1
|
Seifi S, Leckie KM, Giles I, O’Brien T, MacKenzie JO, Todesco M, Rieseberg LH, Baute GJ, Celedon JM. Mapping and characterization of a novel powdery mildew resistance locus (PM2) in Cannabis sativa L. FRONTIERS IN PLANT SCIENCE 2025; 16:1543229. [PMID: 40182551 PMCID: PMC11966446 DOI: 10.3389/fpls.2025.1543229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 02/05/2025] [Indexed: 04/05/2025]
Abstract
Introduction Breeding genetic resistance to economically important crop diseases is the most sustainable strategy for disease management and enhancing agricultural and horticultural productivity, particularly where the application of synthetic pesticides is prohibited. Powdery mildew disease, caused by the biotrophic fungal pathogen Golovinomyces ambrosiae, is one of the most prevalent threats to the cannabis and hemp industry worldwide. Methods In this study, we used bulked-segregant analysis combined with high-throughput RNA sequencing (BSRSeq) to identify and map a novel single dominant resistance (R) locus (designated PM2), that strongly suppresses powdery mildew infection and sporulation in Cannabis sativa. Results and discussion BSA mapped PM2 to chromosome 9. Histochemical analysis revealed that PM2-induced resistance is mediated by a highly localized hypersensitive response mainly in the epidermal cells of the host. Importantly, genetic markers capable of tracking PM2 resistance in breeding populations were developed using associated SNPs identified in this study. The ability to track PM2 will allow for successful introgression of PM resistance into elite cannabis cultivars and help move towards a more sustainable cannabis industry.
Collapse
Affiliation(s)
- Soren Seifi
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Keegan M. Leckie
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Ingrid Giles
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Taylor O’Brien
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - John O. MacKenzie
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Marco Todesco
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Loren H. Rieseberg
- Department of Botany, University of British Columbia, Vancouver, BC, Canada
| | - Gregory J. Baute
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| | - Jose M. Celedon
- Breeding and Genetics Department, Aurora Cannabis, Inc., Comox, BC, Canada
| |
Collapse
|
2
|
Shoaran M, Sabaie H, Mostafavi M, Rezazadeh M. A comprehensive review of the applications of RNA sequencing in celiac disease research. Gene 2024; 927:148681. [PMID: 38871036 DOI: 10.1016/j.gene.2024.148681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/15/2024]
Abstract
RNA sequencing (RNA-seq) has undergone substantial advancements in recent decades and has emerged as a vital technique for profiling the transcriptome. The transition from bulk sequencing to single-cell and spatial approaches has facilitated the achievement of higher precision at cell resolution. It provides valuable biological knowledge about individual immune cells and aids in the discovery of the molecular mechanisms that contribute to the development of autoimmune diseases. Celiac disease (CeD) is an autoimmune disorder characterized by a strong immune response to gluten consumption. RNA-seq has led to significantly advanced research in multiple fields, particularly in CeD research. It has been instrumental in studies involving comparative transcriptomics, nutritional genomics and wheat research, cancer research in the context of CeD, genetic and noncoding RNA-mediated epigenetic insights, disease monitoring and biomarker discovery, regulation of mitochondrial functions, therapeutic target identification and drug mechanism of action, dietary factors, immune cell profiling and the immune landscape. This review offers a comprehensive examination of recent RNA-seq technology research in the field of CeD, highlighting future challenges and opportunities for its application.
Collapse
Affiliation(s)
- Maryam Shoaran
- Pediatric Health Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hani Sabaie
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehrnaz Mostafavi
- Faculty of Allied Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rezazadeh
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
3
|
Yang Y, Guo Y, Wang J, Cheng W, Lyu M, Wang Q, Wu J, Hua M, Zhang W, Sun D, Ge X, Yao X, Chen R. Genome-wide association study and selective sweep analysis uncover candidate genes controlling curd branch length in cauliflower. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:209. [PMID: 39196430 DOI: 10.1007/s00122-024-04719-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/16/2024] [Indexed: 08/29/2024]
Abstract
Cauliflower is a distinct subspecies of the Brassica oleracea plants due to its specialized and edible floral organ. Cauliflower curd is composed of enlarged inflorescence meristems that developed by a series of precise molecular regulations. Based solely on the curd solidity, cauliflower is generally classified into two groups (compact-curd and loose-curd), where curd branch length acts as a crucial parameter to determine the curd morphological difference. Herein, to understand the genetic basis of curd branch development, we utilized a total of 298 inbred lines representing two groups of cauliflower to comprehensively investigate the causal genes and regulatory mechanisms. Phylogenetic and population structure analyses revealed that two subgroups could be further categorized into the compact-curd and the loose-curd groups, respectively. Integrating the genotype and phenotype data, we conducted a genome-wide association study for the length of the outermost branch (LOB) and secondary branch (LSB) of the curd. Sixty-four significant loci were identified that are highly associated with curd branch development. Evidence from genome-wide selective sweep analysis (FST and XP-EHH) narrowed down the major signal on chromosome 8 into an approximately 79 kb region which encodes eleven protein-coding genes. After further analysis of haplotypes, transcriptome profiling, and gene expression validation, we finally inferred that BOB08G028680, as a homologous counterpart of AtARR9, might be the causal gene for simultaneously regulating LOB and LSB traits in cauliflower. This result provides valuable information for improving curd solidity in future cauliflower breeding.
