delaying the flowering time of excellent northern rice varieties is of great significance for improving yields and enhancing regional adaptability during the process for introducing varieties from north to south. In this study, genes influencing the heading date were identified through genome-wide association studies (GWAS). Using KenDao 12 (K12), an excellent cultivar from northern China, as the material, the specific flowering activator, OsMADS50, was edited using the genome-editing method to regulate the heading date to adapt to the southern planting environment. The results indicated that the osmads50 mutant line of K12 flowered about a week later, with a slight increase in the yield and good adaptability in the southern region in China. Additionally, the expressions of key flowering regulatory genes, such as Hd1, Ghd7, Ehd1, Hd3a, and RFT1, were reduced in the mutant plants, corroborating the delayed flowering phenotype. Yield trait analysis revealed that the primary factor for improved yield was an increase in the number of effective tillers, although there is potential for further enhancements in the seed-setting rate and grain plumpness. Furthermore, there were significant increases in the length-to-width ratio of the rice grains, fat content, and seed transparency, all contributing to an overall improvement in the rice quality. In summary, this study successfully obtained a rice variety with a delayed growth period through OsMADS50 gene editing, effectively implementing the strategy for adapting northern rice varieties to southern climates. This achievement significantly supports efforts to enhance the rice yield and quality as well as to optimize production management practices.
Collapse
Affiliation(s)
- Jianguo Liu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qinqin Yi
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Guojun Dong
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Yuyu Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Longbiao Guo
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Zhenyu Gao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Li Zhu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Deyong Ren
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qiang Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qing Li
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Jingyong Li
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Qiangming Liu
- Chongqing Academy of Agricultural Sciences, Chongqing 401329, China
| | - Guangheng Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Qian Qian
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| | - Lan Shen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 311401, China; (J.L.)
| |
Collapse
|
6
|
Song J, Tang L, Fan H, Xu X, Peng X, Cui Y, Wang J. Enhancing Yield and Improving Grain Quality in Japonica Rice: Targeted EHD1 Editing via CRISPR-Cas9 in Low-Latitude Adaptation. Curr Issues Mol Biol 2024; 46:3741-3751. [PMID: 38666963 PMCID: PMC11049033 DOI: 10.3390/cimb46040233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/15/2024] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
The "Indica to Japonica" initiative in China focuses on adapting Japonica rice varieties from the northeast to the unique photoperiod and temperature conditions of lower latitudes. While breeders can select varieties for their adaptability, the sensitivity to light and temperature often complicates and prolongs the process. Addressing the challenge of cultivating high-yield, superior-quality Japonica rice over expanded latitudinal ranges swiftly, in the face of these sensitivities, is critical. Our approach harnesses the CRISPR-Cas9 technology to edit the EHD1 gene in the premium northeastern Japonica cultivars Jiyuanxiang 1 and Yinongxiang 12, which are distinguished by their exceptional grain quality-increased head rice rates, gel consistency, and reduced chalkiness and amylose content. Field trials showed that these new ehd1 mutants not only surpass the wild types in yield when grown at low latitudes but also retain the desirable traits of their progenitors. Additionally, we found that disabling Ehd1 boosts the activity of Hd3a and RFT1, postponing flowering by approximately one month in the ehd1 mutants. This research presents a viable strategy for the accelerated breeding of elite northeastern Japonica rice by integrating genomic insights with gene-editing techniques suitable for low-latitude cultivation.
Collapse
Affiliation(s)
- Jian Song
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.S.); (L.T.); (H.F.); (Y.C.)
| | - Liqun Tang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.S.); (L.T.); (H.F.); (Y.C.)
| | - Honghuan Fan
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.S.); (L.T.); (H.F.); (Y.C.)
| | - Xiaozheng Xu
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou 311300, China; (X.X.); (X.P.)
| | - Xinlu Peng
- College of Advanced Agriculture Sciences, Zhejiang A&F University, Hangzhou 311300, China; (X.X.); (X.P.)
| | - Yongtao Cui
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.S.); (L.T.); (H.F.); (Y.C.)
| | - Jianjun Wang
- Institute of Crops and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (J.S.); (L.T.); (H.F.); (Y.C.)
