1
|
Bhattarai K, Ogden AB, Pandey S, Sandoya GV, Shi A, Nankar AN, Jayakodi M, Huo H, Jiang T, Tripodi P, Dardick C. Improvement of crop production in controlled environment agriculture through breeding. FRONTIERS IN PLANT SCIENCE 2025; 15:1524601. [PMID: 39931334 PMCID: PMC11808156 DOI: 10.3389/fpls.2024.1524601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 12/09/2024] [Indexed: 02/13/2025]
Abstract
Controlled environment agriculture (CEA) represents one of the fastest-growing sectors of horticulture. Production in controlled environments ranges from highly controlled indoor environments with 100% artificial lighting (vertical farms or plant factories) to high-tech greenhouses with or without supplemental lighting, to simpler greenhouses and high tunnels. Although food production occurs in the soil inside high tunnels, most CEA operations use various hydroponic systems to meet crop irrigation and fertility needs. The expansion of CEA offers promise as a tool for increasing food production in and near urban systems as these systems do not rely on arable agricultural land. In addition, CEA offers resilience to climate instability by growing inside protective structures. Products harvested from CEA systems tend to be of high quality, both internal and external, and are sought after by consumers. Currently, CEA producers rely on cultivars bred for production in open-field agriculture. Because of high energy and other production costs in CEA, only a limited number of food crops have proven themselves to be profitable to produce. One factor contributing to this situation may be a lack of optimized cultivars. Indoor growing operations offer opportunities for breeding cultivars that are ideal for these systems. To facilitate breeding these specialized cultivars, a wide range of tools are available for plant breeders to help speed this process and increase its efficiency. This review aims to cover breeding opportunities and needs for a wide range of horticultural crops either already being produced in CEA systems or with potential for CEA production. It also reviews many of the tools available to breeders including genomics-informed breeding, marker-assisted selection, precision breeding, high-throughput phenotyping, and potential sources of germplasm suitable for CEA breeding. The availability of published genomes and trait-linked molecular markers should enable rapid progress in the breeding of CEA-specific food crops that will help drive the growth of this industry.
Collapse
Affiliation(s)
- Krishna Bhattarai
- Department of Horticultural Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Andrew B. Ogden
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Sudeep Pandey
- Department of Horticulture, University of Georgia, Griffin, GA, United States
| | - Germán V. Sandoya
- Horticultural Sciences Department, University of Florida, Everglades Research and Education Center, University of Florida – Institute for Food and Agriculture Sciences, Belle Glade, FL, United States
| | - Ainong Shi
- Department of Horticulture, University of Arkansas, Fayetteville, AR, United States
| | - Amol N. Nankar
- Department of Horticulture, University of Georgia, Tifton, GA, United States
| | - Murukarthick Jayakodi
- Department of Soil and Crop Sciences, Texas A&M University, Texas A&M AgriLife Research and Extension Center, Dallas, TX, United States
| | - Heqiang Huo
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Tao Jiang
- Department of Environmental Horticulture, Mid-Florida Research and Education Center, University of Florida, IFAS, Apopka, FL, United States
| | - Pasquale Tripodi
- Council for Agricultural Research and Economics (CREA), Research Centre for Vegetable and Ornamental Crops, Pontecagnano-Faiano, SA, Italy
| | - Chris Dardick
- United States Department of Agriculture-Agriculture Research Service (USDA-ARS), Appalachian Fruit Research Station, Kearneysville, WV, United States
| |
Collapse
|
2
|
Simko I, Zhao R. Phenotypic characterization, plant growth and development, genome methylation, and mineral elements composition of neotetraploid lettuce ( Lactuca sativa L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1296660. [PMID: 38143587 PMCID: PMC10739468 DOI: 10.3389/fpls.2023.1296660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023]
Abstract
Stable neotetraploid lines of lettuce (Lactuca sativa L.) were produced from three phenotypically distinct cultivars (Annapolis, Eruption, Merlot) and an advanced breeding line (SM13-L2) using colchicine treatment of seeds or young seedlings. When tested under the greenhouse and field conditions, neotetraploids initially grew more rapidly than their diploid progenitors, however they reached their reproductive stage (bolting, flower bud formation, and flowering) substantially later. Seeds production on neotetraploids was delayed by more than 30 days compared to diploids. Tetraploid plants had fewer, but larger stomata and leaves, less chlorophyll per area, higher photosystem II photochemical efficiency, generally lighter root system, and produced less than 1% of seeds in comparison with diploids. Field-grown neotetraploids of all lines displayed a significant reduction in tipburn (1.8% vs. 22.2%, respectively), a highly undesirable physiological disorder. Changes in leaf and root mineral composition were detected in neotetraploids. Several elements were found in lower abundance than in diploids, most notably iron, calcium, and silicon. Whole genome bisulfite sequencing (WGBS) revealed 498 differentially methylated regions (DMR), with 106 of these regions having at least 50% difference in the level of methylation between neotetraploids and their diploid progenitors. At least 18 of the most prominent DMR were detected in proximity to genes predicted to be involved in plant development or reaction to biotic and abiotic stressors. Because neotetraploid lines have low seed production, they are not suitable for commercial cultivation. They can be used, however, in research to study the factors contributing to tipburn, traits affected by stomata size or density, and the effect of ploidy on resistance to environmental stressors.
