1
|
Joshi P, Dhillon GS, Gao Y, Kaur A, Wheeler J, Chen X, Krause W, Krause MR, Chen J. Identification and validation of two quantitative trait loci for dwarf bunt in the resistant cultivar 'UI Silver'. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:18. [PMID: 39775923 PMCID: PMC11706883 DOI: 10.1007/s00122-024-04795-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE Two dwarf bunt resistance QTLs were mapped to chromosome 6D, and KASP markers associated with the loci were developed and validated in a panel of regionally adapted winter wheats. UI Silver is an invaluable adapted resistant cultivar possessing the two identified QTL potentially associated with genes Bt9 and Bt10 and will be useful in future cultivar development to improve dwarf bunt resistance. Dwarf bunt, caused by Tilletia controversa, is a fungal disease of wheat that can cause complete loss of grain yield and quality during epidemics. Traditional breeding for dwarf bunt resistance requires many years of field screening under stringent conditions with disease assessment possible only near or after plant maturity. Molecular marker-assisted selection (MAS) offers a more efficient alternative. This study identified quantitative trait loci (QTL) and associated molecular markers for dwarf bunt resistance in wheat. A doubled haploid (DH) mapping population of 135 lines, derived from bunt-resistant cultivar 'UI Silver' and susceptible line 'Shaan89150', was evaluated in field nursery in Logan, Utah in 2017, 2018, and 2023. The population was genotyped using Illumina 90 K SNP iSelect marker platform. Using inclusive composite interval mapping (ICIM), the major QTL Qdb.ssdhui-6DL was consistently identified on chromosome arm 6DL across all environments, explaining phenotypic variations ranging from 15.29% to 35.40%. Another QTL, Qdb.ssdhui-6DS, was detected on chromosome arm 6DS, explaining approximately 11% of the phenotypic variation. These two QTLs exhibit additive-by-additive effects for increased resistance within the DH population. Kompetitive allele-specific PCR (KASP) markers were developed within QTL intervals and used in a validation panel of regionally adapted winter wheat lines to confirm the association between the two QTL and dwarf bunt resistance. Thus, 'UI Silver' and additional resistant cultivars with these two QTLs are valuable parental lines for improving dwarf bunt resistance through marker-assisted selection. These genetic resources are essential for understanding gene function via map-based gene cloning.
Collapse
Affiliation(s)
- Pabitra Joshi
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA
| | - Guriqbal Singh Dhillon
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA
| | - Yaotian Gao
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA
| | - Amandeep Kaur
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA
| | - Justin Wheeler
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA
| | - Xianming Chen
- Department of Plant Pathology, USDA-ARS, Wheat Health, Genetics, and Quality Research Unit and, Washington State University, Pullman, WA, 99164-6430, USA
| | - William Krause
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Margaret R Krause
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Jianli Chen
- Department of Plant Sciences, University of Idaho Aberdeen, R and E Center, Aberdeen, ID, 83210, USA.
| |
Collapse
|
2
|
Jia Y, Shen T, Wen Z, Chen J, Liu Q. Combining Transcriptome and Whole Genome Re-Sequencing to Screen Disease Resistance Genes for Wheat Dwarf Bunt. Int J Mol Sci 2023; 24:17356. [PMID: 38139183 PMCID: PMC10743994 DOI: 10.3390/ijms242417356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Wheat dwarf bunt is a damaging disease caused by Tilletia controversa Kühn (TCK). Once the disease infects wheat, it is difficult to control and will significantly reduce wheat output and quality. RNA sequencing and whole genome re-sequencing were used to search for potential TCK resistance genes in Yili 053 (sensitive variety) and Zhongmai 175 (moderately resistant variety) in the mid-filling, late-filling, and maturity stages. The transcriptomic analysis revealed 11 potential disease resistance genes. An association analysis of the findings from re-sequencing found nine genes with single nucleotide polymorphism mutations. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that three up-regulated genes were involved in the synthesis of benzoxazinone and tryptophan metabolism. Additionally, quantitative real-time polymerase chain reaction confirmed the RNA sequencing results. The results revealed novel TCK resistance genes and provide a theoretical basis for researching the function of resistance genes and molecular breeding.