| |
Collapse
|
7
|
Zhou S, Cai L, Wu H, Wang B, Gu B, Cui S, Huang X, Xu Z, Hao B, Hou H, Hu Y, Li C, Tian Y, Liu X, Chen L, Liu S, Jiang L, Wan J. Fine-tuning rice heading date through multiplex editing of the regulatory regions of key genes by CRISPR-Cas9. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:751-758. [PMID: 37932934 PMCID: PMC10893950 DOI: 10.1111/pbi.14221] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/10/2023] [Accepted: 10/15/2023] [Indexed: 11/08/2023]
Abstract
Heading date (or flowering time) is a key agronomic trait that affects seasonal and regional adaption of rice cultivars. An unoptimized heading date can either not achieve a high yield or has a high risk of encountering abiotic stresses. There is a strong demand on the mild to moderate adjusting the heading date in breeding practice. Genome editing is a promising method which allows more precise and faster changing the heading date of rice. However, direct knock out of major genes involved in regulating heading date will not always achieve a new germplasm with expected heading date. It is still challenging to quantitatively adjust the heading date of elite cultivars with best adaption for broader region. In this study, we used a CRISPR-Cas9 based genome editing strategy called high-efficiency multiplex promoter-targeting (HMP) to generate novel alleles at cis-regulatory regions of three major heading date genes: Hd1, Ghd7 and DTH8. We achieved a series of germplasm with quantitative variations of heading date by editing promoter regions and adjusting the expression levels of these genes. We performed field trials to screen for the best adapted lines for different regions. We successfully expanded an elite cultivar Ningjing8 (NJ8) to a higher latitude region by selecting a line with a mild early heading phenotype that escaped from cold stress and achieved high yield potential. Our study demonstrates that HMP is a powerful tool for quantitatively regulating rice heading date and expanding elite cultivars to broader regions.
Collapse
Affiliation(s)
- Shirong Zhou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Liang Cai
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Haoqin Wu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Baoxiang Wang
- Institute of Lianyungang Agricultural Science of Xuhuai Area/Lianyungang Institute of Agricultural SciencesLianyungangChina
| | - Biao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Song Cui
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Xiaolong Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Zhuang Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Benyuan Hao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Haigang Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Yuan Hu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Chao Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Yunlu Tian
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Xi Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Liangming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Shijia Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Ling Jiang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
| | - Jianmin Wan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Jiangsu Engineering Research Center for Plant Genome Editing, National Observation and Research Station of Rice Germplasm ResourcesNanjing Agricultural UniversityNanjingChina
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop ScienceChinese Academy of Agricultural SciencesBeijingChina
| |
Collapse
|
8
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
9
|
Ntakirutimana F, Tranchant-Dubreuil C, Cubry P, Chougule K, Zhang J, Wing RA, Adam H, Lorieux M, Jouannic S. Genome-wide association analysis identifies natural allelic variants associated with panicle architecture variation in African rice, Oryza glaberrima Steud. G3 (BETHESDA, MD.) 2023; 13:jkad174. [PMID: 37535690 PMCID: PMC10542218 DOI: 10.1093/g3journal/jkad174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 06/12/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
African rice (Oryza glaberrima Steud), a short-day cereal crop closely related to Asian rice (Oryza sativa L.), has been cultivated in Sub-Saharan Africa for ∼ 3,000 years. Although less cultivated globally, it is a valuable genetic resource in creating high-yielding cultivars that are better adapted to diverse biotic and abiotic stresses. While inflorescence architecture, a key trait for rice grain yield improvement, has been extensively studied in Asian rice, the morphological and genetic determinants of this complex trait are less understood in African rice. In this study, using a previously developed association panel of 162 O. glaberrima accessions and new SNP variants characterized through mapping to a new version of the O. glaberrima reference genome, we conducted a genome-wide association study of four major morphological panicle traits. We have found a total of 41 stable genomic regions that are significantly associated with these traits, of which 13 co-localized with previously identified QTLs in O. sativa populations and 28 were unique for this association panel. Additionally, we found a genomic region of interest on chromosome 3 that was associated with the number of spikelets and primary and secondary branches. Within this region was localized the O. sativa ortholog of the PHYTOCHROME B gene (Oglab_006903/OgPHYB). Haplotype analysis revealed the occurrence of natural sequence variants at the OgPHYB locus associated with panicle architecture variation through modulation of the flowering time phenotype, whereas no equivalent alleles were found in O. sativa. The identification in this study of genomic regions specific to O. glaberrima indicates panicle-related intra-specific genetic variation in this species, increasing our understanding of the underlying molecular processes governing panicle architecture. Identified candidate genes and major haplotypes may facilitate the breeding of new African rice cultivars with preferred panicle traits.