Collapse
Affiliation(s)
- Ivan Simko
- Sam Farr United States Crop Improvement and Protection Research Center, Agricultural Research Service, U.S. Department of Agriculture, Salinas, CA, United States
| | | |
Collapse
|
3
|
Beacham AM, Wilkins KA, Davies JM, Monaghan JM. Vacuolar Ca 2+/H + exchanger and Ca 2+-ATPase homologues are differentially regulated in tipburn-resistant and susceptible lettuce (Lactuca sativa) cultivars. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107792. [PMID: 37285692 DOI: 10.1016/j.plaphy.2023.107792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/21/2023] [Indexed: 06/09/2023]
Abstract
Tipburn is a physiological disorder of lettuce (Lactuca sativa) and other leafy crops that causes external and internal leaf discolouration and results in serious quality issues for the fresh produce industry. Tipburn occurrence is difficult to predict and no completely effective control methods exist. This is compounded by poor knowledge of the underlying physiological and molecular basis of the condition, which appears to be associated with deficiency of calcium and other nutrients. Vacuolar calcium transporters, which are involved in calcium homeostasis in Arabidopsis, show differential expression in tipburn-resistant and susceptible Brassica oleracea lines. We therefore investigated expression of a subset of L. sativa vacuolar calcium transporter homologues, belonging to the Ca2+/H+ exchanger and Ca2+-ATPase classes, in tipburn-resistant and susceptible cultivars. This indicated that some L. sativa vacuolar calcium transporter homologues belonging to these gene classes exhibited higher expression levels in resistant cultivars, whilst others had higher expression in susceptible cultivars or were independent of tipburn phenotype. In addition, some homologues were more highly expressed in symptomatic versus asymptomatic leaves in susceptible cultivars, suggesting that tipburn-induced increases in expression are unsuccessful in conferring resistance and that differential baseline expression of such genes is important for tipburn resistance. Knowledge of individual genes associated with tipburn resistance will improve breeding for such traits and the development of resistant lettuce varieties.
Collapse
Affiliation(s)
- Andrew M Beacham
- Centre for Crop and Environmental Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK.