Collapse
Affiliation(s)
- Yufeng Jia
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Tong Shen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiwei Wen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Jing Chen
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Qi Liu
- Key Laboratory of Prevention and Control of Invasive Alien Species in Agriculture & Forestry of the North-Western Desert Oasis, Ministry of Agriculture and Rural Affairs, Urumqi 830052, China; (Y.J.); (T.S.); (Z.W.); (J.C.)
- Key Laboratory of the Pest Monitoring and Safety Control of Crops and Forests of the Xinjiang Uygur, Autonomous Region, College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| |
Collapse
|
3
|
Lunzer M, Dumalasová V, Pfatrisch K, Buerstmayr H, Grausgruber H. Common bunt in organic wheat: unravelling infection characteristics relevant for resistance breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1264458. [PMID: 37885659 PMCID: PMC10598596 DOI: 10.3389/fpls.2023.1264458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023]
Abstract
Common bunt caused by Tilletia tritici and T. laevis has re-emerged as a major threat to wheat yield and quality, especially in organic farming. Resistance against its causal agents is present in the wheat gene pool and provides the most economically efficient and sustainable way to combat the disease since seed treatments approved for organic farming are rare and do not always provide full protection. We tested a winter wheat diversity panel with 128 lines for common bunt resistance in Austria and Czechia, and evaluated the applicability of marker-assisted selection (MAS) via Kompetitive Allele-Specific PCR markers in genotypes with high variation in their genetic background. Field trials were conducted across two years and artificially inoculated with local bunt populations. The virulence patterns of these inocula differed between locations and only 15% of the tested genotypes showed stable resistance across test sites. Number and weight of bunt sori relative to the total number and weight of wheat grains in sampled ears revealed that partial infections of ears were frequently appearing. Forty-two breeding lines harboring combinations of four different resistance QTL were developed through MAS. Out of these, a quarter were resistant with a maximum of 5% common bunt incidence. On the other hand, only six out of 46 tested commercial cultivars and breeding lines showed no infection with common bunt, underlining the present scarcity of bunt-resistant cultivars for organic wheat production. By this study we showed that MAS is a useful tool to speed up the selection of resistant lines even in populations with highly diverse genetic backgrounds, and that it is efficient in pyramiding resistance loci and thereby improving the level of resistance.
Collapse
Affiliation(s)
- Magdalena Lunzer
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Veronika Dumalasová
- Department of Genetics and Plant Breeding, Crop Research Institute, Prague, Czechia
| | - Kilian Pfatrisch
- Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
| | - Hermann Buerstmayr
- Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences, Vienna, Tulln an der Donau, Austria
| | - Heinrich Grausgruber
- Department of Crop Sciences, University of Natural Resources and Life Sciences Vienna, Tulln an der Donau, Austria
| |
Collapse
|
4
|
Lunzer M, Buerstmayr M, Grausgruber H, Müllner AE, Fallbacher I, Buerstmayr H. Wheat (Triticum aestivum) chromosome 6D harbours the broad spectrum common bunt resistance gene Bt11. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:207. [PMID: 37679535 PMCID: PMC10485103 DOI: 10.1007/s00122-023-04452-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