Collapse
Affiliation(s)
| | | | - Philippe Cubry
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Kapeel Chougule
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Rod A Wing
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
- Center for Desert Agriculture, Biological and Environmental Sciences & Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hélène Adam
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Mathias Lorieux
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| | - Stefan Jouannic
- DIADE, University of Montpellier, IRD, CIRAD, 34394 Montpellier, France
| |
Collapse
|
10
|
Cantos CF, dePamphilis CW, Assmann SM. Extra-large G proteins have extra-large effects on agronomic traits and stress tolerance in maize and rice. TRENDS IN PLANT SCIENCE 2023; 28:1033-1044. [PMID: 37156701 PMCID: PMC10524845 DOI: 10.1016/j.tplants.2023.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/10/2023]
Abstract
Heterotrimeric G proteins - comprising Gα, Gβ, and Gγ subunits - are ubiquitous elements in eukaryotic cell signaling. Plant genomes contain both canonical Gα subunit genes and a family of plant-specific extra-large G protein genes (XLGs) that encode proteins consisting of a domain with Gα-like features downstream of a long N-terminal domain. In this review we summarize phenotypes modulated by the canonical Gα and XLG proteins of arabidopsis and highlight recent studies in maize and rice that reveal dramatic phenotypic consequences of XLG clustered regularly interspaced short palindromic repeats (CRISPR) mutagenesis in these important crop species. XLGs have both redundant and specific roles in the control of agronomically relevant plant architecture and resistance to both abiotic and biotic stresses. We also point out areas of current controversy, suggest future research directions, and propose a revised, phylogenetically-based nomenclature for XLG protein genes.
Collapse
Affiliation(s)
- Christian F Cantos
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Claude W dePamphilis
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA
| | - Sarah M Assmann
- Biology Department, Penn State University, University Park, State College, PA, USA; Intercollege Graduate Degree Program in Plant Biology, Penn State University, University Park, State College, PA, USA.
| |
Collapse
|
11
|
Yuan DP, Yang S, Feng L, Chu J, Dong H, Sun J, Chen H, Li Z, Yamamoto N, Zheng A, Li S, Yoon HC, Chen J, Ma D, Xuan YH. Red-light receptor phytochrome B inhibits BZR1-NAC028-CAD8B signaling to negatively regulate rice resistance to sheath blight. PLANT, CELL & ENVIRONMENT 2023; 46:1249-1263. [PMID: 36457051 DOI: 10.1111/pce.14502] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Phytochrome (Phy)-regulated light signalling plays important roles in plant growth, development, and stress responses. However, its function in rice defence against sheath blight disease (ShB) remains unclear. Here, we found that PhyB mutation or shade treatment promoted rice resistance to ShB, while resistance was reduced by PhyB overexpression. Further analysis showed that PhyB interacts with phytochrome-interacting factor-like 15 (PIL15), brassinazole resistant 1 (BZR1), and vascular plant one-zinc-finger 2 (VOZ2). Plants overexpressing PIL15 were more susceptible to ShB in contrast to bzr1-D-overexpressing plants compared with the wild-type, suggesting that PhyB may inhibit BZR1 to negatively regulate rice resistance to ShB. Although BZR1 is known to regulate brassinosteroid (BR) signalling, the observation that BR signalling negatively regulated resistance to ShB indicated an independent role for BZR1 in controlling rice resistance. It was also found that the BZR1 ligand NAC028 positively regulated resistance to ShB. RNA sequencing showed that cinnamyl alcohol dehydrogenase 8B (CAD8B), involved in lignin biosynthesis was upregulated in both bzr1-D- and NAC028-overexpressing plants compared with the wild-type. Yeast-one hybrid, ChIP, and transactivation assays demonstrated that BZR1 and NAC028 activate CAD8B directly. Taken together, the analyses demonstrated that PhyB-mediated light signalling inhibits the BZR1-NAC028-CAD8B pathway to regulate rice resistance to ShB.
Collapse
Affiliation(s)
- De Peng Yuan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Shuo Yang
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Lu Feng
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Jin Chu
- Laboratory of Rice Disease Research, Institution of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Hai Dong
- Laboratory of Rice Disease Research, Institution of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, China
| | - Jian Sun
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Huan Chen
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Zhuo Li
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| | - Naoki Yamamoto
- Department of Plant Protection, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aiping Zheng
- Department of Plant Protection, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Shuang Li
- Department of Biological Science, College of Life Science, Yan'an University, Yan'an, Shaanxi, China
| | | | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Chongqing, China
| | - Dianrong Ma
- Rice Research Institute, College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yuan Hu Xuan
- Department of Plant Pathology, College of Plant Protection, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
12
|
Nascimento FDS, Rocha ADJ, Soares JMDS, Mascarenhas MS, Ferreira MDS, Morais Lino LS, Ramos APDS, Diniz LEC, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Gene Editing for Plant Resistance to Abiotic Factors: A Systematic Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:305. [PMID: 36679018 PMCID: PMC9860801 DOI: 10.3390/plants12020305] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 05/22/2023]
Abstract
Agricultural crops are exposed to various abiotic stresses, such as salinity, water deficits, temperature extremes, floods, radiation, and metal toxicity. To overcome these challenges, breeding programs seek to improve methods and techniques. Gene editing by Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR/Cas-is a versatile tool for editing in all layers of the central dogma with focus on the development of cultivars of plants resistant or tolerant to multiple biotic or abiotic stresses. This systematic review (SR) brings new contributions to the study of the use of CRISPR/Cas in gene editing for tolerance to abiotic stress in plants. Articles deposited in different electronic databases, using a search string and predefined inclusion and exclusion criteria, were evaluated. This SR demonstrates that the CRISPR/Cas system has been applied to several plant species to promote tolerance to the main abiotic stresses. Among the most studied crops are rice and Arabidopsis thaliana, an important staple food for the population, and a model plant in genetics/biotechnology, respectively, and more recently tomato, whose number of studies has increased since 2021. Most studies were conducted in Asia, specifically in China. The Cas9 enzyme is used in most articles, and only Cas12a is used as an additional gene editing tool in plants. Ribonucleoproteins (RNPs) have emerged as a DNA-free strategy for genome editing without exogenous DNA. This SR also identifies several genes edited by CRISPR/Cas, and it also shows that plant responses to stress factors are mediated by many complex-signaling pathways. In addition, the quality of the articles included in this SR was validated by a risk of bias analysis. The information gathered in this SR helps to understand the current state of CRISPR/Cas in the editing of genes and noncoding sequences, which plays a key role in the regulation of various biological processes and the tolerance to multiple abiotic stresses, with potential for use in plant genetic improvement programs.
