1
|
Frenzke L, Röckel F, Wenke T, Schwander F, Grützmann K, Naumann J, Zakrzewski F, Heinekamp T, Maglione M, Wenke A, Kögler A, Zyprian E, Dahl A, Förster F, Töpfer R, Wanke S. Genotyping-by-sequencing-based high-resolution mapping reveals a single candidate gene for the grapevine veraison locus Ver1. PLANT PHYSIOLOGY 2024; 196:244-260. [PMID: 38743690 PMCID: PMC11376399 DOI: 10.1093/plphys/kiae272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/14/2024] [Accepted: 03/26/2024] [Indexed: 05/16/2024]
Abstract
Veraison marks the transition from berry growth to berry ripening and is a crucial phenological stage in grapevine (Vitis vinifera): the berries become soft and begin to accumulate sugars, aromatic substances, and, in red cultivars, anthocyanins for pigmentation, while the organic acid levels begin to decrease. These changes determine the potential quality of wine. However, rising global temperatures lead to earlier flowering and ripening, which strongly influence wine quality. Here, we combined genotyping-by-sequencing with a bioinformatics pipeline on ∼150 F1 genotypes derived from a cross between the early ripening variety "Calardis Musqué" and the late-ripening variety "Villard Blanc". Starting from 20,410 haplotype-based markers, we generated a high-density genetic map and performed a quantitative trait locus analysis based on phenotypic datasets evaluated over 20 yrs. Through locus-specific marker enrichment and recombinant screening of ∼1,000 additional genotypes, we refined the originally postulated 5-mb veraison locus, Ver1, on chromosome 16 to only 112 kb, allowing us to pinpoint the ethylene response factor VviERF027 (VCost.v3 gene ID: Vitvi16g00942, CRIBIv1 gene ID: VIT_16s0100g00400) as veraison candidate gene. Furthermore, the early veraison allele could be traced back to a clonal "Pinot" variant first mentioned in the seventeenth century. "Pinot Precoce Noir" passed this allele over "Madeleine Royale" to the maternal grandparent "Bacchus Weiss" and, ultimately, to the maternal parent "Calardis Musqué". Our findings are crucial for ripening time control, thereby improving wine quality, and for breeding grapevines adjusted to climate change scenarios that have a major impact on agro-ecosystems in altering crop plant phenology.
Collapse
Affiliation(s)
- Lena Frenzke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Franco Röckel
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | | | - Florian Schwander
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | | | - Julia Naumann
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | | | - Tom Heinekamp
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Maria Maglione
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Anja Wenke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Anja Kögler
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Eva Zyprian
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Andreas Dahl
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, 01307 Dresden, Germany
| | - Franz Förster
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
| | - Reinhard Töpfer
- Julius Kühn Institute (JKI), Institute for Grapevine Breeding Geilweilerhof, 76833 Siebeldingen, Germany
| | - Stefan Wanke
- Institute of Botany, Technische Universität Dresden, 01062 Dresden, Germany
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
- Botanik und Molekulare Evolutionsforschung, Senckenberg Forschungsinstitut und Naturmuseum, 60325 Frankfurt am Main, Germany
- Institut für Ökologie, Evolution und Diversität, Goethe-Universität, 60438 Frankfurt am Main, Germany
| |
Collapse
|
2
|
Brault C, Segura V, Roques M, Lamblin P, Bouckenooghe V, Pouzalgues N, Cunty C, Breil M, Frouin M, Garcin L, Camps L, Ducasse MA, Romieu C, Masson G, Julliard S, Flutre T, Le Cunff L. Enhancing grapevine breeding efficiency through genomic prediction and selection index. G3 (BETHESDA, MD.) 2024; 14:jkae038. [PMID: 38401528 PMCID: PMC10989862 DOI: 10.1093/g3journal/jkae038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/09/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Grapevine (Vitis vinifera) breeding reaches a critical point. New cultivars are released every year with resistance to powdery and downy mildews. However, the traditional process remains time-consuming, taking 20-25 years, and demands the evaluation of new traits to enhance grapevine adaptation to climate change. Until now, the selection process has relied on phenotypic data and a limited number of molecular markers for simple genetic traits such as resistance to pathogens, without a clearly defined ideotype, and was carried out on a large scale. To accelerate the breeding process and address these challenges, we investigated the use of genomic prediction, a methodology using molecular markers to predict genotypic values. In our study, we focused on 2 existing grapevine breeding programs: Rosé wine and Cognac production. In these programs, several families were created through crosses of emblematic and interspecific resistant varieties to powdery and downy mildews. Thirty traits were evaluated for each program, using 2 genomic prediction methods: Genomic Best Linear Unbiased Predictor and Least Absolute Shrinkage Selection Operator. The results revealed substantial variability in predictive abilities across traits, ranging from 0 to 0.9. These discrepancies could be attributed to factors such as trait heritability and trait characteristics. Moreover, we explored the potential of across-population genomic prediction by leveraging other grapevine populations as training sets. Integrating genomic prediction allowed us to identify superior individuals for each program, using multivariate selection index method. The ideotype for each breeding program was defined collaboratively with representatives from the wine-growing sector.