Collapse
Affiliation(s)
- Yingxia Yang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yutong Guo
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
- College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wenjuan Cheng
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Mingjie Lyu
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Qian Wang
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Jianjin Wu
- Tianjin Agricultural Development Service Center, Tianjin, 300061, China
| | - Mingyan Hua
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China
| | - Weihua Zhang
- College of Horticulture and Landscape, Tianjin Agricultural University, Tianjin, 300384, China
| | - Deling Sun
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Xianhong Ge
- National Key Laboratory of Crop Genetic Improvement, National Center of Oil Crop Improvement (Wuhan), College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Xingwei Yao
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| | - Rui Chen
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin, 300192, China.
| |
Collapse
|
4
|
Qian Z, Liu R, Liu X, Qie Y, Wang J, Yin Y, Xin Q, Yu N, Zhang J, Li Y, Li J, Dai Y, Liu C, Jin Y, Ma P. Bulked segregant RNA-seq reveals complex resistance expression profile to powdery mildew in wild emmer wheat W762. FRONTIERS IN PLANT SCIENCE 2024; 15:1387427. [PMID: 38817928 PMCID: PMC11137253 DOI: 10.3389/fpls.2024.1387427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 04/30/2024] [Indexed: 06/01/2024]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Exploring powdery mildew resistance (Pm) gene(s) and dissecting the molecular mechanism of the host resistance are critical to effectively and reasonably control this disease. Durum wheat (Triticum turgidum L. var. durumDesf.) is an important gene donor for wheat improvement against powdery mildew. In this study, a resistant durum wheat accession W762 was used to investigate its potential resistance component(s) and profile its expression pattern in responding to Bgt invasion using bulked segregant RNA-Seq (BSR-Seq) and further qRT-PCR verification. Genetic analysis showed that the powdery mildew resistance in W762 did not meet monogenic inheritance and complex genetic model might exist within the population of W762 × Langdon (susceptible durum wheat). After BSR-Seq, 6,196 consistently different single nucleotide polymorphisms (SNPs) were called between resistant and susceptible parents and bulks, and among them, 763 SNPs were assigned to the chromosome arm 7B. Subsequently, 3,653 differentially expressed genes (DEGs) between resistant and susceptible parents and bulks were annotated and analyzed by Gene Ontology (GO), Cluster of Orthologous Groups (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The potential regulated genes were selected and analyzed their temporal expression patterns following Bgt inoculation. As a result, nine disease-related genes showed distinctive expression profile after Bgt invasion and might serve as potential targets to regulate the resistance against powdery mildew in W762. Our study could lay a foundation for analysis of the molecular mechanism and also provide potential targets for the improvement of durable resistance against powdery mildew.