Collapse
Affiliation(s)
| | - Anelita de Jesus Rocha
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | - Mileide dos Santos Ferreira
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Sun J, Zhang G, Cui Z, Kong X, Yu X, Gui R, Han Y, Li Z, Lang H, Hua Y, Zhang X, Xu Q, Tang L, Xu Z, Ma D, Chen W. Regain flood adaptation in rice through a 14-3-3 protein OsGF14h. Nat Commun 2022; 13:5664. [PMID: 36175427 PMCID: PMC9522936 DOI: 10.1038/s41467-022-33320-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/13/2022] [Indexed: 11/10/2022] Open
Abstract
Contemporary climatic stress seriously affects rice production. Unfortunately, long-term domestication and improvement modified the phytohormones network to achieve the production needs of cultivated rice, thus leading to a decrease in adaptation. Here, we identify a 14-3-3 protein-coding gene OsGF14h in weedy rice that confers anaerobic germination and anaerobic seedling development tolerance. OsGF14h acts as a signal switch to balance ABA signaling and GA biosynthesis by interacting with the transcription factors OsHOX3 and OsVP1, thereby boosting the seeding rate from 13.5% to 60.5% for anaerobic sensitive variety under flooded direct-seeded conditions. Meanwhile, OsGF14h co-inheritance with the Rc (red pericarp gene) promotes divergence between temperate japonica cultivated rice and temperate japonica weedy rice through artificial and natural selection. Our study retrieves a superior allele that has been lost during modern japonica rice improvement and provides a fine-tuning tool to improve flood adaptation for elite rice varieties.
Collapse
Affiliation(s)
- Jian Sun
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Guangchen Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhibo Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ximan Kong
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoyu Yu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Rui Gui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuqing Han
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuan Li
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hong Lang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yuchen Hua
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xuemin Zhang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Liang Tang
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Dianrong Ma
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China
| | - Wenfu Chen
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
14
|
Kumar J, Kumar A, Sen Gupta D, Kumar S, DePauw RM. Reverse genetic approaches for breeding nutrient-rich and climate-resilient cereal and food legume crops. Heredity (Edinb) 2022; 128:473-496. [PMID: 35249099 PMCID: PMC9178024 DOI: 10.1038/s41437-022-00513-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/10/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022] Open
Abstract
In the last decade, advancements in genomics tools and techniques have led to the discovery of many genes. Most of these genes still need to be characterized for their associated function and therefore, such genes remain underutilized for breeding the next generation of improved crop varieties. The recent developments in different reverse genetic approaches have made it possible to identify the function of genes controlling nutritional, biochemical, and metabolic traits imparting drought, heat, cold, salinity tolerance as well as diseases and insect-pests. This article focuses on reviewing the current status and prospects of using reverse genetic approaches to breed nutrient-rich and climate resilient cereal and food legume crops.
Collapse
Affiliation(s)
- Jitendra Kumar
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India.