Collapse
Affiliation(s)
- Charlotte Brault
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Vincent Segura
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier 34398, France
| | - Maryline Roques
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Pauline Lamblin
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Virginie Bouckenooghe
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | | | - Constance Cunty
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Centre du Rosé, Vidauban 83550, France
| | - Matthieu Breil
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Marina Frouin
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Léa Garcin
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Louise Camps
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Marie-Agnès Ducasse
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| | - Charles Romieu
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier 34398, France
| | - Gilles Masson
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
- Centre du Rosé, Vidauban 83550, France
| | - Sébastien Julliard
- Conservatoire du Vignoble Charentais, Institut de Formation de Richemont, Cherves-Richemont 16370, France
| | - Timothée Flutre
- INRAE, CNRS, AgroParisTech, Université Paris-Saclay, GQE—Le Moulon, Gif-sur-Yvette 91190, France
| | - Loïc Le Cunff
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, Montpellier 34398, France
- Institut Français de la vigne et du vin, Pôle National Matériel Végétal, Le Grau du Roi 30240, France
| |
Collapse
|
3
|
Lin H, Ma L, Guo Q, Liu C, Hou Y, Liu Z, Zhao Y, Jiang C, Guo X, Guo Y. Berry texture QTL and candidate gene analysis in grape ( Vitis vinifera L.). HORTICULTURE RESEARCH 2023; 10:uhad226. [PMID: 38077492 PMCID: PMC10709548 DOI: 10.1093/hr/uhad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 10/26/2023] [Indexed: 10/16/2024]
Abstract
Berry texture is a noteworthy economic trait for grape; however, the genetic bases and the complex gene expression and regulatory mechanism for the diverse changes in berry texture are still poorly understood. In this study, the results suggest that it is difficult to obtain high-mesocarp firmness (MesF) and high-pericarp puncture hardness (PPH) grape cultivars with high pericarp brittleness (PerB). The high-density linkage map was constructed using whole-genome resequencing based on 151 F1 individuals originating from intraspecific hybridization between the firm-flesh cultivar 'Red Globe' and soft-flesh cultivar 'Muscat Hamburg'. The total length of the consensus map was 1613.17 cM, with a mean genetic distance between adjacent bin markers of 0.59 cM. Twenty-seven quantitative trait loci (QTLs) for berry MesF, PPH, and PerB were identified in linkage groups (LGs) 1, 3, 4, 6, 8, 9, 10, 11, 14, 16, and 17, including twelve QTLs that were firstly detected in LGs 6, 11, and 14. Fourteen promising candidate genes were identified from the stable QTL regions in LGs 10, 11, 14, and 17. In particular, VvWARK2 and VvWARK8 refer to chromosome 17 and are two promising candidate genes for MesF and PPH, as the VvWARK8 gene may increase pectin residue binding with WARK for high berry firmness maintenance and the allele for VvWARK2 carrying the 'CC' and 'GA' genotypes at Chr17:1836764 and Chr17:1836770 may be associated with non-hard texture grape cultivars. In addition, real-time quantitative polymerase chain reaction (RT-qPCR) verification revealed that the promising candidate transcription factor genes VvMYB4-like, VvERF113, VvWRKY31, VvWRKY1, and VvNAC83 may regulate cell wall metabolism candidate gene expression for grape berry texture changes.
Collapse
Affiliation(s)
- Hong Lin
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Li Ma
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Qiuyu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Cheng Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yangming Hou
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang, 110866, China
- Ministry of Education Key Laboratory of Protected Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
4
|
Srivastava R, Bazakos C, Tsachaki M, Žanko D, Kalantidis K, Tsiantis M, Laurent S. Genealogical Analyses of 3 Cultivated and 1 Wild Specimen of Vitis vinifera from Greece. Genome Biol Evol 2023; 15:evad226. [PMID: 38128270 PMCID: PMC10735296 DOI: 10.1093/gbe/evad226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Grapevine (Vitis vinifera) has been an important crop with considerable cultural and economic significance for over 2,500 years, and Greece has been an important entry point into Europe for lineages that were domesticated in Western Asia and the Caucasus. However, whole-genome-based investigation of the demographic history of Greek cultivars relative to other European lineages has only started recently. To understand how Greek cultivars relate to Eurasian domesticated and wild populations, we sequenced 3 iconic domesticated strains ('Xinomavro,' 'Agiorgitiko,' 'Mavrotragano') along with 1 wild accession (the vinetree of Pausanias-a historically important wild specimen) and analyzed their genomic diversity together with a large sample of publicly available domesticated and wild strains. We also reconstructed genealogies by leveraging the powerful tsinfer methodology which has not previously been used in this system. We show that cultivated strains from Greece differ genetically from other strains in Europe. Interestingly, all the 3 cultivated Greek strains clustered with cultivated and wild accessions from Transcaucasia, South Asia, and the Levant and are amongst the very few cultivated European strains belonging to this cluster. Furthermore, our results indicate that 'Xinomavro' shares close genealogical proximity with European elite cultivars such as 'Chardonnay,' 'Riesling,' and 'Gamay' but not 'Pinot.' Therefore, the proximity of 'Xinomavro' to Gouais/Heunisch Weiss is confirmed and the utility of ancestral recombination graph reconstruction approaches to study genealogical relationships in crops is highlighted.
Collapse
Affiliation(s)
- Rachita Srivastava
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Christos Bazakos
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki 57001, Greece
| | | | - Danijela Žanko
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Kriton Kalantidis
- Department of Biology, University of Crete, Heraklion 71500, Greece
- Institute of Molecular Biology and Biotechnology, FORTH, Heraklion 70013, Greece
| | - Miltos Tsiantis
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
| | - Stefan Laurent
- Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Cologne 50829, Germany
- BioNTech, Mainz, Germany
| |
Collapse
|
5
|
Zhang Y, Liu C, Liu X, Wang Z, Wang Y, Zhong GY, Li S, Dai Z, Liang Z, Fan P. Basic leucine zipper gene VvbZIP61 is expressed at a quantitative trait locus for high monoterpene content in grape berries. HORTICULTURE RESEARCH 2023; 10:uhad151. [PMID: 37701455 PMCID: PMC10493639 DOI: 10.1093/hr/uhad151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/26/2023] [Indexed: 09/14/2023]
Abstract
The widely appreciated muscat flavor of grapes and wine is mainly attributable to the monoterpenes that accumulate in ripe grape berries. To identify quantitative trait loci (QTL) for grape berry monoterpene content, an F1 mapping population was constructed by a cross between two grapevine genotypes, one with neutral aroma berries (cv. 'Beifeng') and the other with a pronounced muscat aroma (elite Vitis vinifera line '3-34'). A high-density genetic linkage map spanning 1563.7 cM was constructed using 3332 SNP markers that were assigned to 19 linkage groups. Monoterpenes were extracted from the berry of the F1 progeny, then identified and quantified by gas chromatography-mass spectrometry. Twelve stable QTLs associated with the amounts of 11 monoterpenes in berries were thus identified. In parallel, the levels of RNA in berries from 34 diverse cultivars were estimated by RNA sequencing and compared to the monoterpene content of the berries. The expression of five genes mapping to stable QTLs correlated well with the monoterpene content of berries. These genes, including the basic leucine zipper VvbZIP61 gene on chromosome 12, are therefore considered as potentially being involved in monoterpene metabolism. Overexpression of VvbZIP61 in Vitis amurensis callus through Agrobacterium-mediated transformation significantly increased the accumulation of several monoterpenes in the callus, including nerol, linalool, geranial, geraniol, β-myrcene, and D-limonene. It is hypothesized that VvbZIP61 expression acts to increase muscat flavor in grapes. These results advance our understanding of the genetic control of monoterpene biosynthesis in grapes and provide important information for the marker-assisted selection of aroma compounds in grape breeding.