| | - Katie A Wilkins
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - Julia M Davies
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EA, UK
| | - James M Monaghan
- Centre for Crop and Environmental Sciences, Harper Adams University, Edgmond, Shropshire, TF10 8NB, UK
| |
Collapse
|
4
|
Beacham AM, Hand P, Teakle GR, Barker GC, Pink DAC, Monaghan JM. Tipburn resilience in lettuce (Lactuca spp.) - the importance of germplasm resources and production system-specific assays. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:4481-4488. [PMID: 36825361 DOI: 10.1002/jsfa.12523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 02/17/2023] [Accepted: 02/24/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND Tipburn is a physiological disorder of lettuce (Lactuca spp.). It causes discoloration and collapse of leaf margins, leading to unsaleable crops in both protected (glasshouse, hydroponic) and outdoor production systems. The occurrence of tipburn is hard to predict and is sensitive to environmental conditions. Phenotyping for tipburn resilience requires diverse germplasm resources and, to date, limited material has been investigated for this condition. RESULTS Using a Lactuca diversity fixed foundation set (DFFS) under glasshouse conditions, we identified a significant (P < 0.001) genotypic effect on tipburn resilience across both the entire population and across lines belonging to the cultivated species L. sativa alone. Latuca sativa lines exhibited significantly (P < 0.05) higher average tipburn severity than those belonging to the wild species L. saligna, L. serriola, and L. virosa but we were able to identify both cultivated and wild tipburn-resilient lines. Leaf morphology factors, which included pigmentation, width, and serration, also significantly (P < 0.05) influenced tipburn resilience. Using a recombinant inbred line (RIL) mapping population derived from two DFFS lines, different small-effect quantitative trait loci (QTLs) accounting for 12.3% and 25.2% of total tipburn variation were identified in glasshouse and field conditions, respectively. CONCLUSIONS These results reflect the advantages of phenotyping under production-system-specific conditions for the examination of environmentally sensitive traits and highlight genetic markers and germplasm resources for the development of tipburn resilient lines for use in both protected and outdoor lettuce production. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Andrew M Beacham
- Centre for Crop and Environmental Sciences, Agriculture and Environment Department, Harper Adams University, Edgmond, Shropshire, UK
| | - Paul Hand
- Centre for Crop and Environmental Sciences, Agriculture and Environment Department, Harper Adams University, Edgmond, Shropshire, UK
| | - Graham R Teakle
- Warwick Crop Centre, University of Warwick, Wellesbourne, UK
| | - Guy C Barker
- Warwick Crop Centre, University of Warwick, Wellesbourne, UK
| | - David A C Pink
- Centre for Crop and Environmental Sciences, Agriculture and Environment Department, Harper Adams University, Edgmond, Shropshire, UK
| | - James M Monaghan
- Centre for Crop and Environmental Sciences, Agriculture and Environment Department, Harper Adams University, Edgmond, Shropshire, UK
| |
Collapse
|
5
|
Sthapit Kandel J, Sandoya GV, Zhou W, Read QD, Mou B, Simko I. Identification of Quantitative Trait Loci Associated with Bacterial Leaf Spot Resistance in Baby Leaf Lettuce. PLANT DISEASE 2022; 106:2583-2590. [PMID: 35285269 DOI: 10.1094/pdis-09-21-2087-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spring mix is a popular packaged salad that contains lettuce (Lactuca sativa L.) as one of its main ingredients. Plants for baby leaf lettuce (BLL) production are grown at very high densities, which enhances the occurrence of bacterial leaf spot (BLS) caused by Xanthomonas hortorum pv. vitians (Xhv), a disease that can make the crop unmarketable. The market demands disease-free, high-quality BLL all year round. Growing highly BLS-resistant cultivars will reduce loss of yield and quality, thus minimizing economic detriment to lettuce and spring mix growers. The research objectives were to identify lettuce accessions resistant to BLS and associated quantitative trait loci (QTL). A total of 495 lettuce accessions were screened with six isolates (BS0347, BS2861, BS3127, L7, L44, and Sc8B) of Xhv. Accessions showing overall high-level resistance to all tested Xhv isolates were 'Bunte Forellen', PI 226514, 'La Brillante', ARM09-161-10-1-4, 'Grenadier', 'Bella', PI 491210, 'Delight', and 'Romana Verde del Mercado'. Genome-wide association studies of BLS resistance by mixed linear model analyses identified significant QTLs on four lettuce chromosomes (2, 4, 6, and 8). The most significant QTL was on Chromosome 8 (P = 1.42 × 10-7), which explained 6.7% of total phenotypic variation for the disease severity. Accessions with a high level of resistance detected in this study are valuable resources for lettuce germplasm improvement. Molecular markers closely linked to QTLs can be considered for marker-assisted selection to develop new BLL lettuce cultivars with resistance to multiple races of Xhv.