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108, USA
| | - Debjyoti Sen Gupta
- Division of Crop Improvement, ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Sachin Kumar
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh University, Meerut, 250 004, India
| | - Ron M DePauw
- Advancing Wheat Technologies, 118 Strathcona Rd SW, Calgary, AB, T3H 1P3, Canada
| |
Collapse
|
15
|
Li T, Deng G, Su Y, Yang Z, Tang Y, Wang J, Zhang J, Qiu X, Pu X, Yang W, Li J, Liu Z, Zhang H, Liang J, Yu M, Wei Y, Long H. Genetic dissection of quantitative trait loci for grain size and weight by high-resolution genetic mapping in bread wheat (Triticum aestivum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:257-271. [PMID: 34647130 DOI: 10.1007/s00122-021-03964-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/29/2021] [Indexed: 06/13/2023]
Abstract
Six major QTLs for wheat grain size and weight were identified on chromosomes 4A, 4B, 5A and 6A across multiple environments, and were validated in different genetic backgrounds. Grain size and weight are crucial components of wheat yield. Dissection of their genetic control is thus essential for the improvement of yield potential in wheat breeding. We used a doubled haploid (DH) population to detect quantitative trait loci (QTLs) for grain width (GW), grain length (GL), and thousand grain weight (TGW) in five environments. Six major QTLs, QGw.cib-4B.2, QGl.cib-4A, QGl.cib-5A.1, QGl.cib-6A, QTgw.cib-4B, and QTgw.cib-5A, were consistently identified in at least three individual environments and in best linear unbiased prediction (BLUP) datasets, and explained 5.65-34.06% of phenotypic variation. QGw.cib-4B.2, QTgw.cib-4B, QGl.cib-5A.1 and QGl.cib-6A had no effect on grain number per spike (GNS). In addition to QGl.cib-4A, the other major QTLs were further validated by using Kompetitive Allele Specific PCR (KASP) markers in different genetic backgrounds. Moreover, significant interactions between the three major GL QTLs and two major TGW QTLs were observed. Comparison analysis showed that QGl.cib-5A.1 and QGl.cib-6A are likely new loci. Notably, QGw.cib-4B.2 and QTgw.cib-4B were co-located on chromosome 4B and improved TGW by increasing only GW, unlike nearby or overlapped loci reported previously. Three genes associated with grain development within the QGw.cib-4B.2/QTgw.cib-4B interval were identified by searches on sequence similarity, spatial expression patterns, and orthologs. The major QTLs and KASP markers reported here will be useful for elucidating the genetic architecture of grain size and weight and for developing new wheat cultivars with high and stable yield.
Collapse
Affiliation(s)
- Tao Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yan Su
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Zhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yanyan Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Jinhui Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Juanyu Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xvebing Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Xi Pu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, Sichuan, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junjun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Chengdu, 611130, China.
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China.
| |
Collapse
|
16
|
Kawall K. The Generic Risks and the Potential of SDN-1 Applications in Crop Plants. PLANTS (BASEL, SWITZERLAND) 2021; 10:2259. [PMID: 34834620 PMCID: PMC8622673 DOI: 10.3390/plants10112259] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/18/2021] [Indexed: 12/26/2022]
Abstract
The use of site-directed nucleases (SDNs) in crop plants to alter market-oriented traits is expanding rapidly. At the same time, there is an on-going debate around the safety and regulation of crops altered with the site-directed nuclease 1 (SDN-1) technology. SDN-1 applications can be used to induce a variety of genetic alterations ranging from fairly 'simple' genetic alterations to complex changes in plant genomes using, for example, multiplexing approaches. The resulting plants can contain modified alleles and associated traits, which are either known or unknown in conventionally bred plants. The European Commission recently published a study on new genomic techniques suggesting an adaption of the current GMO legislation by emphasizing that targeted mutagenesis techniques can produce genomic alterations that can also be obtained by natural mutations or conventional breeding techniques. This review highlights the need for a case-specific risk assessment of crop plants derived from SDN-1 applications considering both the characteristics of the product and the process to ensure a high level of protection of human and animal health and the environment. The published literature on so-called market-oriented traits in crop plants altered with SDN-1 applications is analyzed here to determine the types of SDN-1 application in plants, and to reflect upon the complexity and the naturalness of such products. Furthermore, it demonstrates the potential of SDN-1 applications to induce complex alterations in plant genomes that are relevant to generic SDN-associated risks. In summary, it was found that nearly half of plants with so-called market-oriented traits contain complex genomic alterations induced by SDN-1 applications, which may also pose new types of risks. It further underscores the need for data on both the process and the end-product for a case-by-case risk assessment of plants derived from SDN-1 applications.