Collapse
Affiliation(s)
- Zejun Qian
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Ruishan Liu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Xueqing Liu
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yanmin Qie
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetic and Breeding, Shijiazhuang, China
| | - Jiangchun Wang
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Yan Yin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Qingguo Xin
- Institute of Grain and Oil Crops, Yantai Academy of Agricultural Sciences, Yantai, China
| | - Ningning Yu
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiadong Zhang
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Yaoxue Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Jiatong Li
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Yintao Dai
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Yuli Jin
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| | - Pengtao Ma
- Yantai Key Laboratory of Characteristic Agricultural Bioresource Conservation & Germplasm Innovative Utilization, College of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
5
|
Zhang G, Meng L, Chen R, Wang W, Jing X, Zhu-Salzman K, Cheng W. Characterization of three glutathione S-transferases potentially associated with adaptation of the wheat blossom midge Sitodiplosis mosellana to host plant defense. PEST MANAGEMENT SCIENCE 2024; 80:885-895. [PMID: 37814473 DOI: 10.1002/ps.7824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/25/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Insect glutathione S-transferases (GSTs), a multifunctional protein family, play a crucial role in detoxification of plant defensive compounds. However, they have been rarely investigated in Sitodiplosis mosellana, a destructive pest of wheat worldwide. In this study, we characterized for the first time a delta (SmGSTd1) and two epsilon GST genes (SmGSTe1 and SmGSTe2) and analyzed their expression patterns and functions associated with adaptation to host plant defense in this species. RESULTS Expression of these SmGST genes greatly increased in S. mosellana larvae feeding on resistant wheat varieties Kenong1006, Shanmai139 and Jinmai47 which contain higher tannin and ferulic acid, the major defensive compounds of wheat against this pest, compared with those feeding on susceptible varieties Xinong822, Xinong88 and Xiaoyan22. Their expression was also tissue-specific, most predominant in larval midgut. Recombinant SmGSTs expressed in Escherichia coli could catalyze the conjugation of 1-chloro-2,4-dinitrobenzene, with activity peak at pH around 7.0 and temperature between 30 and 40 °C. Notably, they could metabolize tannin and ferulic acid, with the strongest metabolic ability by SmGSTe2 against two compounds, followed by SmGSTd1 on tannin, and SmGSTe1 on ferulic acid. CONCLUSION The results suggest that these SmGSTs are important in metabolizing wheat defensive chemicals during feeding, which may be related to host plant adaptation of S. mosellana. Our study has provided information for future investigation and development of strategies such as host-induced gene silencing of insect-detoxifying genes for managing pest adaptation. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guojun Zhang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Linqin Meng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Rui Chen
- Yantai City Research Centre for Rural Development of Chinese Academy of Social Sciences, Yantai, China
| | - Wen Wang
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiangfeng Jing
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
6
|
Liu Q, Zhao Y, Rahman S, She M, Zhang J, Yang R, Islam S, O'Hara G, Varshney RK, Liu H, Ma H, Ma W. The putative vacuolar processing enzyme gene TaVPE3cB is a candidate gene for wheat stem pith-thickness. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:138. [PMID: 37233825 DOI: 10.1007/s00122-023-04372-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 04/27/2023] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE The vacuolar processing enzyme gene TaVPE3cB is identified as a candidate gene for a QTL of wheat pith-thickness on chromosome 3B by BSR-seq and differential expression analyses. The high pith-thickness (PT) of the wheat stem could greatly enhance stem mechanical strength, especially the basal internodes which support the heavier upper part, such as upper stems, leaves and spikes. A QTL for PT in wheat was previously discovered on 3BL in a double haploid population of 'Westonia' × 'Kauz'. Here, a bulked segregant RNA-seq analysis was applied to identify candidate genes and develop associated SNP markers for PT. In this study, we aimed at screening differentially expressed genes (DEGs) and SNPs in the 3BL QTL interval. Sixteen DEGs were obtained based on BSR-seq and differential expression analyses. Twenty-four high-probability SNPs in eight genes were identified by comparing the allelic polymorphism in mRNA sequences between the high PT and low PT samples. Among them, six genes were confirmed to be associated with PT by qRT-PCR and sequencing. A putative vacuolar processing enzyme gene TaVPE3cB was screened out as a potential PT candidate gene in Australian wheat 'Westonia'. A robust SNP marker associated with TaVPE3cB was developed, which can assist in the introgression of TaVPE3cB.b in wheat breeding programs. In addition, we also discussed the function of other DEGs which may be related to pith development and programmed cell death (PCD). A five-level hierarchical regulation mechanism of stem pith PCD in wheat was proposed.
Collapse
Affiliation(s)
- Qier Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Yun Zhao
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, People's Republic of China
| | - Shanjida Rahman
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Maoyun She
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Jingjuan Zhang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rongchang Yang
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Shahidul Islam
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Graham O'Hara
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Rajeev K Varshney
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hang Liu
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia
| | - Hongxiang Ma
- Provincial Key Laboratory of Agrobiology, and Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, People's Republic of China
| | - Wujun Ma
- Centre for Crop and Food Innovation, Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, 6150, Australia.