Collapse
Affiliation(s)
- Jinita Sthapit Kandel
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Germán V Sandoya
- Horticultural Sciences Department, Everglades Research and Education Center, University of Florida, Belle Glade, FL 33430
| | - Wei Zhou
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Quentin D Read
- U.S. Department of Agriculture, Agricultural Research Service, Southeast Area, North Carolina State University, Raleigh, NC 27607
| | - Beiquan Mou
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| | - Ivan Simko
- U.S. Department of Agriculture, Agricultural Research Service, Crop Improvement and Protection Research Unit, Salinas, CA 93905
| |
Collapse
|
6
|
Topcu Y, Nambeesan SU, van der Knaap E. Blossom-end rot: a century-old problem in tomato (Solanum lycopersicum L.) and other vegetables. MOLECULAR HORTICULTURE 2022; 2:1. [PMID: 37789437 PMCID: PMC10515260 DOI: 10.1186/s43897-021-00022-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/16/2021] [Indexed: 10/05/2023]
Abstract
Blossom-end rot (BER) is a devastating physiological disorder affecting vegetable production worldwide. Extensive research into the physiological aspects of the disorder has demonstrated that the underlying causes of BER are associated with perturbed calcium (Ca2+) homeostasis and irregular watering conditions in predominantly cultivated accessions. Further, Reactive Oxygen Species (ROS) are critical players in BER development which, combined with unbalanced Ca2+ concentrations, greatly affect the severity of the disorder. The availability of a high-quality reference tomato genome as well as the whole genome resequencing of many accessions has recently permitted the genetic dissection of BER in segregating populations derived from crosses between cultivated tomato accessions. This has led to the identification of five loci contributing to BER from several studies. The eventual cloning of the genes contributing to BER would result in a deeper understanding of the molecular bases of the disorder. This will undoubtedly create crop improvement strategies for tomato as well as many other vegetables that suffer from BER.
Collapse
Affiliation(s)
- Yasin Topcu
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA
| | | | - Esther van der Knaap
- Institute of Plant Breeding, Genetics and Genomics, University of Georgia, Athens, GA, 30602, USA.
- Department of Horticulture, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
7
|
Macias-González M, Truco MJ, Han R, Jenni S, Michelmore RW. High-resolution genetic dissection of the major QTL for tipburn resistance in lettuce, Lactuca sativa. G3 (BETHESDA, MD.) 2021; 11:jkab097. [PMID: 33772545 PMCID: PMC8495944 DOI: 10.1093/g3journal/jkab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/21/2021] [Indexed: 12/13/2022]
Abstract
Tipburn is an important physiological disorder of lettuce, Lactuca sativa L., related to calcium deficiency that can result in leaf necrosis and unmarketable crops. The major quantitative trait locus (QTL), qTPB5.2, can account for up to 70% of the phenotypic variance for tipburn incidence in the field. This QTL was genetically dissected to identify candidate genes for tipburn by creating lines with recombination events within the QTL and assessing their resistance to tipburn. By comparing lines with contrasting haplotypes, the genetic region was narrowed down to ∼877 Kb that was associated with a reduction of tipburn by ∼60%. Analysis of the lettuce reference genome sequence revealed 12 genes in this region, one of which is a calcium transporter with a single nucleotide polymorphism in an exon between haplotypes with contrasting phenotypes. RNA-seq analysis of recombinants revealed two genes that were differentially expressed between contrasting haplotypes consistent with the tipburn phenotype. One encodes a Teosinte branched1/Cycloidea/Proliferating Cell factor transcription factor; however, differential expression of the calcium transporter was detected. The phenotypic data indicated that there is a second region outside of the ∼877 Kb region but within the QTL, at which a haplotype from the susceptible parent decreased tipburn by 10-20%. A recombinant line was identified with beneficial haplotypes in each region from both parents that showed greater tipburn resistance than the resistant parent; this line could be used as the foundation for breeding cultivars with more resistance than is currently available.