Collapse
Affiliation(s)
- Yuyu Zhang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuixia Liu
- Centre for Special Economic Plant Studies, Guangxi Institute of Botany, Guangxi Zhuang Autonomous Region and Chinese Academy of Sciences, Guilin 541006, Guangxi, China
| | - Xianju Liu
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zemin Wang
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Gan-yuan Zhong
- Grape Genetics Research Unit, USDA-ARS, Geneva 14456, USA
| | - Shaohua Li
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, and CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
6
|
Kaya HB, Dilli Y, Oncu-Oner T, Ünal A. Exploring genetic diversity and population structure of a large grapevine ( Vitis vinifera L.) germplasm collection in Türkiye. FRONTIERS IN PLANT SCIENCE 2023; 14:1121811. [PMID: 37235025 PMCID: PMC10208073 DOI: 10.3389/fpls.2023.1121811] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/06/2023] [Indexed: 05/28/2023]
Abstract
Grapevine (Vitis Vinifera L.) has been one of the significant perennial crops in widespread temperate climate regions since its domestication around 6000 years ago. Grapevine and its products, particularly wine, table grapes, and raisins, have significant economic importance not only in grapevine-growing countries but also worldwide. Grapevine cultivation in Türkiye dates back to ancient times, and Anatolia is considered one of the main grapevine migration routes around the Mediterranean basin. Turkish germplasm collection, conserved at the Turkish Viticulture Research Institutes, includes cultivars and wild relatives mainly collected in Türkiye, breeding lines, rootstock varieties, and mutants, but also cultivars of international origin. Genotyping with high-throughput markers enables the investigation of genetic diversity, population structure, and linkage disequilibrium, which are crucial for applying genomic-assisted breeding. Here, we present the results of a high-throughput genotyping-by-sequencing (GBS) study of 341 genotypes from grapevine germplasm collection at Manisa Viticulture Research Institute. A total of 272,962 high-quality single nucleotide polymorphisms (SNP) markers on the nineteen chromosomes were identified using genotyping-by-sequencing (GBS) technology. The high-density coverage of SNPs resulted in an average of 14,366 markers per chromosome, an average polymorphism information content (PIC) value of 0.23 and an expected heterozygosity (He) value of 0.28 indicating the genetic diversity within 341 genotypes. LD decayed very fast when r2 was between 0.45 and 0.2 and became flat when r2 was 0.05. The average LD decay for the entire genome was 30 kb when r2 = 0.2. The PCA and structure analysis did not distinguish the grapevine genotypes based on different origins, highlighting the occurrence of gene flow and a high amount of admixture. Analysis of molecular variance (AMOVA) results indicated a high level of genetic differentiation within populations, while variation among populations was extremely low. This study provides comprehensive information on the genetic diversity and population structure of Turkish grapevine genotypes.
Collapse
Affiliation(s)
- Hilal Betul Kaya
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Yıldız Dilli
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| | - Tulay Oncu-Oner
- Department of Bioengineering, Manisa Celal Bayar University, Manisa, Türkiye
| | - Akay Ünal
- Republic of Türkiye Ministry of Agriculture and Forestry, Viticulture Research Institute, Manisa, Türkiye
| |
Collapse
|
7
|
Su K, Zhao W, Lin H, Jiang C, Zhao Y, Guo Y. Candidate gene discovery of Botrytis cinerea resistance in grapevine based on QTL mapping and RNA-seq. FRONTIERS IN PLANT SCIENCE 2023; 14:1127206. [PMID: 36824203 PMCID: PMC9941706 DOI: 10.3389/fpls.2023.1127206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Grape gray mold disease (Botrytis cinerea) is widespread during grape production especially in Vitis vinifera and causes enormous losses to the grape industry. In nature, the grapevine cultivar 'Beta ' (Vitis riparia × Vitis labrusca) showed high resistance to grape gray mold. Until now, the candidate genes and their mechanism of gray mold resistance were poorly understood. In this study, we firstly conducted quantitative trait locus (QTL) mapping for grape gray mold resistance based on two hybrid offspring populations that showed wide separation in gray mold resistance. Notably, two stable QTL related to gray mold resistance were detected and located on linkage groups LG2 and LG7. The phenotypic variance ranged from 6.86% to 13.70% on LG2 and 4.40% to 11.40% on LG7. Combined with RNA sequencing (RNA-seq), one structural gene VlEDR2 (Vitvi02g00982) and three transcription factors VlERF039 (Vitvi00g00859), VlNAC047 (Vitvi08g01843), and VlWRKY51 (Vitvi07g01847) that may be involved in VlEDR2 expression and grape gray mold resistance were selected. This discovery of candidate gray mold resistance genes will provide an important theoretical reference for grape gray mold resistance mechanisms, research, and gray mold-resistant grape cultivar breeding in the future.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- College of Horticulture Science and Technology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- Hebei Key Laboratory of Horticultural Germplasm Excavation and Innovative Utilization, Qinhuangdao, China
| | - Wei Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Changyue Jiang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yuhui Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, China
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology (Liaoning), Shenyang, China
| |
Collapse
|
8
|
Vervalle JA, Costantini L, Lorenzi S, Pindo M, Mora R, Bolognesi G, Marini M, Lashbrooke JG, Tobutt KR, Vivier MA, Roodt-Wilding R, Grando MS, Bellin D. A high-density integrated map for grapevine based on three mapping populations genotyped by the Vitis18K SNP chip. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:4371-4390. [PMID: 36271055 PMCID: PMC9734222 DOI: 10.1007/s00122-022-04225-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
We present a high-density integrated map for grapevine, allowing refinement and improved understanding of the grapevine genome, while demonstrating the applicability of the Vitis18K SNP chip for linkage mapping. The improvement of grapevine through biotechnology requires identification of the molecular bases of target traits by studying marker-trait associations. The Vitis18K SNP chip provides a useful genotyping tool for genome-wide marker analysis. Most linkage maps are based on single mapping populations, but an integrated map can increase marker density and show order conservation. Here we present an integrated map based on three mapping populations. The parents consist of the well-known wine cultivars 'Cabernet Sauvignon', 'Corvina' and 'Rhine Riesling', the lesser-known wine variety 'Deckrot', and a table grape selection, G1-7720. Three high-density population maps with an average inter-locus gap ranging from 0.74 to 0.99 cM were developed. These maps show high correlations (0.9965-0.9971) with the reference assembly, containing only 93 markers with large order discrepancies compared to expected physical positions, of which a third is consistent across multiple populations. Moreover, the genetic data aid the further refinement of the grapevine genome assembly, by anchoring 104 yet unanchored scaffolds. From these population maps, an integrated map was constructed which includes 6697 molecular markers and reduces the inter-locus gap distance to 0.60 cM, resulting in the densest integrated map for grapevine thus far. A small number of discrepancies, mainly of short distance, involve 88 markers that remain conflictual across maps. The integrated map shows similar collinearity to the reference assembly (0.9974) as the single maps. This high-density map increases our understanding of the grapevine genome and provides a useful tool for its further characterization and the dissection of complex traits.