- College of Agronomy, Qingdao Agriculture University, Qingdao, 266109, People's Republic of China.
| |
Collapse
|
7
|
Kou H, Zhang Z, Yang Y, Wei C, Xu L, Zhang G. Advances in the Mining of Disease Resistance Genes from Aegilops tauschii and the Utilization in Wheat. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12040880. [PMID: 36840228 PMCID: PMC9966637 DOI: 10.3390/plants12040880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/01/2022] [Accepted: 12/07/2022] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii is one of the malignant weeds that affect wheat production and is also the wild species ancestor of the D genome of hexaploid wheat (Triticum aestivum, AABBDD). It contains many disease resistance genes that have been lost in the long-term evolution of wheat and is an important genetic resource for the mining and utilization of wheat disease resistance genes. In recent years, the genome sequence of Aegilops tauschii has been preliminarily completed, which has laid a good foundation for the further exploration of wheat disease resistance genes in Aegilops tauschii. There are many studies on disease resistance genes in Aegilops tauschii; in order to provide better help for the disease resistance breeding of wheat, this paper analyzes and reviews the relationship between Aegilops tauschii and wheat, the research progress of Aegilops tauschii, the discovery of disease resistance genes from Aegilops tauschii, and the application of disease resistance genes from Aegilops tauschii to modern wheat breeding, providing a reference for the further exploration and utilization of Aegilops tauschii in wheat disease resistance breeding.
Collapse
Affiliation(s)
- Hongyun Kou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Zhenbo Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
| | - Yu Yang
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Changfeng Wei
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Lili Xu
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
| | - Guangqiang Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China
- College of Agriculture and Bioengineering, Heze University, Heze 274015, China
- Shandong Shofine Seed Technology Co., Ltd., Jining 272400, China
| |
Collapse
|
8
|
Han G, Yan H, Gu T, Cao L, Zhou Y, Liu W, Liu D, An D. Identification of a Wheat Powdery Mildew Dominant Resistance Gene in the Pm5 Locus for High-Throughput Marker-Assisted Selection. PLANT DISEASE 2023; 107:450-456. [PMID: 35815965 DOI: 10.1094/pdis-07-22-1545-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
9
|
Cheng W, Wang Z, Xu F, Lu G, Su Y, Wu Q, Wang T, Que Y, Xu L. Screening of Candidate Genes Associated with Brown Stripe Resistance in Sugarcane via BSR-seq Analysis. Int J Mol Sci 2022; 23:15500. [PMID: 36555141 PMCID: PMC9778799 DOI: 10.3390/ijms232415500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
10
|
Huang Q, Han X, Zhang G, Zhu-Salzman K, Cheng W. Plant Volatiles Mediate Host Selection of Sitodiplosis mosellana (Diptera: Cecidomyiidae) among Wheat Varieties. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:10466-10475. [PMID: 35994613 DOI: 10.1021/acs.jafc.2c03244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sitodiplosis mosellana is a major wheat pest that oviposits on spikes, and resistant wheat varieties have been released. However, wheat spike volatiles mediating S. mosellana host selection or resistance are largely unknown. In this study, we found that the highly susceptible wheat varieties Xinong 822, Xinong 88, and Xiaoyan 22 were preferred for S. mosellana oviposition, and their spike volatiles were more attractive to females compared to the resistant varieties Kenong 1006, Shanmai 139, and Jinmai 47. Importantly, we found five odor components evoking obvious concentration-dependent electroantennogram (EAG) and behavioral response. Notably, 3-hexanol, cis-3-hexenylacetate, and hexyl acetate strongly attracted females, whereas ocimene, a dominant component of three resistant varieties, and α-farnesene, absent in Xinong 88, repelled females. Significant attraction was also observed in a synthetic blend mimicking Xinong 822 volatiles. These results suggest that these wheat volatiles are involved in host selection of S. mosellana and provide a basis for development of semichemical-based pest management.