KEY MESSAGE A major QTL on chromosome 6DL corresponding to bunt resistance gene Bt11 was identified in four mapping populations generated through crosses with Bt11-carriers PI 166910 and M822123. Common bunt in wheat has witnessed a renaissance with the rise of organic agriculture that began in the 1980s. The abandonment of systemic fungicides in organic farming, together with a lack of resistant cultivars, has led to wide-spread problems due to common bunt infections. Knowledge about genetic sources for resistance is still scarce and only few of the known bunt resistance factors are currently used in breeding. We therefore aimed to map the resistance factor harboured by the Turkish landrace PI 166910, which is the resistance donor for the Bt11 bunt differential line. Four mapping populations (MPs) with 96-132 recombinant inbred lines (RILs) were phenotyped for common bunt resistance over 2, 3 or 4 years with one or two local bunt populations and genotyped with the 25K SNP array. A major bunt resistance locus on the distal end of chromosome 6D designated QBt.ifa-6DL was identified in all MPs and experiments. Additional QTL contributing to resistance were detected on chromosomes 4B, 1A, 1B, 2A and 7B. QBt.ifa-6DL mapped to a region overlapping with the Bt9-locus identified in previous studies, but results indicate that QBt.ifa-6DL is different from Bt9 and convincing evidence from haplotype comparisons suggests that it represents the Bt11 resistance allele. Markers for the distal region of chromosome 6D between 492.6 and 495.2 Mbp can be used to select for QBt.ifa-6DL. This resistance factor confers high and stable resistance against common bunt and should be integrated into organic and low-input wheat breeding programs.
Collapse
Affiliation(s)
- Magdalena Lunzer
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, Tulln, Vienna, 3430, Austria.
| | - Maria Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, Tulln, Vienna, 3430, Austria
| | - Heinrich Grausgruber
- Institute of Plant Breeding, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, Tulln, Vienna, 3430, Austria
| | - Almuth Elise Müllner
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, Tulln, Vienna, 3430, Austria
- Saatzucht Donau GesmbH & CoKG, Saatzuchtstrasse 11, Probstdorf, 2301, Austria
| | - Iris Fallbacher
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, Tulln, Vienna, 3430, Austria
- Österreichische Rübensamenzucht Ges.m.b.H, Josef-Reither-Straße 21-23, Tulln, 3430, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, Tulln, Vienna, 3430, Austria
| |
Collapse
|
5
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Rempelos L, Wang J, Sufar EK, Almuayrifi MSB, Knutt D, Leifert H, Leifert A, Wilkinson A, Shotton P, Hasanaliyeva G, Bilsborrow P, Wilcockson S, Volakakis N, Markellou E, Zhao B, Jones S, Iversen PO, Leifert C. Breeding Bread-Making Wheat Varieties for Organic Farming Systems: The Need to Target Productivity, Robustness, Resource Use Efficiency and Grain Quality Traits. Foods 2023; 12:1209. [PMID: 36981136 PMCID: PMC10048768 DOI: 10.3390/foods12061209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Accepted: 02/27/2023] [Indexed: 03/16/2023] Open
Abstract
Agronomic protocols (rotation, tillage, fertilization and crop protection) commonly used in organic and conventional crop production differ significantly and there is evidence that modern varieties developed for conventional high-input farming systems do not have the combination of traits required for optimum performance in organic farming systems. Specifically, there is evidence that prohibition on the use of water-soluble, mineral N, P and K fertilizers and synthetic pesticide inputs in organic farming results in a need to revise both breeding and selection protocols. For organic production systems, the focus needs to be on the following: (i) traits prioritized by organic farmers such as high nutrient use efficiency from organic fertilizer inputs, competitiveness against weeds, and pest and disease resistance, (ii) processing quality parameters defined by millers and bakers and (iii) nutritional quality parameters demanded by organic consumers. In this article, we review evidence from variety trials and factorial field experiments that (i) studied to what extent there is a need for organic farming focused breeding programs, (ii) investigated which traits/trait combinations should be targeted in these breeding programs and/or (iii) compared the performance of modern varieties developed for the conventional sector with traditional/older varieties favored by organic farmers and/or new varieties developed in organic farming focused breeding programs. Our review focuses on wheat because there have been organic and/or low-input farming focused wheat breeding programs for more than 20 years in Europe, which has allowed the performance of varieties/genotypes from organic/low-input and conventional farming focused breeding programs to be compared.