Collapse
Affiliation(s)
- Jessica A Vervalle
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Laura Costantini
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Silvia Lorenzi
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Massimo Pindo
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
| | - Riccardo Mora
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Giada Bolognesi
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Martina Marini
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Justin G Lashbrooke
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Ken R Tobutt
- ARC Infruitec-Nietvoorbij, Stellenbosch, 7599, South Africa
| | - Melané A Vivier
- South African Grape and Wine Research Institute, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Rouvay Roodt-Wilding
- Department of Genetics, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - Maria Stella Grando
- Research and Innovation Centre, Fondazione Edmund Mach, San Michele all'Adige, Italy
- Center Agriculture Food and Environment (C3A), University of Trento, San Michele all'Adige, Italy
| | - Diana Bellin
- Department of Biotechnology, University of Verona, Verona, Italy.
| |
Collapse
|
9
|
Qu J, Chassaigne-Ricciulli AA, Fu F, Yu H, Dreher K, Nair SK, Gowda M, Beyene Y, Makumbi D, Dhliwayo T, Vicente FS, Olsen M, Prasanna BM, Li W, Zhang X. Low-Density Reference Fingerprinting SNP Dataset of CIMMYT Maize Lines for Quality Control and Genetic Diversity Analyses. PLANTS (BASEL, SWITZERLAND) 2022; 11:3092. [PMID: 36432819 PMCID: PMC9697014 DOI: 10.3390/plants11223092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 10/31/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
CIMMYT maize lines (CMLs), which represent the tropical maize germplasm, are freely available worldwide. All currently released 615 CMLs and fourteen temperate maize inbred lines were genotyped with 180 kompetitive allele-specific PCR single nucleotide polymorphisms to develop a reference fingerprinting SNP dataset that can be used to perform quality control (QC) and genetic diversity analyses. The QC analysis identified 25 CMLs with purity, identity, or mislabeling issues. Further field observation, purification, and re-genotyping of these CMLs are required. The reference fingerprinting SNP dataset was developed for all of the currently released CMLs with 152 high-quality SNPs. The results of principal component analysis and average genetic distances between subgroups showed a clear genetic divergence between temperate and tropical maize, whereas the three tropical subgroups partially overlapped with one another. More than 99% of the pairs of CMLs had genetic distances greater than 0.30, showing their high genetic diversity, and most CMLs are distantly related. The heterotic patterns, estimated with the molecular markers, are consistent with those estimated using pedigree information in two major maize breeding programs at CIMMYT. These research findings are helpful for ensuring the regeneration and distribution of the true CMLs, via QC analysis, and for facilitating the effective utilization of the CMLs, globally.
Collapse
Affiliation(s)
- Jingtao Qu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | | | - Fengling Fu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Haoqiang Yu
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Kate Dreher
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Sudha K. Nair
- Asia Regional Maize Program, International Maize and Wheat Improvement Center (CIMMYT), ICRISAT Campus, Patancheru, Hyderabad 502324, Telangana, India
| | - Manje Gowda
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Yoseph Beyene
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Dan Makumbi
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Thanda Dhliwayo
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Felix San Vicente
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| | - Michael Olsen
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Boddupalli M. Prasanna
- International Maize and Wheat Improvement Center (CIMMYT), Village Market, P.O. Box 1041, Nairobi 00621, Kenya
| | - Wanchen Li
- Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Xuecai Zhang
- International Maize and Wheat Improvement Center (CIMMYT), El Batan, Texcoco 56237, Mexico
| |
Collapse
|
10
|
Brault C, Lazerges J, Doligez A, Thomas M, Ecarnot M, Roumet P, Bertrand Y, Berger G, Pons T, François P, Le Cunff L, This P, Segura V. Interest of phenomic prediction as an alternative to genomic prediction in grapevine. PLANT METHODS 2022; 18:108. [PMID: 36064570 PMCID: PMC9442960 DOI: 10.1186/s13007-022-00940-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability. RESULTS For the first time, we showed that the similarity between spectra and genomic relationship matrices was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, while using spectra collected on wood or leaves from one year or another had less impact. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits between predictive ability of genomic and phenomic predictions. CONCLUSION NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment interactions and confirms that phenomic prediction can rely only on genetics.
Collapse
Affiliation(s)
- Charlotte Brault
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Juliette Lazerges
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Agnès Doligez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Miguel Thomas
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Martin Ecarnot
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Yves Bertrand
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Gilles Berger
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Thierry Pons
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Pierre François
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Loïc Le Cunff
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Patrice This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France.
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France.
| |
Collapse
|
11
|
Hu G, Dong Y, Zhang Z, Fan X, Ren F. Effect of In Vitro Culture of Long Shoot Tip on Variant Structure and Titer of Grapevine Viruses. PLANTS 2022; 11:plants11151907. [PMID: 35893611 PMCID: PMC9330417 DOI: 10.3390/plants11151907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022]
Abstract
Shoot tip culture is a very effective approach for studying plant viruses. In this study, we evaluated the numbers, diversity, and titer of grapevine viruses in in vitro grapevine plants after long shoot tip culture. Six virus-infected grapevine cultivars (Cabernet Franc, Cabernet Gernischt, Cabernet Sauvignon, Wink, Victoria, and Merlot) collected from six regions of China were used as the research materials. Approximately 1.5 cm long shoot tips were used for meristem culture. The average survival rate of the six grapevine cultivars was 45.7%. Merlot collected from Beijing showed the highest survival rate (80.0%). Regeneration was not achieved in Cabernet Gernischt collected from Liaoning province and Cabernet Sauvignon from Tianjin due to bacterial and fungal contamination. Virus detection conducted in the surviving regenerated plants showed that the virus infection status, including the viral numbers and the species present in plants grown in vitro, was the same as that in corresponding in vivo plants. Moreover, the analysis of sequence diversity and the mutation frequency in grapevine viruses in vitro indicated that the structure of grapevine viruses was stable in long shoot tip culture after four sub-culture passages. Further, the relative viral titer of in vitro grapevine plants was much higher than that of in vivo plants. These results aid in the investigation of viruses in woody plants.