Collapse
Affiliation(s)
- Qitong Huang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianqi Han
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guojun Zhang
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Keyan Zhu-Salzman
- Department of Entomology, Texas A&M University, College Station, Texas 77843, United States
| | - Weining Cheng
- Key Laboratory of Plant Protection Resources & Pest Management of the Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
11
|
Liang X, Xu H, Zhu S, Zheng Y, Zhong W, Li H, Niu L, Wu L, Zhang L, Song J, He H, Liu C, Ma P. Genetically Dissecting the Novel Powdery Mildew Resistance Gene in Wheat Breeding Line PBDH1607. PLANT DISEASE 2022; 106:2145-2154. [PMID: 35108069 DOI: 10.1094/pdis-12-21-2771-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Powdery mildew is one of the most destructive diseases in wheat production. Identifying novel resistance genes and deploying them in new cultivars is the most effective approach to minimize wheat losses caused by powdery mildew. In this study, wheat breeding line PBDH1607 showed high resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the seedling data demonstrated that the resistance was controlled by a single dominant gene, tentatively designated PmPBDH. The ΔSNP index based on bulked segregant RNA sequencing indicated that PmPBDH was associated with an interval of about 30.8 Mb (713.5 to 744.3 Mb) on chromosome arm 4AL. Using newly developed markers, we mapped PmPBDH to a 3.2-cM interval covering 7.1 Mb (719,055,516 to 726,215,121 bp). This interval differed from those of Pm61 (717,963,176 to 719,260,469 bp), MlIW30 (732,769,506 to 732,790,522 bp), and MlNSF10 (729,275,816 to 731,365,462 bp) reported on the same chromosome arm. PmPBDH also differed from Pm61, MlIW30, and MlNSF10 by its response spectrum, origin, or inheritance mode, suggesting that PmPBDH should be a new Pm gene. In the candidate interval, five genes were found to be associated with PmPBDH via time course gene expression analysis, and thus they are candidate genes of PmPBDH. Six closely linked markers, including two kompetitive allele-specific PCR markers, were confirmed to be applicable for tracking PmPBDH in marker-assisted breeding.
Collapse
Affiliation(s)
- Xiao Liang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shanying Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongshen Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan, Shandong 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Liru Wu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lipei Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jiancheng Song
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
12
|
Gong Z, Li T, Miao J, Duan Y, Jiang Y, Li H, Guo P, Wang X, Zhang J, Wu Y. A chromosome-level genome assembly of the orange wheat blossom midge, Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae) provides insights into the evolution of a detoxification system. G3 GENES|GENOMES|GENETICS 2022; 12:6617839. [PMID: 35751604 PMCID: PMC9339269 DOI: 10.1093/g3journal/jkac161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 06/22/2022] [Indexed: 11/14/2022]
Abstract
The orange wheat blossom midge Sitodiplosis mosellana Géhin (Diptera: Cecidomyiidae), an economically important pest, has caused serious yield losses in most wheat-growing areas worldwide in the past half-century. A high-quality chromosome-level genome for S. mosellana was assembled using PacBio long read, Illumina short read, and Hi-C sequencing technologies. The final genome assembly was 180.69 Mb, with contig and scaffold N50 sizes of 998.71 kb and 44.56 Mb, respectively. Hi-C scaffolding reliably anchored 4 pseudochromosomes, accounting for 99.67% of the assembled genome. In total, 12,269 protein-coding genes were predicted, of which 91% were functionally annotated. Phylogenetic analysis indicated that S. mosellana and its close relative, the swede midge Contarinia nasturtii, diverged about 32.7 MYA. The S. mosellana genome showed high chromosomal synteny with the genome of Drosophila melanogaster and Anopheles gambiae. The key gene families involved in the detoxification of plant secondary chemistry were analyzed. The high-quality S. mosellana genome data will provide an invaluable resource for research in a broad range of areas, including the biology, ecology, genetics, and evolution of midges, as well as insect–plant interactions and coevolution.
Collapse
Affiliation(s)
- Zhongjun Gong
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Tong Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jin Miao
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yun Duan
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yueli Jiang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Huiling Li
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Pei Guo
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Xueqin Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Jing Zhang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| | - Yuqing Wu
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Key Laboratory of Crop Pest Control of Henan Province, Key Laboratory of Crop Integrated Pest Management of the Southern of North China, Ministry of Agriculture of the People’s Republic of China , Zhengzhou 450002, P. R. China
| |
Collapse
|
13
|
PNGSeqR: An R Package for Rapid Candidate Gene Selection through Pooled Next-Generation Sequencing. PLANTS 2022; 11:plants11141821. [PMID: 35890455 PMCID: PMC9315718 DOI: 10.3390/plants11141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/03/2022] [Accepted: 07/06/2022] [Indexed: 11/17/2022]
Abstract
Although bulked segregant analysis (BSA) has been used extensively in genetic mapping, user-friendly tools which can integrate current algorithms for researchers with no background in bioinformatics are scarce. To address this issue, we developed an R package, PNGSeqR, which takes single-nucleotide polymorphism (SNP) markers from next-generation sequencing (NGS) data in variant call format (VCF) as the input file, provides four BSA algorithms to indicate the magnitude of genome-wide signals, and rapidly defines the candidate region through the permutation test and fractile quantile. Users can choose the analysis methods according to their data and experimental design. In addition, it also supports differential expression gene analysis (DEG) and gene ontology analysis (GO) to prioritize the target gene. Once the analysis is completed, the plots can conveniently be exported.