Collapse
Affiliation(s)
- Leonidas Rempelos
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN2 2LG, UK
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Juan Wang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Enas Khalid Sufar
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Mohammed Saleh Bady Almuayrifi
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Almadinah Regional Municipality, Medina 2020, Saudi Arabia
| | - Daryl Knutt
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Halima Leifert
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Alice Leifert
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Andrew Wilkinson
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Gilchester Organics, Stamfordham NE18 0QL, UK
| | - Peter Shotton
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Gultekin Hasanaliyeva
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- School of Animal, Rural and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottinghamshire NG25 0QF, UK
| | - Paul Bilsborrow
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Steve Wilcockson
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Nikolaos Volakakis
- Nafferton Ecological Farming Group, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
- Geokomi Plc, Sivas Festos, 70200 Crete, Greece
| | | | - Bingqiang Zhao
- Institute of Agricultural Resources and Regional Planning (IARRP), Chinese Academy of Agricultural Science (CAAS), Beijing 100081, China
| | - Stephen Jones
- Bread Lab, Department of Crop and Soil Sciences, Washington State University, Burlington, WA 98233, USA
| | - Per Ole Iversen
- Department of Nutrition, Institute of Basic Medical Sciences (IMB), University of Oslo, 0317 Oslo, Norway
- Department of Haematology, Oslo University Hospital, 0372 Oslo, Norway
| | - Carlo Leifert
- Department of Nutrition, Institute of Basic Medical Sciences (IMB), University of Oslo, 0317 Oslo, Norway
- SCU Plant Science, Southern Cross University, Military Rd., Lismore 2480, Australia
| |
Collapse
|
7
|
Singh J, Chhabra B, Raza A, Yang SH, Sandhu KS. Important wheat diseases in the US and their management in the 21st century. FRONTIERS IN PLANT SCIENCE 2023; 13:1010191. [PMID: 36714765 PMCID: PMC9877539 DOI: 10.3389/fpls.2022.1010191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/28/2022] [Indexed: 05/27/2023]
Abstract
Wheat is a crop of historical significance, as it marks the turning point of human civilization 10,000 years ago with its domestication. Due to the rapid increase in population, wheat production needs to be increased by 50% by 2050 and this growth will be mainly based on yield increases, as there is strong competition for scarce productive arable land from other sectors. This increasing demand can be further achieved using sustainable approaches including integrated disease pest management, adaption to warmer climates, less use of water resources and increased frequency of abiotic stress tolerances. Out of 200 diseases of wheat, 50 cause economic losses and are widely distributed. Each year, about 20% of wheat is lost due to diseases. Some major wheat diseases are rusts, smut, tan spot, spot blotch, fusarium head blight, common root rot, septoria blotch, powdery mildew, blast, and several viral, nematode, and bacterial diseases. These diseases badly impact the yield and cause mortality of the plants. This review focuses on important diseases of the wheat present in the United States, with comprehensive information of causal organism, economic damage, symptoms and host range, favorable conditions, and disease management strategies. Furthermore, major genetic and breeding efforts to control and manage these diseases are discussed. A detailed description of all the QTLs, genes reported and cloned for these diseases are provided in this review. This study will be of utmost importance to wheat breeding programs throughout the world to breed for resistance under changing environmental conditions.