Collapse
Affiliation(s)
- Miguel Macias-González
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Maria Jose Truco
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Rongkui Han
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Sylvie Jenni
- Science and Technology Branch, Agriculture and Agri-Food Canada, Saint-Jean-sur-Richelieu, QC J3B 3E6, Canada
| | - Richard W Michelmore
- The Genome Center, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
8
|
Damerum A, Smith HK, Clarkson G, Truco MJ, Michelmore RW, Taylor G. The genetic basis of water-use efficiency and yield in lettuce. BMC PLANT BIOLOGY 2021; 21:237. [PMID: 34044761 PMCID: PMC8157645 DOI: 10.1186/s12870-021-02987-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Water supply limits agricultural productivity of many crops including lettuce. Identifying cultivars within crop species that can maintain productivity with reduced water supply is a significant challenge, but central to developing resilient crops for future water-limited climates. We investigated traits known to be related to water-use efficiency (WUE) and yield in lettuce, a globally important leafy salad crop, in a recombinant inbred line (RIL) lettuce mapping population, produced from a cross between the cultivated Lactuca sativa L. cv. Salinas and its wild progenitor L. serriola L. RESULTS Wild and cultivated lettuce differed in their WUE and we observed transgressive segregation in yield and water-use traits in the RILs. Quantitative trait loci (QTL) analysis identified genomic regions controlling these traits under well-watered and droughted conditions. QTL were detected for carbon isotope discrimination, transpiration, stomatal conductance, leaf temperature and yield, controlling 4-23 % of the phenotypic variation. A QTL hotspot was identified on chromosome 8 that controlled carbon isotope discrimination, stomatal conductance and yield under drought. Several promising candidate genes in this region were associated with WUE, including aquaporins, late embryogenesis abundant proteins, an abscisic acid-responsive element binding protein and glutathione S-transferases involved in redox homeostasis following drought stress were also identified. CONCLUSIONS For the first time, we have characterised the genetic basis of WUE of lettuce, a commercially important and water demanding crop. We have identified promising candidate genomic regions determining WUE and yield under well-watered and water-limiting conditions, providing important pre-breeding data for future lettuce selection and breeding where water productivity will be a key target.
Collapse
Affiliation(s)
- Annabelle Damerum
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA
| | - Hazel K Smith
- School of Biological Sciences, University of Southampton, Hampshire, SO17 1BJ, UK
- Present address: Vitacress Salads, Lower Link Farm, St Mary Bourne, SP11 6DB, Hampshire, UK
| | - Gjj Clarkson
- Present address: Vitacress Salads, Lower Link Farm, St Mary Bourne, SP11 6DB, Hampshire, UK
| | - Maria José Truco
- The Genome Centre, University of California, Davis, 95616, CA, USA
| | | | - Gail Taylor
- Department of Plant Sciences, University of California, Davis, 95616, CA, USA.
- School of Biological Sciences, University of Southampton, Hampshire, SO17 1BJ, UK.
| |
Collapse
|
9
|
Sandoya GV, Truco MJ, Bertier LD, Subbarao KV, Simko I, Hayes RJ, Michelmore RW. Genetics of Partial Resistance Against Verticillium dahliae Race 2 in Wild and Cultivated Lettuce. PHYTOPATHOLOGY 2021; 111:842-849. [PMID: 33141646 DOI: 10.1094/phyto-09-20-0396-r] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Lettuce (Lactuca sativa) is one of the most economically important vegetables in the United States, with approximately 50% of the domestic production concentrated in the Salinas Valley of California. Verticillium wilt, caused by races 1 and 2 of the fungal pathogen Verticillium dahliae, poses a major threat to lettuce production in this area. Although resistance governed by a single dominant gene against race 1 has previously been identified and is currently being incorporated into commercial cultivars, identification of resistance against race 2 has been challenging and no lines with complete resistance have been identified. In this study, we screened germplasm for resistance and investigated the genetics of partial resistance against race 2 using three mapping populations derived from crosses involving L. sativa × L. sativa and L. serriola × L. sativa. The inheritance of resistance in Lactuca species against race 2 is complex but a common quantitative trait locus (QTL) on linkage group 6, designated qVERT6.1 (quantitative Verticillium dahliae resistance on LG 6, first QTL), was detected in multiple populations. Additional race 2 resistance QTLs located in several linkage groups were detected in individual populations and environments. Because resistance in lettuce against race 2 is polygenic with a large genotype by environment interaction, breeding programs to incorporate these resistance genes should be aware of this complexity as they implement strategies to control race 2.