Collapse
Affiliation(s)
- Katharina Kawall
- Fachstelle Gentechnik und Umwelt, Frohschammerstr. 14, 80807 Munich, Germany
| |
Collapse
|
17
|
Li B, Du X, Fei Y, Wang F, Xu Y, LI X, Li W, Chen Z, Fan F, Wang J, Tao Y, Jiang Y, Zhu QH, Yang J. Efficient Breeding of Early-Maturing Rice Cultivar by Editing PHYC via CRISPR/Cas9. RICE (NEW YORK, N.Y.) 2021; 14:86. [PMID: 34643821 PMCID: PMC8514591 DOI: 10.1186/s12284-021-00527-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/03/2021] [Indexed: 06/13/2023]
Affiliation(s)
- Bin Li
- Institute of Life Science, Jiangsu University, Zhenjiang, 212013 Jiangsu China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
| | - Xi Du
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yunyan Fei
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Fangquan Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yang Xu
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Xia LI
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Wenqi Li
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Zhihui Chen
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Fangjun Fan
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Jun Wang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yajun Tao
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Yanjie Jiang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra, ACT Australia
| | - Jie Yang
- Institute of Life Science, Jiangsu University, Zhenjiang, 212013 Jiangsu China
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences/Nanjing Branch of Chinese National Center for Rice Improvement, Nanjing, 210014 Jiangsu China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009 Jiangsu China
| |
Collapse
|
18
|
Liu X, Liu H, Zhang Y, He M, Li R, Meng W, Wang Z, Li X, Bu Q. Fine-tuning Flowering Time via Genome Editing of Upstream Open Reading Frames of Heading Date 2 in Rice. RICE (NEW YORK, N.Y.) 2021; 14:59. [PMID: 34189630 PMCID: PMC8241947 DOI: 10.1186/s12284-021-00504-w] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/17/2021] [Indexed: 05/10/2023]
Abstract
Flowering time of rice (Oryza sativa L.) is among the most important agronomic traits for region adaptation and grain yield. In the process of rice breeding, efficient and slightly modulating the flowering time of an elite cultivar would be more popular with breeder. Hence, we are interested in slightly increasing the expression of flowering repressors by CRISPR/Cas9 genome editing system. It was predicated there were three uORFs in 5' leader sequence of Hd2. In this study, through editing Hd2 uORFs, we got four homozygous mutant lines. Phenotypic analysis showed that the hd2 urf edited lines flowered later by 4.6-11.2 days relative to wild type SJ2. Supporting the later flowering phenotype, the expression of Ehd1, Hd3a, and RFT1 is significantly decreased in hd2 urf than that in wild type. Moreover, we found that the transcription level of Hd2 is not affected, whereas the Hd2 protein level was increased in hd2 urf compared with wild type, which indicated that Hd2 uORFs indeed affect the translation of a downstream Hd2 pORF. In summary, we developed a efficient approach for delaying rice heading date based on editing uORF region of flowering repressor, which is time and labor saving compared to traditional breeding. In future, uORF of other flowering time related genes, including flowering promoter and flowering repressor genes, can also be used as targets to fine-tune the flowering time of varieties.
Collapse
Affiliation(s)
- Xinxin Liu
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Hualong Liu
- Rice Research Institute, College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Yuanye Zhang
- College of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Mingliang He
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
- Graduate University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rongtian Li
- College of Life Science, Heilongjiang University, Harbin, 150080, China
| | - Wei Meng
- College of Life Science, Northeast Forestry University, Harbin, 150040, China
| | - Zhenyu Wang
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China
| | - Xiufeng Li
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| | - Qingyun Bu
- Northeast Institute of Geography and Agroecology, Key Laboratory of Soybean Molecular Design Breeding, Chinese Academy of Sciences, Harbin, 150081, China.
| |
Collapse
|
19
|
Huang X, Hilscher J, Stoger E, Christou P, Zhu C. Modification of cereal plant architecture by genome editing to improve yields. PLANT CELL REPORTS 2021; 40:953-978. [PMID: 33559722 DOI: 10.1007/s00299-021-02668-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/22/2021] [Indexed: 06/12/2023]
Abstract
KEY MESSAGE We summarize recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement. Plant architecture is defined as the three-dimensional organization of the entire plant. Shoot architecture refers to the structure and organization of the aboveground components of a plant, reflecting the developmental patterning of stems, branches, leaves and inflorescences/flowers. Root system architecture is essentially determined by four major shape parameters-growth, branching, surface area and angle. Interest in plant architecture has arisen from the profound impact of many architectural traits on agronomic performance, and the genetic and hormonal regulation of these traits which makes them sensitive to both selective breeding and agronomic practices. This is particularly important in staple crops, and a large body of literature has, therefore, accumulated on the control of architectural phenotypes in cereals, particularly rice due to its twin role as one of the world's most important food crops as well as a model organism in plant biology and biotechnology. These studies have revealed many of the molecular mechanisms involved in the regulation of tiller/axillary branching, stem height, leaf and flower development, root architecture and the grain characteristics that ultimately help to determine yield. The advent of genome editing has made it possible, for the first time, to introduce precise mutations into cereal crops to optimize their architecture and close in on the concept of the ideotype. In this review, we consider recent genome editing studies that have focused on the examination (or reexamination) of plant architectural phenotypes in cereals and the modification of these traits for crop improvement.
Collapse
Affiliation(s)
- Xin Huang
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
| | - Julia Hilscher
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Eva Stoger
- Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences, Gregor-Mendel-Straße 33, 1180, Vienna, Austria
| | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, 08010, Barcelona, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, 25198, Lleida, Spain.
| |
Collapse
|
20
|
Massel K, Lam Y, Wong ACS, Hickey LT, Borrell AK, Godwin ID. Hotter, drier, CRISPR: the latest edit on climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1691-1709. [PMID: 33420514 DOI: 10.1007/s00122-020-03764-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.