Collapse
|
14
|
Cao A, de la Fuente M, Gesteiro N, Santiago R, Malvar RA, Butrón A. Genomics and Pathways Involved in Maize Resistance to Fusarium Ear Rot and Kernel Contamination With Fumonisins. FRONTIERS IN PLANT SCIENCE 2022; 13:866478. [PMID: 35586219 PMCID: PMC9108495 DOI: 10.3389/fpls.2022.866478] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/25/2022] [Indexed: 06/15/2023]
Abstract
Fusarium verticillioides is a causal agent of maize ear rot and produces fumonisins, which are mycotoxins that are toxic to animals and humans. In this study, quantitative trait loci (QTLs) and bulk-segregant RNA-seq approaches were used to uncover genomic regions and pathways involved in resistance to Fusarium ear rot (FER) and to fumonisin accumulation in maize kernels. Genomic regions at bins 4.07-4.1, 6-6.01, 6.04-6.05, and 8.05-8.08 were related to FER resistance and/or reduced fumonisin levels in kernels. A comparison of transcriptomes between resistant and susceptible inbred bulks 10 days after inoculation with F. verticillioides revealed 364 differentially expressed genes (DEGs). In the resistant inbred bulks, genes involved in sink metabolic processes such as fatty acid and starch biosynthesis were downregulated, as well as those involved in phytosulfokine signaling and many other genes involved in cell division; while genes involved in secondary metabolism and compounds/processes related to resistance were upregulated, especially those related to cell wall biosynthesis/rearrangement and flavonoid biosynthesis. These trends are indicative of a growth-defense trade-off. Among the DEGs, Zm00001d053603, Zm00001d035562, Zm00001d037810, Zm00001d037921, and Zm00001d010840 were polymorphic between resistant and susceptible bulks, were located in the confidence intervals of detected QTLs, and showed large differences in transcript levels between the resistant and susceptible bulks. Thus, they were identified as candidate genes involved in resistance to FER and/or reduced fumonisin accumulation.
Collapse
Affiliation(s)
- Ana Cao
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| | | | | | - Rogelio Santiago
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Rosa Ana Malvar
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
- Agrobiología Ambiental, Calidad de Suelos y Plantas (UVIGO), Unidad Asociada a la MBG (CSIC), Pontevedra, Spain
| | - Ana Butrón
- Misión Biológica de Galicia (CSIC), Pontevedra, Spain
| |
Collapse
|
15
|
Li Z, Xu Y. Bulk segregation analysis in the NGS era: a review of its teenage years. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:1355-1374. [PMID: 34931728 DOI: 10.1111/tpj.15646] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/27/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Bulk segregation analysis (BSA) utilizes a strategy of pooling individuals with extreme phenotypes to conduct economical and rapidly linked marker screening or quantitative trait locus (QTL) mapping. With the development of next-generation sequencing (NGS) technology in the past 10 years, BSA methods and technical systems have been gradually developed and improved. At the same time, the ever-decreasing costs of sequencing accelerate NGS-based BSA application in different species, including eukaryotic yeast, grain crops, economic crops, horticultural crops, trees, aquatic animals, and insects. This paper provides a landscape of BSA methods and reviews the BSA development process in the past decade, including the sequencing method for BSA, different populations, different mapping algorithms, associated region threshold determination, and factors affecting BSA mapping. Finally, we summarize related strategies in QTL fine mapping combining BSA.
Collapse
Affiliation(s)
- Zhiqiang Li
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd., Urumchi, 830022, China
| |
Collapse
|
16
|
Muslu T, Akpinar BA, Biyiklioglu-Kaya S, Yuce M, Budak H. Comparative Analysis of Coding and Non-Coding Features within Insect Tolerance Loci in Wheat with Their Homologs in Cereal Genomes. Int J Mol Sci 2021; 22:ijms222212349. [PMID: 34830231 PMCID: PMC8623949 DOI: 10.3390/ijms222212349] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/14/2022] Open
Abstract
Food insecurity and malnutrition have reached critical levels with increased human population, climate fluctuations, water shortage; therefore, higher-yielding crops are in the spotlight of numerous studies. Abiotic factors affect the yield of staple food crops; among all, wheat stem sawfly (Cephus cinctus Norton) and orange wheat blossom midge (Sitodiplosis mosellana) are two of the most economically and agronomically harmful insect pests which cause yield loss in cereals, especially in wheat in North America. There is no effective strategy for suppressing this pest damage yet, and only the plants with intrinsic tolerance mechanisms such as solid stem phenotypes for WSS and antixenosis and/or antibiosis mechanisms for OWBM can limit damage. A major QTL and a causal gene for WSS resistance were previously identified in wheat, and 3 major QTLs and a causal gene for OWBM resistance. Here, we present a comparative analysis of coding and non-coding features of these loci of wheat across important cereal crops, barley, rye, oat, and rice. This research paves the way for our cloning and editing of additional WSS and OWBM tolerance gene(s), proteins, and metabolites.