Collapse
Affiliation(s)
- Jagdeep Singh
- Department of Crop, Soil & Environmental Sciences, Auburn University, Auburn, AL, United States
| | - Bhavit Chhabra
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, United States
| | - Ali Raza
- College of Agriculture, Oil Crops Research Institute, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Seung Hwan Yang
- Department of Integrative Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | | |
Collapse
|
8
|
Ehn M, Michel S, Morales L, Gordon T, Dallinger HG, Buerstmayr H. Genome-wide association mapping identifies common bunt (Tilletia caries) resistance loci in bread wheat (Triticum aestivum) accessions of the USDA National Small Grains Collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3103-3115. [PMID: 35896689 PMCID: PMC9668943 DOI: 10.1007/s00122-022-04171-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Association mapping and phenotypic analysis of a diversity panel of 238 bread wheat accessions highlights differences in resistance against common vs. dwarf bunt and identifies genotypes valuable for bi-parental crosses. Common bunt caused by Tilletia caries and T. laevis was successfully controlled by seed dressings with systemic fungicides for decades, but has become a renewed threat to wheat yield and quality in organic agriculture where such treatments are forbidden. As the most efficient way to address this problem is the use of resistant cultivars, this study aims to broaden the spectrum of resistance sources available for breeders by identifying resistance loci against common bunt in bread wheat accessions of the USDA National Small Grains Collection. We conducted three years of artificially inoculated field trials to assess common bunt infection levels in a diversity panel comprising 238 wheat accessions for which data on resistance against the closely related pathogen Tilletia controversa causing dwarf bunt was already available. Resistance levels against common bunt were higher compared to dwarf bunt with 99 accessions showing [Formula: see text] 1% incidence. Genome-wide association mapping identified six markers significantly associated with common bunt incidence in regions already known to confer resistance on chromosomes 1A and 1B and novel loci on 2B and 7A. Our results show that resistance against common and dwarf bunt is not necessarily controlled by the same loci but we identified twenty accessions with high resistance against both diseases. These represent valuable new resources for research and breeding programs since several bunt races have already been reported to overcome known resistance genes.
Collapse
Affiliation(s)
- Magdalena Ehn
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria.
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| | - Laura Morales
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| | - Tyler Gordon
- Small Grains and Potato Germplasm Research Unit, USDA-ARS, 1691 S. 2700 W., Aberdeen, ID, 83210, USA
| | - Hermann Gregor Dallinger
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 20, 3430, Tulln, Austria
| |
Collapse
|
9
|
Saini DK, Chopra Y, Singh J, Sandhu KS, Kumar A, Bazzer S, Srivastava P. Comprehensive evaluation of mapping complex traits in wheat using genome-wide association studies. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:1. [PMID: 37309486 PMCID: PMC10248672 DOI: 10.1007/s11032-021-01272-7] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Genome-wide association studies (GWAS) are effectively applied to detect the marker trait associations (MTAs) using whole genome-wide variants for complex quantitative traits in different crop species. GWAS has been applied in wheat for different quality, biotic and abiotic stresses, and agronomic and yield-related traits. Predictions for marker-trait associations are controlled with the development of better statistical models taking population structure and familial relatedness into account. In this review, we have provided a detailed overview of the importance of association mapping, population design, high-throughput genotyping and phenotyping platforms, advancements in statistical models and multiple threshold comparisons, and recent GWA studies conducted in wheat. The information about MTAs utilized for gene characterization and adopted in breeding programs is also provided. In the literature that we surveyed, as many as 86,122 wheat lines have been studied under various GWA studies reporting 46,940 loci. However, further utilization of these is largely limited. The future breakthroughs in area of genomic selection, multi-omics-based approaches, machine, and deep learning models in wheat breeding after exploring the complex genetic structure with the GWAS are also discussed. This is a most comprehensive study of a large number of reports on wheat GWAS and gives a comparison and timeline of technological developments in this area. This will be useful to new researchers or groups who wish to invest in GWAS.
