1
|
Cheng L, Han Q, Hao Y, Qiao Z, Li M, Liu D, Yin H, Li T, Long W, Luo S, Gao Y, Zhang Z, Yu H, Sun X, Li H, Zhao Y. Genome assembly of Stewartia sinensis reveals origin and evolution of orphan genes in Theaceae. Commun Biol 2025; 8:354. [PMID: 40032980 PMCID: PMC11876429 DOI: 10.1038/s42003-025-07525-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 01/13/2025] [Indexed: 03/05/2025] Open
Abstract
Orphan genes play crucial roles in diverse biological processes, but the evolutionary trajectories and functional divergence remain largely unexplored. The Theaceae family, including the economically and culturally important tea plant, offers a distinctive model to examine these aspects. Here, we integrated Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods to decode a pseudo-chromosomal genome assembly of Stewartia sinensis, from the earliest-diverging tribe of Theaceae, spanning 2.95 Gb. Comparative genomic analysis revealed the absence of recent whole-genome duplication events in the Theaceae ancestor, highlighting tandem duplications as the predominant mechanism of gene expansion. We identified 31,331 orphan genes, some of which appear to have ancient origins, suggesting early emergence with frequent gains and losses, while others seem more specific and recent. Notably, orphan genes are distinguished by shorter lengths, fewer exons and functional domains compared to genes that originate much earlier, like transcription factors. Moreover, tandem duplication contributes significantly to the adaptive evolution and characteristic diversity of Theaceae, and it is also a major mechanism driving the origination of orphan genes. This study illuminates the evolutionary dynamics of orphan genes, providing a valuable resource for understanding the origin and evolution of tea plant flavor and enhancing genetic breeding efforts.
Collapse
Affiliation(s)
- Lin Cheng
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Qunwei Han
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
- Henan International Joint Laboratory of Tea-oil Tree Biology and High-Value Utilization, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Yanlin Hao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Zhen Qiao
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Mengge Li
- Dabie Mountain Laboratory, College of Tea and Food Science, Xinyang Normal University, Xinyang, China
| | - Daliang Liu
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Hao Yin
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Tao Li
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Wen Long
- Xinyang Normal University Library, Xinyang Normal University, Xinyang, China
| | - Shanshan Luo
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Ya Gao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Zhihan Zhang
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China
| | - Houlin Yu
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, USA
- Broad Institute of MIT and Harvard, Cambridge, USA
| | - Xinhao Sun
- College of Science, Northeastern University, Boston, USA
| | - Hao Li
- School of Life Sciences, East China Normal University, Shanghai, China.
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, China.
| | - Yiyong Zhao
- Guizhou Key Laboratory of Functional Agriculture, College of Agriculture, Guizhou University, Guiyang, China.
- State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang, China.
| |
Collapse
|
2
|
Ran M, Yu B, Cheng C, Li X, Guo Y, Zhao L, Zan F, Lin X, Hou X, Zhao Y, Liu J, Deng Z. Oligo-FISH-Based Analysis of the Mechanisms Underlying Chromosome Number Variation in Saccharum spontaneum. Int J Mol Sci 2025; 26:1958. [PMID: 40076583 PMCID: PMC11901062 DOI: 10.3390/ijms26051958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/14/2025] [Accepted: 02/21/2025] [Indexed: 03/14/2025] Open
Abstract
Interspecific hybridization serves as a crucial strategy for innovating sugarcane germplasms. Currently, nearly all modern sugarcane varieties that incorporate genetic material are derived from Saccharum spontaneum. The number of chromosomes in S. spontaneum ranges from 40 to 128, contributing significantly to the diversity of its genetic resources. However, the genetic mechanisms driving chromosome number variation in S. spontaneum remain to be fully elucidated. Here, oligonucleotide fluorescence in situ hybridization (Oligo-FISH) was conducted to identify individual chromosomes and explore chromosome transmission during the intraspecific hybridization of S. spontaneum. The results indicate that from the progenies generated from S. spontaneum Yunnan2017-22 (2n = 8x = 64) and Yunnan82-1 (2n = 8x = 64) emerged two distinct karyotypes, 2n = 12x = 96 (A1) and 2n = 8x = 64 (A2, A33-1, A18). This implies that the chromosome inheritances were 2n + n and n + n in the progenies. However, self-pollinated samples of A1 (2n = 12x = 96) produced normal offspring C1 (2n = 94) and C2 (2n = 96). The 2n + n inheritance pattern did not continue. In another cross, the progenies derived from S. spontaneum Yunnan2017-41 (2n = 8x = 64) and Yunnan8 (2n = 10x = 80) carried a karyotype of 2n = 9x = 72, with n + n inheritance mode. These findings highlight the existence of two chromosome inheritance modes, 2n + n and n + n, in the context of the intraspecific hybridization of S. spontaneum. Additionally, hybridization between different ploidy S. spontaneum was also accompanied by chromosomal translocations (A1, A2, A18, A18) and loss (A2, A33-1, AA-4, and C2) that further resulted in the complexity of the S. spontaneum genome. Together, these findings highlight diverse chromosome inheritance in S. spontaneum hybridization, and provide a theoretical foundation for the further utilization of S. spontaneum germplasm in sugarcane breeding.