Collapse
Affiliation(s)
- Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Albert C S Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew K Borrell
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
21
|
Cui Y, Xu Z, Xu Q. Elucidation of the relationship between yield and heading date using CRISPR/Cas9 system-induced mutation in the flowering pathway across a large latitudinal gradient. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:23. [PMID: 37309418 PMCID: PMC10236111 DOI: 10.1007/s11032-021-01213-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 02/03/2021] [Indexed: 06/14/2023]
Abstract
The naturally occurring genetic variation in the universal flowering (or heading date in crops) pathway has produced major advancements in crop domestication and expansion, and the various combinations of heading date genes have facilitated the plants to heading at suitable times in different ecological zones. However, gene combinations that can maximize crop yields may not exist in natural populations. Here, we planted a series of heading date mutants that harbored different heading mutant gene combinations generated by CRISPR/Cas9 gene editing technology, along with a collection of commercial varieties, across a large latitude gradient to evaluate the major effects of heading date genes and preferable gene combinations for each area. The relationship between yield and heading date was investigated. According to the pattern obtained from gene editing mutants, we concluded that the growth period of commercial varieties could be adjusted to achieve maximum yield performance in some areas. By combining the long vegetative growth allele and weak photoperiod sensitivity allele, we pinpointed an optimal balance between growth period and yield production, resulting in new partially determinate heading date to maximum yields and improved adaptability. We propose that harnessing mutations in the florigen pathway to customize the balance between vegetative and reproductive growth offers a broad toolkit for boosting crop productivity. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01213-4.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute, Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|
22
|
Wang G, Wang C, Lu G, Wang W, Mao G, Habben JE, Song C, Wang J, Chen J, Gao Y, Liu J, Greene TW. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations. PLANT MOLECULAR BIOLOGY 2020; 104:137-150. [PMID: 32623622 DOI: 10.1007/s11103-020-01031-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
OsGhd7 gene was discovered by screening our rice activation tagging population. CRISPR-Cas9 created knockouts of OsGhd7 conferred early flowering and early maturity in rice varieties across multiple geographical locations in China. Our research shows that OsGhd7 is a good target for breeding early maturity rice varieties, and an excellent example of the advantages of applying the CRISPR-Cas9 technology for trait improvement. Flowering time (heading date) is an important trait for crop cultivation and yield. In this study, we discovered a late flowering gene OsGhd7 by screening our rice activation tagging population, and demonstrated that overexpression of OsGhd7 delayed flowering time in rice, and the delay in flowering time depended on the transgene expression level. OsGhd7 is a functional allele of the Ghd7 gene family; knockouts of OsGhd7 generated by CRISPR-Cas9 significantly accelerated flowering time and the earliness of the flowering time depended on field location. The homozygous OsGhd7 knockout lines showed approximately 8, 10, and 20 days earlier flowering than controls at three different locations in China (Changsha City, Sanya City, and Beijing City, respectively) that varied from 18.25° N to 39.90° N. Furthermore, knockouts of OsGhd7 also showed an early flowering phenotype in different rice varieties, indicating OsGhd7 can be used as a common target gene for using the CRISPR technology to modulate rice flowering time. The importance of OsGhd7 and CRISPR technology for breeding early maturity rice varieties are discussed.
Collapse
Affiliation(s)
- Guokui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Changgui Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guihua Lu
- Corteva™ Agriscience, Johnston, IA, USA.
| | - Wei Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Guanfan Mao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | | | - Chao Song
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jiantao Wang
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Jian Chen
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Yang Gao
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China
| | - Junhua Liu
- Sinobioway Bio-Agriculture Group, Co., Ltd., Beijing, China.
| | | |
Collapse
|
23
|
Liu H, Zhou X, Li Q, Wang L, Xing Y. CCT domain-containing genes in cereal crops: flowering time and beyond. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1385-1396. [PMID: 32006055 DOI: 10.1007/s00122-020-03554-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 01/23/2020] [Indexed: 05/04/2023]
Abstract
The review summarizes the functions of the plant special transcription factors CCT family genes in multiple traits and discusses the molecular breeding strategies with CCT family genes in the future. Plants integrate circadian clock and external signals such as temperature and photoperiod to synchronize flowering with seasonal environmental changes. This process makes cereal crops including short-day crops, such as rice and maize, and long-day crops, such as wheat and barley, better adapt to varied growth zones from temperate to tropical regions. CCT family genes involve circadian clock and photoperiodic flowering pathways and help plants set a suitable flowering time to produce offspring. Beyond the flowering time, CCT family genes in cereal crops are associated with biomass and grain yield. Moreover, recent studies showed that they also associate with photosynthesis, nutrition use efficiency and stress tolerance. Here, we systematically review the progress in functional characterization of CCT family genes in flowering, geographical adaptation and grain yield formation, raise the core questions related to their molecular mechanisms and discuss how to practice them in genetic improvement in cereal crops by combining gene diagnosis and top-level design.