Collapse
Affiliation(s)
- Germán V Sandoya
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Maria José Truco
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Lien D Bertier
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| | - Krishna V Subbarao
- Plant Pathology Department, University of California, Davis, Salinas, CA 93905
| | - Ivan Simko
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture Agricultural Research Service, Salinas, CA 93905
| | - Ryan J Hayes
- Crop Improvement and Protection Research Unit, U.S. Department of Agriculture Agricultural Research Service, Salinas, CA 93905
| | - Richard W Michelmore
- Genome Center and Department of Plant Sciences, University of California, Davis, CA 95616
| |
Collapse
|
10
|
Parra L, Simko I, Michelmore RW. Identification of Major Quantitative Trait Loci Controlling Field Resistance to Downy Mildew in Cultivated Lettuce ( Lactuca sativa). PHYTOPATHOLOGY 2021; 111:541-547. [PMID: 33141649 DOI: 10.1094/phyto-08-20-0367-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lettuce downy mildew, caused by Bremia lactucae Regel, is the most economically important foliar disease of lettuce (Lactuca sativa L.). The deployment of resistant cultivars carrying dominant resistance genes (Dm genes) plays a crucial role in integrated downy mildew disease management; however, high variability in pathogen populations leads to the defeat of plant resistance conferred by Dm genes. Some lettuce cultivars exhibit field resistance that is only manifested in adult plants. Two populations of recombinant inbred lines (RILs), originating from crosses between the field resistant cultivars Grand Rapids and Iceberg and susceptible cultivars Salinas and PI491224, were evaluated for downy mildew resistance under field conditions. In all, 160 RILs from the Iceberg × PI491224 and 88 RILs from the Grand Rapids × Salinas populations were genotyped using genotyping by sequencing, which generated 906 and 746 high-quality markers, respectively, that were used for quantitative trait locus (QTL) analysis. We found a QTL in chromosome 4 that is present in both Grand Rapids × Salinas and Iceberg × PI491224 populations that has a major effect on field resistance. We also found two additional significant QTLs in chromosomes 2 and 5 in the Iceberg × PI491224 RIL population. Marker-assisted gene pyramiding of multiple Dm genes in combination with QTLs for field resistance provide the opportunity to develop cultivars with more durable resistance to B. lactucae.
Collapse
Affiliation(s)
- Lorena Parra
- Plant Pathology Graduate Group, University of California Davis, One Shields Ave., Davis, CA 95616
- The Genome Center and Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| | - Ivan Simko
- United States Department of Agriculture-Agricultural Research Service, U.S. Agricultural Research Station, Crop Improvement and Protection Research Unit, 1636 E. Alisal Street, Salinas, CA 93905
| | - Richard W Michelmore
- The Genome Center and Department of Plant Sciences, University of California Davis, One Shields Ave., Davis, CA 95616
| |
Collapse
|
11
|
Parra L, Nortman K, Sah A, Truco MJ, Ochoa O, Michelmore R. Identification and mapping of new genes for resistance to downy mildew in lettuce. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:519-528. [PMID: 33128618 PMCID: PMC7843477 DOI: 10.1007/s00122-020-03711-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE Eleven new major resistance genes for lettuce downy mildew were introgressed from wild Lactuca species and mapped to small regions in the lettuce genome. Downy mildew, caused by the oomycete pathogen Bremia lactucae Regel, is the most important disease of lettuce (Lactuca sativa L.). The most effective method to control this disease is by using resistant cultivars expressing dominant resistance genes (Dm genes). In order to counter changes in pathogen virulence, multiple resistance genes have been introgressed from wild species by repeated backcrosses to cultivated lettuce, resulting in numerous near-isogenic lines (NILs) only differing for small chromosome regions that are associated with resistance. Low-pass, whole genome sequencing of 11 NILs was used to identify the chromosome segments introgressed from the wild donor species. This located the candidate chromosomal positions for resistance genes as well as additional segments. F2 segregating populations derived from these NILs were used to genetically map the resistance genes to one or two loci in the lettuce reference genome. Precise knowledge of the location of new Dm genes provides the foundation for marker-assisted selection to breed cultivars with multiple genes for resistance to downy mildew.