Collapse
Affiliation(s)
- Dinesh K. Saini
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| | - Yuvraj Chopra
- College of Agriculture, Punjab Agricultural University, Ludhiana, 141004 India
| | - Jagmohan Singh
- Division of Plant Pathology, Indian Agricultural Research Institute, New Delhi, 110012 India
| | - Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99163 USA
| | - Anand Kumar
- Department of Genetics and Plant Breeding, Chandra Shekhar Azad University of Agriculture and Technology, Kanpur, 202002 India
| | - Sumandeep Bazzer
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211 USA
| | - Puja Srivastava
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, 141004 India
| |
Collapse
|
10
|
Du Z, Zong Q, Gao H, Guo Q, Liu T, Chen W, Gao L. Development of an Agrobacterium tumefaciens-mediated transformation system for Tilletia controversa Kühn. J Microbiol Methods 2021; 189:106313. [PMID: 34453992 DOI: 10.1016/j.mimet.2021.106313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 08/20/2021] [Accepted: 08/22/2021] [Indexed: 11/26/2022]
Abstract
Dwarf bunt of wheat caused by Tilletia controversa Kühn has been identified an international quarantine disease, which replace the grain material into millions of teliospores. Agrobacterium tumefaciens-mediated transformation (ATMT) system is a powerful tool for fungi transformation with significant advantages of simple operation, high efficiency, and genetic stability of transformants. In this study, we constructed ATMT system for T. controversa. All the transformants were tested using Acetosyringone (AS) concentration at 150 μmol/l, hygromycin B at 25 μg/ml, 1 × 106 T. controversa hypha cells/ml, A. tumefaciens with OD600 of 0.5 co-cultivation at 16 °C for 48 h and culture was incubated at 16 °C for 20 days. Using the ATMT method, we cultivated 8 generations of transformants on complete medium (CM) containing hygromycin B antibiotic and validated by PCR, which indicate that T-DNA had been successfully inserted into each of T. controversa transformants. In addition, thermal asymmetric interlaced PCR (TAIL-PCR) evaluated the Ti element inserts were at random sites in the fungal genome. Thus, ATMT approach is an efficient tool for insertional mutagenesis of T. controversa.
Collapse
Affiliation(s)
- Zhenzhen Du
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Qianqian Zong
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Xinjiang Agricultural University, Urumqi, Xinjiang 830000, China
| | - Haifeng Gao
- Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Key Laboratory of Integrated Pest Management on Crop in North-western Oasis, Ministry of Agriculture and Rural Affairs, Urumiqi, Xinjiang 830091, China
| | - Qingyuan Guo
- Xinjiang Agricultural University, Urumqi, Xinjiang 830000, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
11
|
Muellner AE, Buerstmayr M, Eshonkulov B, Hole D, Michel S, Hagenguth JF, Pachler B, Pernold R, Buerstmayr H. Comparative mapping and validation of multiple disease resistance QTL for simultaneously controlling common and dwarf bunt in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:489-503. [PMID: 33120433 PMCID: PMC7843488 DOI: 10.1007/s00122-020-03708-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 10/13/2020] [Indexed: 05/20/2023]
Abstract
KEY MESSAGE Resistance QTL on chromosomes 1AL and 7AL are effective against common and dwarf bunt, QTL on 1BS affects common bunt and QTL on 7DS affects dwarf bunt in bread wheat. Common bunt, caused by Tilletia caries and T. laevis, and dwarf bunt, caused by T. controversa, negatively affect grain yield and quality of wheat and are particularly destructive in low-input and organic production systems. Two recombinant inbred line (RIL) populations derived by crossing the highly and durably resistant cultivars 'Blizzard' and 'Bonneville' to the susceptible cultivar 'Rainer' were evaluated for their resistance to common and dwarf bunt in artificially inoculated field and greenhouse trials over two growing seasons and genotyped with a 15 K SNP array. Bunt resistance QTL were mapped to chromosomes 1AL, 1BS, 7AL and 7DS. Common bunt resistance was regulated by the major QTL QBt.ifa-1BS and QBt.ifa-1AL together with the moderate effect QTL QBt.ifa-7AL. Dwarf bunt resistance was on the other hand regulated by the QTL QBt.ifa-1AL, QBt.ifa-7AL and QBt.ifa-7DS. Common bunt resistance QTL exhibited pronounced epistatic effects, while epistatic effects were of smaller magnitude for dwarf bunt QTL. Kompetitive Allele-Specific PCR (KASP) markers were developed from SNPs associated with bunt resistance QTL and successfully used for QTL validation in an independent set of RILs. These KASP markers have the potential to support targeted introgression of QTL into elite wheat germplasm and accelerate breeding for enhanced bunt resistance. Durable protection against both common and dwarf bunt can be achieved by combining multiple resistance genes in the same genetic background.