Collapse
Affiliation(s)
- Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (T.M.); (S.B.-K.)
| | | | - Sezgi Biyiklioglu-Kaya
- Molecular Biology, Genetics and Bioengineering Program, Faculty of Engineering and Natural Sciences, Sabanci University, Istanbul 34956, Turkey; (T.M.); (S.B.-K.)
| | - Meral Yuce
- Sabanci University Nanotechnology Research and Application Centre (SUNUM), Istanbul 34956, Turkey;
| | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT 59802, USA;
- Correspondence:
| |
Collapse
|
17
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
18
|
Thambugala D, Pozniak CJ, Kumar S, Burt AJ, Wise IL, Smith MAH, Fox SL, Costamagna AC, McCartney CA. Genetic analysis of oviposition deterrence to orange wheat blossom midge in spring wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:647-660. [PMID: 33200319 DOI: 10.1007/s00122-020-03720-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/27/2020] [Indexed: 06/11/2023]
Abstract
A major QTL for oviposition deterrence to orange wheat blossom midge was detected on chromosome 1A in the Canadian breeding line BW278 that was inherited from the Chinese variety Sumai-3. Orange wheat blossom midge (OWBM, Sitodiplosis mosellana Géhin, Diptera: Cecidomyiidae) is an important insect pest of wheat (Triticum aestivum L.) that reduces both grain yield and quality. Oviposition deterrence results in a reduction of eggs deposited on spikes relative to that observed on a wheat line preferred by OWBM. Quantification of oviposition deterrence is labor-intensive, so wheat breeders require efficient DNA markers for the selection of this trait. The objective of this study was to identify quantitative trait loci (QTL) for oviposition deterrence in a doubled haploid (DH) population developed from the spring wheat cross Superb/BW278. The DH population and check varieties were evaluated for OWBM kernel damage from five field nurseries over three growing seasons. QTL analysis identified major effect loci on chromosomes 1A (QSm.mrc-1A) and 5A (QSm.mrc-5A). Reduced kernel damage was contributed by BW278 at QSm.mrc-1A and Superb at QSm.mrc-5A. QSm.mrc-1A mapped to the approximate location of the oviposition deterrence QTL previously found in the American variety Reeder. However, haplotype analysis revealed that BW278 inherited this oviposition deterrence allele from the Chinese spring wheat variety Sumai-3. QSm.mrc-5A mapped to the location of awn inhibitor gene B1, suggesting that awns hinder OWBM oviposition. Single-nucleotide polymorphisms (SNPs) were identified for predicting the presence or absence of QSm.mrc-1A based upon haplotype. Functional annotation of candidate genes in 1A QTL intervals revealed eleven potential candidate genes, including a gene involved in terpenoid biosynthesis. SNPs for QSm.mrc-1A and fully awned spikes provide a basis for the selection of oviposition deterrence to OWBM.
Collapse
Affiliation(s)
- Dinushika Thambugala
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Curtis J Pozniak
- Crop Development Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Santosh Kumar
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Andrew J Burt
- Brandon Research and Development Centre, Agriculture and Agri-Food Canada, Brandon, MB, Canada
| | - Ian L Wise
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- Department of Entomology, University of Manitoba, Winnipeg, MB, Canada
| | - Marjorie A H Smith
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
| | - Stephen L Fox
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada
- DL Seeds Inc., Winnipeg, MB, Canada
| | | | - Curt A McCartney
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada.
- Department of Plant Science, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
19
|
Zhu T, Wu L, He H, Song J, Jia M, Liu L, Wang X, Han R, Niu L, Du W, Zhang X, Wang W, Liang X, Li H, Liu J, Xu H, Liu C, Ma P. Bulked Segregant RNA-Seq Reveals Distinct Expression Profiling in Chinese Wheat Cultivar Jimai 23 Responding to Powdery Mildew. Front Genet 2020; 11:474. [PMID: 32536936 PMCID: PMC7268692 DOI: 10.3389/fgene.2020.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.