Collapse
Affiliation(s)
- Lorena Parra
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Kazuko Nortman
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Anil Sah
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Maria Jose Truco
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Oswaldo Ochoa
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Richard Michelmore
- The Genome Center, Department of Plant Sciences, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
12
|
Seki K, Komatsu K, Tanaka K, Hiraga M, Kajiya-Kanegae H, Matsumura H, Uno Y. A CIN-like TCP transcription factor ( LsTCP4) having retrotransposon insertion associates with a shift from Salinas type to Empire type in crisphead lettuce ( Lactuca sativa L.). HORTICULTURE RESEARCH 2020; 7:15. [PMID: 32025318 PMCID: PMC6994696 DOI: 10.1038/s41438-020-0241-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 12/06/2019] [Accepted: 01/02/2020] [Indexed: 05/06/2023]
Abstract
To improve several agronomic traits in crisphead lettuce (Lactuca sativa L.) under high-temperature growth conditions, we investigated the correlation among those traits in multiple cultivars and performed genetic mapping of their causal genes. In a field cultivation test of Empire type (serrated leaf) and Salinas type (wavy leaf) cultivars, Empire type cultivars showed increased tipburn susceptibility and late bolting compared with Salinas type cultivars. We attempted genetic mapping of leaf shape and bolting time by ddRAD-seq using the F2 population derived from a cross between 'VI185' (Empire type) and 'ShinanoGreen' (Salinas type). These analyses suggested that both traits are controlled by a single locus in LG5. Genotyping of 51 commercial lettuce cultivars with a tightly linked marker (LG5_v8_252.743Mbp) at this locus showed an association between its genotype and the serrated leaf phenotype. By further fine mapping and transcriptome analysis, a gene encoding putative CIN-like TCP transcription factor was determined to be a candidate gene at this locus and was designated as LsTCP4. An insertion of retrotransposable element was found in the allele of 'VI185', and its transcript level in the leaves was lower than that in 'ShinanoGreen'. Because shapes of leaf epidermal cells in 'VI185' were similar to those in the TCP family mutant of Arabidopsis thaliana, the leaf shape phenotype was likely caused by reduced expression of LsTCP4. Furthermore, because it is known that the TCP family protein also controls flowering time via interaction with FT in A. thaliana, it was highly possible that LsTCP4 gave pleiotropic effects on both leaf shape and bolting time in lettuce.
Collapse
Affiliation(s)
- Kousuke Seki
- Nagano Vegetable and Ornamental Crops Experiment Station, Tokoo 1066-1, Souga, Shiojiri, Nagano, 399-6461 Japan
| | - Kenji Komatsu
- Department of Bioresource Development, Tokyo University of Agriculture, Funako, 1737, Atsugi, Kanagawa, 243-0034 Japan
| | - Keisuke Tanaka
- NODAI Genome Research Center, Tokyo University of Agriculture, Sakuragaoka 1-1-1, Setagaya, Tokyo, 156-8502 Japan
| | - Masahiro Hiraga
- Nagano Fruit Tree Experiment Station, Ogawara 492, Suzaka, Nagano, 382-0072 Japan
| | - Hiromi Kajiya-Kanegae
- Research Center for Agricultural Information Technology, NARO, Kannondai 3-1-1, Tsukuba, Ibaraki, 305-8517 Japan
| | - Hideo Matsumura
- Gene Research Center, Shinshu University, Tsuneta 3-15-1, Ueda, Nagano, 386-8567 Japan
| | - Yuichi Uno
- Plant Science Division, Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, Hyogo, 657-8501 Japan
| |
Collapse
|
13
|
Gonzalo MJ, Li YC, Chen KY, Gil D, Montoro T, Nájera I, Baixauli C, Granell A, Monforte AJ. Genetic Control of Reproductive Traits in Tomatoes Under High Temperature. FRONTIERS IN PLANT SCIENCE 2020; 11:326. [PMID: 32391023 PMCID: PMC7193983 DOI: 10.3389/fpls.2020.00326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 03/05/2020] [Indexed: 05/05/2023]
Abstract