Collapse
Affiliation(s)
- Almuth E Muellner
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
- Saatzucht Donau GesmbH. & CoKG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | - Maria Buerstmayr
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria.
| | - Bobur Eshonkulov
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
- Samarkand Branch of Tashkent State University of Economics, Professors Street 51, 140147, Samarkand, Usbekistan
| | - David Hole
- Utah State University, 2325 Old Main Hill, Logan, UT, 84322, USA
| | - Sebastian Michel
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
| | - Julia F Hagenguth
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
- Division of Plant Breeding Methodology, University of Goettingen, Carl-Sprengel-Weg 1, 37075, Göttingen, Germany
| | - Bernadette Pachler
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
- Saatbau Linz eGen, Breeding Station Schoenering, Angerweg 19, 4073, Wilhering, Austria
| | - Ricarda Pernold
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
- , Mauerbachstraße 5, 1140, Wien, Austria
| | - Hermann Buerstmayr
- Institute for Biotechnology in Plant Production, University of Natural Resources and Life Sciences, Konrad Lorenz Straße 20, 3430, Vienna, Tulln, Austria
| |
Collapse
|
12
|
Sapkota S, Mergoum M, Kumar A, Fiedler JD, Johnson J, Bland D, Lopez B, Sutton S, Ghimire B, Buck J, Chen Z, Harrison S. A novel adult plant leaf rust resistance gene Lr2K38 mapped on wheat chromosome 1AL. THE PLANT GENOME 2020; 13:e20061. [PMID: 33169935 DOI: 10.1002/tpg2.20061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 09/05/2020] [Indexed: 06/11/2023]
Abstract
Soft red winter wheat (SRWW) cultivar AGS 2038 has a high level of seedling and adult plant leaf rust (LR) resistance. To map and characterize LR resistance in AGS 2038, a recombinant inbred line (RIL) population consisting of 225 lines was developed from a cross between AGS 2038 and moderately resistant line UGA 111729. The parents and RIL population were phenotyped for LR response in three field environments at Plains and Griffin, GA, in the 2017-2018 and 2018-2019 growing seasons, one greenhouse environment at the adult-plant stage, and at seedling stage. The RIL population was genotyped with the Illumina iSelect 90K SNP marker array, and a total of 7667 polymorphic markers representing 1513 unique loci were used to construct a linkage map. Quantitative trait loci (QTL) analysis detected six QTL, QLr.ags-1AL, QLr.ags-2AS, QLr.ags-2BS1, QLr.ags-2BS2, QLr.ags-2BS3, and QLr.ags-2DS, for seedling and adult plant LR resistance. Of these, the major adult plant leaf rust resistance QTL, QLr.ags-1AL, was detected on all field and greenhouse adult plant tests and explained up to 34.45% of the phenotypic variation. QLr.ags-1AL, tightly flanked by IWB20487 and IWA4022 markers, was contributed by AGS 2038. Molecular marker analysis using a diagnostic marker linked to Lr59 showed that QLr.ags-1AL was different from Lr59, the only known LR resistance gene on 1AL. Therefore, the QTL was temporarily designated as Lr2K38. Lr2K38-linked marker IWB20487 was highly polymorphic among 30 SRWW lines and should be useful for selecting the Lr2K38 in wheat breeding programs.