Collapse
|
12
|
Flutre T, Le Cunff L, Fodor A, Launay A, Romieu C, Berger G, Bertrand Y, Terrier N, Beccavin I, Bouckenooghe V, Roques M, Pinasseau L, Verbaere A, Sommerer N, Cheynier V, Bacilieri R, Boursiquot JM, Lacombe T, Laucou V, This P, Péros JP, Doligez A. A genome-wide association and prediction study in grapevine deciphers the genetic architecture of multiple traits and identifies genes under many new QTLs. G3 (BETHESDA, MD.) 2022; 12:6575896. [PMID: 35485948 PMCID: PMC9258538 DOI: 10.1093/g3journal/jkac103] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/21/2022] [Indexed: 12/11/2022]
Abstract
To cope with the challenges facing agriculture, speeding-up breeding programs is a worthy endeavor, especially for perennial species such as grapevine, but requires understanding the genetic architecture of target traits. To go beyond the mapping of quantitative trait loci in bi-parental crosses, we exploited a diversity panel of 279 Vitis vinifera L. cultivars planted in 5 blocks in the vineyard. This panel was phenotyped over several years for 127 traits including yield components, organic acids, aroma precursors, polyphenols, and a water stress indicator. The panel was genotyped for 63k single nucleotide polymorphisms by combining an 18K microarray and genotyping-by-sequencing. The experimental design allowed to reliably assess the genotypic values for most traits. Marker densification via genotyping-by-sequencing markedly increased the proportion of genetic variance explained by single nucleotide polymorphisms, and 2 multi-single nucleotide polymorphism models identified quantitative trait loci not found by a single nucleotide polymorphism-by-single nucleotide polymorphism model. Overall, 489 reliable quantitative trait loci were detected for 41% more response variables than by a single nucleotide polymorphism-by-single nucleotide polymorphism model with microarray-only single nucleotide polymorphisms, many new ones compared with the results from bi-parental crosses. A prediction accuracy higher than 0.42 was obtained for 50% of the response variables. Our overall approach as well as quantitative trait locus and prediction results provide insights into the genetic architecture of target traits. New candidate genes and the application into breeding are discussed.
Collapse
Affiliation(s)
- Timothée Flutre
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France.,Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE-Le Moulon, 91190 Gif-sur-Yvette, France
| | - Loïc Le Cunff
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Agota Fodor
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Amandine Launay
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Charles Romieu
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Gilles Berger
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Yves Bertrand
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Nancy Terrier
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France
| | | | | | - Maryline Roques
- UMT Géno-Vigne, 34398 Montpellier, France.,IFV, 30240 Le Grau-du-Roi, France
| | - Lucie Pinasseau
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Arnaud Verbaere
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | - Nicolas Sommerer
- SPO, Univ Montpellier, INRAE, Institut Agro, 34060 Montpellier, France
| | | | - Roberto Bacilieri
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Michel Boursiquot
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Thierry Lacombe
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Valérie Laucou
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Patrice This
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Jean-Pierre Péros
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| | - Agnès Doligez
- AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, 34398 Montpellier, France.,UMT Géno-Vigne, 34398 Montpellier, France
| |
Collapse
|
13
|
Brault C, Segura V, This P, Le Cunff L, Flutre T, François P, Pons T, Péros JP, Doligez A. Across-population genomic prediction in grapevine opens up promising prospects for breeding. HORTICULTURE RESEARCH 2022; 9:uhac041. [PMID: 35184162 PMCID: PMC9070645 DOI: 10.1093/hr/uhac041] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 02/01/2022] [Indexed: 05/15/2023]
Abstract
Crop breeding involves two selection steps: choosing progenitors and selecting individuals within progenies. Genomic prediction, based on genome-wide marker estimation of genetic values, could facilitate these steps. However, its potential usefulness in grapevine (Vitis vinifera L.) has only been evaluated in non-breeding contexts mainly through cross-validation within a single population. We tested across-population genomic prediction in a more realistic breeding configuration, from a diversity panel to ten bi-parental crosses connected within a half-diallel mating design. Prediction quality was evaluated over 15 traits of interest (related to yield, berry composition, phenology and vigour), for both the average genetic value of each cross (cross mean) and the genetic values of individuals within each cross (individual values). Genomic prediction in these conditions was found useful: for cross mean, average per-trait predictive ability was 0.6, while per-cross predictive ability was halved on average, but reached a maximum of 0.7. Mean predictive ability for individual values within crosses was 0.26, about half the within-half-diallel value taken as a reference. For some traits and/or crosses, these across-population predictive ability values are promising for implementing genomic selection in grapevine breeding. This study also provided key insights on variables affecting predictive ability. Per-cross predictive ability was well predicted by genetic distance between parents and when this predictive ability was below 0.6, it was improved by training set optimization. For individual values, predictive ability mostly depended on trait-related variables (magnitude of the cross effect and heritability). These results will greatly help designing grapevine breeding programs assisted by genomic prediction.
Collapse
Affiliation(s)
- Charlotte Brault
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- Institut Français de la Vigne et du Vin, F-34398 Montpellier, France
| | - Vincent Segura
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Patrice This
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Loïc Le Cunff
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- Institut Français de la Vigne et du Vin, F-34398 Montpellier, France
| | - Timothée Flutre
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE – Le Moulon, 91190, Gif-sur-Yvette, France
| | - Pierre François
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Thierry Pons
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Jean-Pierre Péros
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Agnès Doligez
- UMT Geno-Vigne®, IFV-INRAE-Institut Agro, F-34398 Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| |
Collapse
|
14
|
Cui Y, Fan B, Xu X, Sheng S, Xu Y, Wang X. A High-Density Genetic Map Enables Genome Synteny and QTL Mapping of Vegetative Growth and Leaf Traits in Gardenia. Front Genet 2022; 12:802738. [PMID: 35132310 PMCID: PMC8817757 DOI: 10.3389/fgene.2021.802738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gardenia is a traditional medicinal horticultural plant in China, but its molecular genetic research has been largely hysteretic. Here, we constructed an F1 population with 200 true hybrid individuals. Using the genotyping-by-sequencing method, a high-density sex-average genetic map was generated that contained 4,249 SNPs with a total length of 1956.28 cM and an average genetic distance of 0.46 cM. We developed 17 SNP-based Kompetitive Allele-Specific PCR markers and found that 15 SNPs were successfully genotyped, of which 13 single-nucleotide polymorphism genotypings of 96 F1 individuals showed genotypes consistent with GBS-mined genotypes. A genomic collinearity analysis between gardenia and the Rubiaceae species Coffea arabica, Coffea canephora and Ophiorrhiza pumila showed the relativity strong conservation of LG11 with NC_039,919.1, HG974438.1 and Bliw01000011.1, respectively. Lastly, a quantitative trait loci analysis at three phenotyping time points (2019, 2020, and 2021) yielded 18 QTLs for growth-related traits and 31 QTLs for leaf-related traits, of which qBSBN7-1, qCD8 and qLNP2-1 could be repeatably detected. Five QTL regions (qCD8 and qSBD8, qBSBN7 and qSI7, qCD4-1 and qLLLS4, qLNP10 and qSLWS10-2, qSBD10 and qLLLS10) with potential pleiotropic effects were also observed. This study provides novel insight into molecular genetic research and could be helpful for further gene cloning and marker-assisted selection for early growth and development traits in the gardenia.