Collapse
Affiliation(s)
- Haiyang Liu
- College of Agriculture, Yangtze University, Jingzhou, 434000, China
| | - Xiangchun Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Qiuping Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Lei Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, Wuhan, 430070, China.
| |
Collapse
|
24
|
Wu M, Liu H, Lin Y, Chen J, Fu Y, Luo J, Zhang Z, Liang K, Chen S, Wang F. In-Frame and Frame-Shift Editing of the Ehd1 Gene to Develop Japonica Rice With Prolonged Basic Vegetative Growth Periods. FRONTIERS IN PLANT SCIENCE 2020; 11:307. [PMID: 32265960 PMCID: PMC7096585 DOI: 10.3389/fpls.2020.00307] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 03/03/2020] [Indexed: 05/05/2023]
Abstract
Japonica rice has become increasingly popular in China owing to its superior grain quality. Over the past decades, "indica to japonica" projects have been proposed to promote cultivation of japonica rice in low latitudes in China. Traditionally, japonica varieties were planted mainly in mid latitudes in the northeast plain and Yangtze River region. The key obstacle for introducing elite mid-latitude japonica varieties to low latitudes is the severe shortening of growth period of the japonica varieties due to their sensitivity to low-latitude short photoperiod and high temperature. Here we report development of new japonica rice with prolonged basic vegetative growth (BVG) periods for low latitudes by targeted editing the Early heading date 1 (Ehd1) gene. Using CRISPR/Cas9 system, we generated both frame-shift and/or in-frame deletion mutants in four japonica varieties, Nipponbare, Longdao16, Longdao24, and Xiushui134. When planting at low-latitude stations, the frame-shift homozygous lines exhibited significantly longer BVG periods compared with wild-types. Interestingly, we observed that minor deletion of the first few residues within the receiver domain could quantitatively impair the function of Ehd1 on activation of Hd3a and RFT1, resulting in an intermediate-long BVG period phenotype in the homozygous in-frame deletion ehd1 lines. Field investigation further showed that, both the in-frame and frame-shift lines exhibited significantly improved yield potential compared with wild-types. Our study demonstrates an effective approach to rapid breeding of elite japonica varieties with intermediate-long and long BVG periods for flexible cropping systems in diverse areas or under different seasons in southern China, and other low-latitude regions.
Collapse
Affiliation(s)
- Mingji Wu
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Huaqing Liu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yan Lin
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jianmin Chen
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Yanping Fu
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Jiami Luo
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Zhujian Zhang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Kangjing Liang
- College of Agriculture, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Songbiao Chen
- Marine and Agricultural Biotechnology Laboratory, Institute of Oceanography, Minjiang University, Fuzhou, China
| | - Feng Wang
- Fujian Key Laboratory of Genetic Engineering for Agriculture, Biotechnology Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| |
Collapse
|
25
|
Cui Y, Jiang N, Xu Z, Xu Q. Heterotrimeric G protein are involved in the regulation of multiple agronomic traits and stress tolerance in rice. BMC PLANT BIOLOGY 2020; 20:90. [PMID: 32111163 PMCID: PMC7048073 DOI: 10.1186/s12870-020-2289-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 02/13/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND The heterotrimeric G protein complex, consisting of Gα, Gβ, and Gγ subunits, are conserved signal transduction mechanism in eukaryotes. Recent molecular researches had demonstrated that G protein signaling participates in the regulation of yield related traits. However, the effects of G protein genes on yield components and stress tolerance are not well characterized. RESULTS In this study, we generated heterotrimeric G protein mutants in rice using CRISPR/Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology. The effects of heterotrimeric G proteins on the regulation of yield components and stress tolerance were investigated. The mutants of gs3 and dep1 generated preferable agronomic traits compared to the wild-type, whereas the mutants of rga1 showed an extreme dwarf phenotype, which led to a dramatic decrease in grain production. The mutants showed improved stress tolerance, especially under salinity treatment. We found four putative extra-large G proteins (PXLG)1-4 that also participate in the regulation of yield components and stress tolerance. A yeast two hybrid showed that the RGB1 might interact with PXLG2 but not with PXLG1, PXLG3 or PXLG4. CONCLUSION These findings will not only improve our understanding of the repertoire of heterotrimeric G proteins in rice but also contribute to the application of heterotrimeric G proteins in rice breeding.
Collapse
Affiliation(s)
- Yue Cui
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Nan Jiang
- Shenyang Research and Development Service Center of Modern Agriculture, Shenyang, 110866 China
| | - Zhengjin Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| | - Quan Xu
- Rice Research Institute of Shenyang Agricultural University, Shenyang, 110866 China
| |
Collapse
|