Collapse
Affiliation(s)
- Suraj Sapkota
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Mohamed Mergoum
- Institute of Plant Breeding, Genetics, and Genomics, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Ajay Kumar
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58102, USA
| | - Jason D Fiedler
- USDA-ARS, Cereal Crops Research Unit, Edward T. Schafer Agricultural Research Center, Fargo, ND, 58102, USA
| | - Jerry Johnson
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Dan Bland
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Benjamin Lopez
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Steve Sutton
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Bikash Ghimire
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - James Buck
- Department of Plant Pathology, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Zhenbang Chen
- Department of Crop and Soil Sciences, University of Georgia, Griffin Campus, Griffin, GA, 30223, USA
| | - Stephen Harrison
- School of Plant, Environmental and Soil Sciences, Louisiana State University, Baton Rouge, LA, 70803, USA
| |
Collapse
|
13
|
Gordon T, Wang R, Hole D, Bockelman H, Michael Bonman J, Chen J. Genetic characterization and genome-wide association mapping for dwarf bunt resistance in bread wheat accessions from the USDA National Small Grains Collection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1069-1080. [PMID: 31938812 PMCID: PMC7021738 DOI: 10.1007/s00122-020-03532-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/03/2020] [Indexed: 05/03/2023]
Abstract
Dwarf bunt-resistant bread wheat accessions and SNP markers associated with DB resistance identified in this study are valuable resources for characterization and deployment of DB resistance in bread wheat. Dwarf bunt (DB), caused by Tilletia controversa J.G. Kühn, can significantly reduce grain yield and quality on autumn-sown wheat in regions with prolonged snow cover. DB can be managed with the use of resistant cultivars. The objectives of the present study were to characterize DB resistance in a large set of bread wheat accessions from the National Small Grains Collection and use a genome-wide association study approach to identify genetic loci associated with DB resistance. A total of 292 accessions were selected using historical DB resistance data recorded across many trials and years in the Germplasm Resources Information Network (GRIN) and re-tested for DB resistance in replicated field nurseries in Logan, UT, in 2017, 2018, and 2019. Ninety-eight accessions were resistant with DB normalized incidence ≤ 10%, and twenty-eight of these were highly resistant with DB normalized incidence ≤ 1% in both GRIN and the field nurseries. Based on the presence of marker haplotypes of the four published dwarf bunt QTL on 6DS, 6DL, 7AL, and 7DS, highly resistant accessions identified in this study may provide novel resistance and should be further evaluated. This study validated one previously identified QTL on 6DS and identified an additional locus on 6DS. These loci explained 9-15% of the observed phenotypic variation. The resistant accessions and molecular markers identified in the present study may provide valuable resources for characterization and deployment of DB resistance in bread wheat.
Collapse
Affiliation(s)
- Tyler Gordon
- USDA-ARS-Small Grains and Potato Germplasm Research Unit, 1691 S. 2700 W., Aberdeen, ID, 83210, USA
- University of Idaho-Aberdeen Research and Extension Center, 1693 S. 2700 W., Aberdeen, ID, 83210, USA
| | - Rui Wang
- University of Idaho-Aberdeen Research and Extension Center, 1693 S. 2700 W., Aberdeen, ID, 83210, USA
| | - David Hole
- Department of Plants, Soils and Climate, Utah State University, 2325 Old Main Hill, Logan, UT, 84322, USA
| | - Harold Bockelman
- USDA-ARS-Small Grains and Potato Germplasm Research Unit, 1691 S. 2700 W., Aberdeen, ID, 83210, USA
| | - J Michael Bonman
- USDA-ARS-Small Grains and Potato Germplasm Research Unit, 1691 S. 2700 W., Aberdeen, ID, 83210, USA
| | - Jianli Chen
- University of Idaho-Aberdeen Research and Extension Center, 1693 S. 2700 W., Aberdeen, ID, 83210, USA.
| |
Collapse
|