Collapse
Affiliation(s)
- Yang Cui
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Baolian Fan
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Xu Xu
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Shasha Sheng
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, China
| | - Xiaoyun Wang
- Research Center for Traditional Chinese Medicine Resources and Ethnic Minority Medicine, Jiangxi University of Chinese Medicine, Nanchang, China
| |
Collapse
|
15
|
Medeiros AC, Caixeta ET, Oliveira ACBD, Sousa TV, Stock VDM, Cruz CD, Zambolim L, Pereira AA. Combining Ability and Molecular Marker Approach Identified Genetic Resources to Improve Agronomic Performance in Coffea arabica Breeding. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.705278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Plant breeding aims to develop cultivars with good agronomic traits through gene recombination and elite genotype selection. To support Coffea arabica breeding programs and assist parent selection, molecular characterization, genetic diversity (GD) analyses, and circulating diallel studies were strategically integrated to develop new cultivars. Molecular markers were used to assess the GD of 76 candidate parents and verify the crossing of potential F1 hybrids. Based on the complementary agronomic traits and genetic distance, eight elite parents were selected for circulating diallel analysis. The parents and 12 hybrids were evaluated based on 10 morpho-agronomic traits. For each trait, the effects of general and specific combining abilities, as well as the averages of the parents, hybrids, and predicted hybrids, were estimated. Crosses that maximize the genetic gains for the main agronomic traits of C. arabica were identified. Joint analysis of phenotypic and molecular data was used to estimate the correlation between molecular GD, phenotypic diversity (PD), phenotypic mean, and combining ability. The selection of parents that optimize the allele combination for the important traits of C. arabica is discussed in detail.
Collapse
|
16
|
Su K, Guo Y, Zhong W, Lin H, Liu Z, Li K, Li Y, Guo X. High-Density Genetic Linkage Map Construction and White Rot Resistance Quantitative Trait Loci Mapping for Genus Vitis Based on Restriction Site-Associated DNA Sequencing. PHYTOPATHOLOGY 2021; 111:659-670. [PMID: 33635092 DOI: 10.1094/phyto-12-19-0480-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Grape white rot (Coniothyrium diplodiella) is a major fungal disease affecting grape yield and quality. Quantitative trait locus (QTL) analysis is an important method for studying important horticultural traits of grapevine. This study was conducted to construct a high-density map and conduct QTL mapping for grapevine white rot resistance. A mapping population with 177 genotypes was developed from interspecific hybridization of a white rot-resistant cultivar (Vitis vinifera × V. labrusca 'Zhuosexiang') and white rot-susceptible cultivar (V. vinifera 'Victoria'). Single-nucleotide polymorphism (SNP) markers were developed by restriction site-associated DNA sequencing. The female, male, and integrated maps contained 2,501, 4,110, and 6,249 SNP markers with average genetic distances of adjacent markers of 1.25, 0.77, and 0.50 cM, respectively. QTL mapping was conducted based on white rot resistance identification of 177 individuals in July and August of 2017 and 2018. Notably, one stable QTL related to white rot resistance was detected and located on linkage group LG14. The phenotypic variance ranged from 12.93 to 13.43%. An SNP marker (chr14_3929380), which cosegregated with white rot resistance, was discovered and shows potential for use in marker-assisted selection to generate new grapevine cultivars with resistance to white rot.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| | - Weihao Zhong
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Hong Lin
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong 271018, People's Republic of China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
- National and Local Joint Engineering Research Center of Northern Horticultural Facilities Design and Application Technology, Shenyang 110866, People's Republic of China
| |
Collapse
|
17
|
Gomès É, Maillot P, Duchêne É. Molecular Tools for Adapting Viticulture to Climate Change. FRONTIERS IN PLANT SCIENCE 2021; 12:633846. [PMID: 33643361 PMCID: PMC7902699 DOI: 10.3389/fpls.2021.633846] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/19/2021] [Indexed: 05/04/2023]
Abstract
Adaptation of viticulture to climate change includes exploration of new geographical areas, new training systems, new management practices, or new varieties, both for rootstocks and scions. Molecular tools can be defined as molecular approaches used to study DNAs, RNAs, and proteins in all living organisms. We present here the current knowledge about molecular tools and their potential usefulness in three aspects of grapevine adaptation to the ongoing climate change. (i) Molecular tools for understanding grapevine response to environmental stresses. A fine description of the regulation of gene expression is a powerful tool to understand the physiological mechanisms set up by the grapevine to respond to abiotic stress such as high temperatures or drought. The current knowledge on gene expression is continuously evolving with increasing evidence of the role of alternative splicing, small RNAs, long non-coding RNAs, DNA methylation, or chromatin activity. (ii) Genetics and genomics of grapevine stress tolerance. The description of the grapevine genome is more and more precise. The genetic variations among genotypes are now revealed with new technologies with the sequencing of very long DNA molecules. High throughput technologies for DNA sequencing also allow now the genetic characterization at the same time of hundreds of genotypes for thousands of points in the genome, which provides unprecedented datasets for genotype-phenotype associations studies. We review the current knowledge on the genetic determinism of traits for the adaptation to climate change. We focus on quantitative trait loci and molecular markers available for developmental stages, tolerance to water stress/water use efficiency, sugar content, acidity, and secondary metabolism of the berries. (iii) Controlling the genome and its expression to allow breeding of better-adapted genotypes. High-density DNA genotyping can be used to select genotypes with specific interesting alleles but genomic selection is also a powerful method able to take into account the genetic information along the whole genome to predict a phenotype. Modern technologies are also able to generate mutations that are possibly interesting for generating new phenotypes but the most promising one is the direct editing of the genome at a precise location.