Global climate change is increasing the range of temperatures that crop plants must face during their life cycle, giving negative effects to yields. In this changing scenario, understanding the genetic control of plant responses to a range of increasing temperature conditions is a prerequisite to developing cultivars with increased resilience. The current work reports the identification of Quantitative Trait Loci (QTL) involved in reproductive traits affected by temperature, such as the flower number (FLN) and fruit number (FRN) per truss and percentage of fruit set (FRS), stigma exsertion (SE), pollen viability (PV) and the incidence of the physiological disorder tipburn (TB). These traits were investigated in 168 Recombinant Inbred Lines (RIL) and 52 Introgression Lines (IL) derived from the cross between Solanum lycopersicum var. "MoneyMaker" and S. pimpinellifolium accession TO-937. Mapping populations were cultivated under increased temperature regimen conditions: T1 (25°C day/21°C night), T2 (30°C day/25°C night) and T3 (35°C day/30°C night). The increase in temperature drastically affected several reproductive traits, for example, FRS in Moneymaker was reduced between 75 and 87% at T2 and T3 when compared to T1, while several RILs showed a reduction of less than 50%. QTL analysis allowed the identification of genomic regions affecting these traits at different temperatures regimens. A total of 22 QTLs involved in reproductive traits at different temperatures were identified by multi-environmental QTL analysis and eight involved in pollen viability traits. Most QTLs were temperature specific, except QTLs on chromosomes 1, 2, 4, 6, and 12. Moreover, a QTL located in chromosome 7 was identified for low incidence of TP in the RIL population, which was confirmed in ILs with introgressions on chromosome 7. Furthermore, ILs with introgressions in chromosomes 1 and 12 had good FRN and FRS in T3 in replicated trials. These results represent a catalog of QTLs and pre-breeding materials that could be used as the starting point for deciphering the genetic control of the genetic response of reproductive traits at different temperatures and paving the road for developing new cultivars adapted to climate change.
Collapse
Affiliation(s)
- Maria José Gonzalo
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Yi-Cheng Li
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - Kai-Yi Chen
- Department of Agronomy, National Taiwan University, Taipei, Taiwan
| | - David Gil
- Enza Zaden Centro de Investigación S.L., Almería, Spain
| | | | | | - Carlos Baixauli
- Centro de Experiencias de Cajamar en Paiporta, Paiporta, Spain
| | - Antonio Granell
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
| | - Antonio José Monforte
- Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas, Valencia, Spain
- *Correspondence: Antonio José Monforte,
| |
Collapse
|
14
|
Patella A, Palumbo F, Galla G, Barcaccia G. The Molecular Determination of Hybridity and Homozygosity Estimates in Breeding Populations of Lettuce ( Lactuca sativa L.). Genes (Basel) 2019; 10:E916. [PMID: 31717592 PMCID: PMC6895879 DOI: 10.3390/genes10110916] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/05/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
The development of new varieties of horticultural crops benefits from the integration of conventional and molecular marker-assisted breeding schemes in order to combine phenotyping and genotyping information. In this study, a selected panel of 16 microsatellite markers were used in different steps of a breeding programme of lettuce (Lactuca sativa L., 2 n = 18). Molecular markers were first used to genotype 71 putative parental lines and to plan 89 controlled crosses designed to maximise recombination potentials. The resulting 871 progeny plants were then molecularly screened, and their marker allele profiles were compared with the profiles expected based on the parental lines. The average cross-pollination success rate was 68 ± 33%, so 602 F1 hybrids were completely identified. Unexpected genotypes were detected in 5% of cases, consistent with this species' spontaneous out-pollination rate. Finally, in a later step of the breeding programme, 47 different F3 progenies, selected by phenotyping for a number of morphological descriptors, were characterised in terms of their observed homozygosity and within-population genetic uniformity and stability. Ten of these populations had a median homozygosity above 90% and a median genetic similarity above 95% and are, therefore, particularly suitable for pre-commercial trials. In conclusion, this study shows the synergistic effects and advantages of conventional and molecular methods of selection applied in different steps of a breeding programme aimed at developing new varieties of lettuce.
Collapse
Affiliation(s)
| | - Fabio Palumbo
- Department of Agronomy, Food, Natural Resources, Animals and Environment, University of Padova, 35020 Legnaro PD, Italy; (A.P.); (G.G.); (G.B.)
| | | | | |
Collapse
|