Collapse
Affiliation(s)
- Tong Zhu
- School of Life Sciences, Yantai University, Yantai, China
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, China
| | - Liancheng Liu
- Beijing Biomics Technology Company Limited, Beijing, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxiao Du
- School of Life Sciences, Yantai University, Yantai, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- School of Life Sciences, Yantai University, Yantai, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
20
|
Rasheed A, Takumi S, Hassan MA, Imtiaz M, Ali M, Morgunov AI, Mahmood T, He Z. Appraisal of wheat genomics for gene discovery and breeding applications: a special emphasis on advances in Asia. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1503-1520. [PMID: 31897516 DOI: 10.1007/s00122-019-03523-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
We discussed the most recent efforts in wheat functional genomics to discover new genes and their deployment in breeding with special emphasis on advances in Asian countries. Wheat research community is making significant progress to bridge genotype-to-phenotype gap and then applying this knowledge in genetic improvement. The advances in genomics and phenomics have intrigued wheat researchers in Asia to make best use of this knowledge in gene and trait discovery. These advancements include, but not limited to, map-based gene cloning, translational genomics, gene mapping, association genetics, gene editing and genomic selection. We reviewed more than 57 homeologous genes discovered underpinning important traits and multiple strategies used for their discovery. Further, the complementary advancements in wheat phenomics and analytical approaches to understand the genetics of wheat adaptability, resilience to climate extremes and resistance to pest and diseases were discussed. The challenge to build a gold standard reference genome sequence of bread wheat is now achieved and several de novo reference sequences from the cultivars representing different gene pools will be available soon. New pan-genome sequencing resources of wheat will strengthen the foundation required for accelerated gene discovery and provide more opportunities to practice the knowledge-based breeding.
Collapse
Affiliation(s)
- Awais Rasheed
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China.
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan.
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Muhammad Adeel Hassan
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT) Pakistan office, c/o National Agriculture Research Center (NARC), Islamabad, Pakistan
| | - Mohsin Ali
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Alex I Morgunov
- International Maize and Wheat Improvement Center (CIMMYT), Yenimahalle, Ankara, 06170, Turkey
| | - Tariq Mahmood
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Zhonghu He
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- International Maize and Wheat Improvement Center (CIMMYT), CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| |
Collapse
|
21
|
Zhang L, Geng M, Zhang Z, Zhang Y, Yan G, Wen S, Liu G, Wang R. Molecular mapping of major QTL conferring resistance to orange wheat blossom midge (Sitodiplosis mosellana) in Chinese wheat varieties with selective populations. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:491-502. [PMID: 31773176 DOI: 10.1007/s00122-019-03480-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/09/2019] [Indexed: 06/10/2023]
Abstract
Two novel midge resistance QTL were mapped to a 4.9-Mb interval on chromosome arm 4AL based on the genetic maps constructed with SNP markers. Orange wheat blossom midge (OWBM) is a devastating insect pest affecting wheat production. In order to detect OWBM resistance genes and quantitative trait loci (QTL) for wheat breeding, two recombinant inbred line (RIL) populations were established and used for molecular mapping. A total of seven QTL were detected on chromosomes 2D, 4A, 4D and 7D, respectively, of which positive alleles were all from the resistant parents except for the QTL on 7D. Two stable QTL (QSm.hbau-4A.2-1 and QSm.hbau-4A.2-2) were detected in both populations with the LOD scores ranging from 5.58 to 29.22 under all three environments, and they explained a combined phenotypic variation of 24.4-44.8%. These two novel QTL were mapped to a 4.9-Mb physical interval. The single-nucleotide polymorphism (SNP) markers AX-109543456, AX-108942696 and AX-110928325 were closely linked to the QTL and could be used for marker-assisted selection (MAS) for OWBM resistance in wheat breeding programs.
Collapse
Affiliation(s)
- Lijing Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China
| | - Miaomiao Geng
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China
| | - Zhe Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China
| | - Yue Zhang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China
| | - Guijun Yan
- School of Agriculture and Environment, Faculty of Science, and the Institute of Agriculture, The University of Western Australia, Perth, 6009, Australia
| | - Shumin Wen
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China
| | - Guiru Liu
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China.
| | - Ruihui Wang
- North China Key Laboratory for Crop Germplasm Resources of Education Ministry, College of Agronomy, Hebei Agricultural University, Baoding, 071000, Hebei, People's Republic of China.
| |
Collapse
|