Collapse
Affiliation(s)
- Éric Gomès
- EGFV, University of Bordeaux – Bordeaux Sciences-Agro – INRAE, Villenave d’Ornon, France
| | - Pascale Maillot
- SVQV, INRAE – University of Strasbourg, Colmar, France
- University of Haute Alsace, Mulhouse, France
| | - Éric Duchêne
- SVQV, INRAE – University of Strasbourg, Colmar, France
| |
Collapse
|
18
|
Wang H, Yan A, Sun L, Zhang G, Wang X, Ren J, Xu H. Novel stable QTLs identification for berry quality traits based on high-density genetic linkage map construction in table grape. BMC PLANT BIOLOGY 2020; 20:411. [PMID: 32883214 PMCID: PMC7470616 DOI: 10.1186/s12870-020-02630-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 08/30/2020] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aroma, berry firmness and berry shape are three main quality traits in table grape production, and also the important target traits in grapevine breeding. However, the information about their genetic mechanisms is limited, which results in low accuracy and efficiency of quality breeding in grapevine. Mapping and isolation of quantitative trait locus (QTLs) based on the construction of genetic linkage map is a powerful approach to decipher the genetic determinants of complex quantitative traits. RESULTS In the present work, a final integrated map consisting of 3411 SLAF markers on 19 linkage groups (LGs) with an average distance of 0.98 cM between adjacent markers was generated using the specific length amplified fragment sequencing (SLAF-seq) technique. A total of 9 significant stable QTLs for Muscat flavor, berry firmness and berry shape were identified on two linkage groups among the hybrids analyzed over three consecutive years from 2016 to 2018. Notably, new stable QTLs for berry firmness and berry shape were found on LG 8 respectively for the first time. Based on biological function and expression profiles of candidate genes in the major QTL regions, 3 genes (VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350) related to berry firmness and 3 genes (VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200) linked to berry shape were highlighted. Overexpression of VIT_08s0032g01110 in transgenic Arabidopsis plants caused the change of pod shape. CONCLUSIONS A new high-density genetic map with total 3411 markers was constructed with SLAF-seq technique, and thus enabled the detection of narrow interval QTLs for relevant traits in grapevine. VIT_08s0007g00440, VIT_08s0040g02740 and VIT_08s0040g02350 were found to be related to berry firmness, while VIT_08s0032g01110, VIT_08s0032g01150 and VIT_08s0105g00200 were linked to berry shape.
Collapse
Affiliation(s)
- Huiling Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture and Rural Affairs, Beijing, 100093, P.R. China
| | - Ailing Yan
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
- Beijing Engineering Research Center for Deciduous Fruit Trees, Beijing, 100093, P.R. China
| | - Lei Sun
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Guojun Zhang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Xiaoyue Wang
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Jiancheng Ren
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China
| | - Haiying Xu
- Beijing Academy of Forestry and Pomology Sciences, Beijing, 100093, China.
| |
Collapse
|
19
|
Eduardo I, Alegre S, Alexiou KG, Arús P. Resynthesis: Marker-Based Partial Reconstruction of Elite Genotypes in Clonally-Reproducing Plant Species. FRONTIERS IN PLANT SCIENCE 2020; 11:1205. [PMID: 32849747 PMCID: PMC7427350 DOI: 10.3389/fpls.2020.01205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/24/2020] [Indexed: 06/02/2023]
Abstract
We propose a method for marker-based selection of cultivars of clonally-reproducing plant species which keeps the basic genetic architecture of a top-performing cultivar (usually a partly heterozygous genotype), with the addition of some agronomically relevant differences (such as production time, product appearance or quality), providing added value to the product or cultivation process. The method is based on selecting a) two complementary nearly-inbred lines from successive selfing generations (ideally only F2 and F3) of large size, that may generate individuals with most of their genome identical to the original cultivar but being homozygous for either of the two component haplotypes in the rest, and b) individuals with such characteristics already occurring in the F2. Option a) allows for introgressing genes from other individuals in one or both of these nearly-inbred lines. Peach, a woody-perennial, clonally-reproduced species, was chosen as a model for a proof of concept of the Resynthesis process due to its biological characteristics: self-compatibility, compact and genetically well-known genome, low recombination rates and relatively short intergeneration time (3-4 years). From 416 F2 seedlings from cultivar Sweet Dream (SD), we obtained seven individuals with 76-94% identity with SD, and selected five pairs of complementary lines with average homozygosity of the two parents ≥0.70 such that crossing would produce some individuals highly similar to SD. The application of this scheme to other species with more complex genomes or biological features, including its generalization to F1 hybrids, is discussed.
Collapse
Affiliation(s)
- Iban Eduardo
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Simó Alegre
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Parc Científic i Tecnològic Agroalimentari de Lleida, Lleida, Spain
| | - Konstantinos G. Alexiou
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| | - Pere Arús
- IRTA (Institut de Recerca i Tecnologia Agroalimentàries), Barcelona, Spain
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Campus UAB, Barcelona, Spain
| |
Collapse
|
20
|
Su K, Xing H, Guo Y, Zhao F, Liu Z, Li K, Li Y, Guo X. High-density genetic linkage map construction and cane cold hardiness QTL mapping for Vitis based on restriction site-associated DNA sequencing. BMC Genomics 2020; 21:419. [PMID: 32571215 PMCID: PMC7310074 DOI: 10.1186/s12864-020-06836-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 06/16/2020] [Indexed: 11/28/2022] Open
Abstract
Background Cold hardiness is an important agronomic trait and can significantly affect grape production and quality. Until now, there are no reports focusing on cold hardiness quantitative trait loci (QTL) mapping. In this study, grapevine interspecific hybridisation was carried out with the maternal parent ‘Cabernet sauvignon’ and paternal parent ‘Zuoyouhong’. A total of 181 hybrid offspring and their parents were used as samples for restriction-site associated DNA sequencing (RAD). Grapevine cane phloem and xylem cold hardiness of the experimental material was detected using the low-temperature exotherm method in 2016, 2017 and 2018. QTL mapping was then conducted based on the integrated map. Results We constructed a high-density genetic linkage map with 16,076, 11,643, and 25,917 single-nucleotide polymorphism (SNP) markers anchored in the maternal, paternal, and integrated maps, respectively. The average genetic distances of adjacent markers in the maps were 0.65 cM, 0.77 cM, and 0.41 cM, respectively. Colinearity analysis was conducted by comparison with the grape reference genome and showed good performance. Six QTLs were identified based on the phenotypic data of 3 years and they were mapped on linkage group (LG) 2, LG3, and LG15. Based on QTL results, candidate genes which may be involved in grapevine cold hardiness were selected. Conclusions High-density linkage maps can facilitate grapevine fine QTL mapping, genome comparison, and sequence assembly. The cold hardiness QTL mapping and candidate gene discovery performed in this study provide an important reference for molecular-assisted selection in grapevine cold hardiness breeding.
Collapse
Affiliation(s)
- Kai Su
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Huiyang Xing
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yinshan Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| | - Fangyuan Zhao
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Zhendong Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Kun Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China
| | - Yuanyuan Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Shandong, P.R. China
| | - Xiuwu Guo
- College of Horticulture, Shenyang Agricultural University, Shenyang, P.R. China. .,National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology, Shenyang, P.R. China.
| |
Collapse
|
21
|
Geleta M, Gustafsson C, Glaubitz JC, Ortiz R. High-Density Genetic Linkage Mapping of Lepidium Based on Genotyping-by-Sequencing SNPs and Segregating Contig Tag Haplotypes. FRONTIERS IN PLANT SCIENCE 2020; 11:448. [PMID: 32425961 PMCID: PMC7204607 DOI: 10.3389/fpls.2020.00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/26/2020] [Indexed: 05/09/2023]
Abstract
Lepidium campestre has been targeted for domestication as future oilseed and catch crop. Three hundred eighty plants comprising genotypes of L. campestre, Lepidium heterophyllum, and their interspecific F2 mapping population were genotyped using genotyping by sequencing (GBS), and the generated polymorphic markers were used for the construction of high-density genetic linkage map. TASSEL-GBS, a reference genome-based pipeline, was used for this analysis using a draft L. campestre whole genome sequence. The analysis resulted in 120,438 biallelic single-nucleotide polymorphisms (SNPs) with minor allele frequency (MAF) above 0.01. The construction of genetic linkage map was conducted using MSTMap based on phased SNPs segregating in 1:2:1 ratio for the F2 individuals, followed by genetic mapping of segregating contig tag haplotypes as dominant markers against the linkage map. The final linkage map consisted of eight linkage groups (LGs) containing 2,330 SNP markers and spanned 881 Kosambi cM. Contigs (10,302) were genetically mapped to the eight LGs, which were assembled into pseudomolecules that covered a total of ∼120.6 Mbp. The final size of the pseudomolecules ranged from 9.4 Mbp (LG-4) to 20.4 Mpb (LG-7). The following major correspondence between the eight Lepidium LGs (LG-1 to LG-8) and the five Arabidopsis thaliana (At) chromosomes (Atx-1-Atx-5) was revealed through comparative genomics analysis: LG-1&2_Atx-1, LG-3_Atx-2&3, LG-4_Atx-2, LG-5_Atx-2&Atx-3, LG-6_Atx-4&5, LG-7_Atx-4, and LG-8_Atx-5. This analysis revealed that at least 66% of the sequences of the LGs showed high collinearity with At chromosomes. The sequence identity between the corresponding regions of the LGs and At chromosomes ranged from 80.6% (LG-6) to 86.4% (LG-8) with overall mean of 82.9%. The map positions on Lepidium LGs of the homologs of 24 genes that regulate various traits in A. thaliana were also identified. The eight LGs revealed in this study confirm the previously reported (1) haploid chromosome number of eight in L. campestre and L. heterophyllum and (2) chromosomal fusion, translocation, and inversion events during the evolution of n = 8 karyotype in ancestral species shared by Lepidium and Arabidopsis to n = 5 karyotype in A. thaliana. This study generated highly useful genomic tools and resources for Lepidium that can be used to accelerate its domestication.
Collapse
Affiliation(s)
- Mulatu Geleta
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Cecilia Gustafsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
22
|
Construction of a High-Density Genetic Map and Mapping of Firmness in Grapes ( Vitis vinifera L.) Based on Whole-Genome Resequencing. Int J Mol Sci 2020; 21:ijms21030797. [PMID: 31991832 PMCID: PMC7037167 DOI: 10.3390/ijms21030797] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 01/22/2020] [Accepted: 01/22/2020] [Indexed: 12/14/2022] Open
Abstract
Berry firmness is one of the most important quality traits in table grapes. The underlying molecular and genetic mechanisms for berry firmness remain unclear. We constructed a high-density genetic map based on whole-genome resequencing to identify loci associated with berry firmness. The genetic map had 19 linkage groups, including 1662 bin markers (26,039 SNPs), covering 1463.38 cM, and the average inter-marker distance was 0.88 cM. An analysis of berry firmness in the F1 population and both parents for three consecutive years revealed continuous variability in F1, with a distribution close to the normal distribution. Based on the genetic map and phenotypic data, three potentially significant quantitative trait loci (QTLs) related to berry firmness were identified by composite interval mapping. The contribution rate of each QTL ranged from 21.5% to 28.6%. We identified four candidate genes associated with grape firmness, which are related to endoglucanase, abscisic acid (ABA), and transcription factors. A qRT-PCR analysis revealed that the expression of abscisic-aldehyde oxidase-like gene (VIT_18s0041g02410) and endoglucanase 3 gene (VIT_18s0089g00210) in Muscat Hamburg was higher than in Crimson Seedless at the veraison stage, which was consistent with that of parent berry firmness. These results confirmed that VIT_18s0041g02410 and VIT_18s0089g00210 are candidate genes associated with berry firmness.
Collapse
|
23
|
Use of DNA Markers for Grape Phylloxera Population and Evolutionary Genetics: From RAPDs to SSRs and Beyond. INSECTS 2019; 10:insects10100317. [PMID: 31557951 PMCID: PMC6835732 DOI: 10.3390/insects10100317] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/24/2019] [Accepted: 09/24/2019] [Indexed: 11/20/2022]
Abstract
Grape phylloxera (Daktulosphaira vitifoliae Fitch) is a major pest of cultivated grapevines (Vitis spp.), occurring in virtually all viticultural regions around the world. Different grape phylloxera strains can be found at varying levels on leaves and roots on both own-rooted plants and in plants grafted onto partially resistant rootstocks. Considering its relevance for the adequate management of the pest in infested vineyards, the analysis of its genetic diversity has received considerable attention from the scientific community in the last decades. Here, we review 25 years of DNA-based molecular markers applied to the analysis of the genetic structure and the reproductive mode of grape phylloxera in its native range and in different introduced regions. The use given to RAPD, AFLP, mtDNA sequencing and microsatellite (SSR) genetic markers for the analysis of grape phylloxera diversity is discussed, and an overview of the main findings obtained after their application to different populations collected in diverse regions all around the world is shown. Lastly, we explore how recent advancements in molecular biology and in modern high throughput genotyping technologies may be applied to better understand grape phylloxera natural diversity at a molecular level.
Collapse
|