Collapse
Affiliation(s)
- Maoyong Ran
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Bo Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chunxia Cheng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yirong Guo
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Zhao
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699, China
| | - Fenggang Zan
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699, China
| | - Xiuqin Lin
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699, China
| | - Xiao Hou
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699, China
| | - Jiayong Liu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- National Key Laboratory for Biological Breeding of Tropical Crops, Kunming 650205, China
- Yunnan Key Laboratory of Sugarcane Genetic Improvement, Sugarcane Research Institute, Yunnan Academy of Agricultural Sciences, Kaiyuan 661699, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
3
|
Yu Z, Qi Y, Wei Y, Zhuang G, Li Y, Wang B, Akbar S, Xu Y, Hua X, Xu Q, Deng Z, Zhang J, Huang Y, Yu F, Zhou J. A cost-effective oligo-based barcode system for chromosome identification in longan and lychee. HORTICULTURE RESEARCH 2025; 12:uhae278. [PMID: 39845644 PMCID: PMC11750958 DOI: 10.1093/hr/uhae278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/21/2024] [Indexed: 01/24/2025]
Abstract
Oligonucleotide (Oligo)-based fluorescence in situ hybridization (FISH) represents a highly effective methodology for identifying plant chromosomes. Longan is a commercially significant fruit species, yet lacking basic chromosomal markers has hindered its cytogenetic research. In this study, we developed a cost-effective oligo-based system for distinguishing chromosomes of longan (Dimocarpus longan Lour., 2n = 2x = 30). For this system, each synthesized oligo contained two chromosome-specific sequences that spanned a distance of over 200 kb, and a PCR-based flexible amplification method coupled with nested primers was used for probe labeling. The use of these oligo-based barcodes enabled the marking of 36 chromosomal regions, which allowed for the unambiguous distinction of all 15 chromosomes in both longan and lychee (Litchi chinensis Sonn., 2n = 2x = 30) species. Based on the identification of individual chromosomes, we constructed karyotypes and detected genome assembly errors involving the 35S ribosomal RNA gene (35S rDNA) in longan and lychee. Developing oligo-based barcodes offers considerable promise for advancing cytogenetic research in longan, lychee, and their related species. Furthermore, this cost-effective synthesis system can be referred to the development of new oligo libraries among other species.
Collapse
Affiliation(s)
- Zehuai Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yiying Qi
- College of Agriculture, Fujian Agriculture and Forestry University, No.15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China
| | - Yuxuan Wei
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Gui Zhuang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yihan Li
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Baiyu Wang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Sehrish Akbar
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yi Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Xiuting Hua
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Qiutao Xu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Zuhu Deng
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jisen Zhang
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Yongji Huang
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Geography and Oceanography, Minjiang University, Minhou District, Fuzhou 350108, China
| | - Fan Yu
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, 100 University East Road, Nanning 530004, China
| | - Jiannan Zhou
- Key Laboratory of Tropical Fruit Biology (Ministry of Agriculture), South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Mazhang District, Zhanjiang 524091, China
| |
Collapse
|
4
|
Meng Z, Zheng Q, Wang W, Zhu Y, Li Y, Dong F, Luo W, Zhang Z, Wang F, Shen H, Xie Q, Li H. Oligo-FISH barcode chromosome identification system provides novel insights into the natural chromosome aberrations propensity in the autotetraploid cultivated alfalfa. HORTICULTURE RESEARCH 2025; 12:uhae266. [PMID: 39802739 PMCID: PMC11718389 DOI: 10.1093/hr/uhae266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 09/13/2024] [Indexed: 01/16/2025]
Abstract
Alfalfa is one of the most economically valuable forage crops in the world. However, molecular cytogenetic studies in alfalfa lag far behind other cash crops and have reached a bottleneck. Here, we developed a novel chromosome identification system by designing 21 oligo probes in specific regions of each chromosome, which can be used as a barcode to simultaneously distinguish all chromosomes in a cell. Using this system, we revealed the chromosome karyotype features and evolutionary differences among 10 cultivated alfalfa varieties. Interestingly, we also found two chromosomal variation types, i.e. aneuploidy and large chromosomal segment deletions in the seeds of three alfalfa varieties. Variation frequency analysis showed that only 7/173 seeds in those three alfalfa varieties had chromosome aberrations, which indicated that the inheritance and meiosis of alfalfa had evolved to a relatively stable state. Remarkably, 4/7 variation seeds were chromosome 2 aberrations, suggesting that chromosome 2 appears to be more susceptible to natural chromosomal aberrations than other chromosomes during inheritance. DNA sequence variation analysis showed that the difference of presence and absence variations (PAVs) among homologous copies of chromosome 2 was larger than that of the other seven chromosomes. We suggest that such large PAV divergence among homologous copies may provide the physical basis for natural chromosome 2 aberrations propensity. Our study provides a valuable and efficient tool for alfalfa's molecular cytogenetics and sheds new insights into the propensity for natural chromosome aberrations during autopolyploid inheritance.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Qian Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Wei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Yuanbin Zhu
- College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuanhao Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Fulin Dong
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Wenjun Luo
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Zhiliang Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi 832003, China
| |
Collapse
|
5
|
Harun A, Song S, You X, Liu H, Wen X, Fang Z, Cheng Z, Chen C. Comprehensive mapping of molecular cytogenetic markers in pitaya ( Hylocereus undatus) and related species. FRONTIERS IN PLANT SCIENCE 2024; 15:1493776. [PMID: 39711595 PMCID: PMC11662977 DOI: 10.3389/fpls.2024.1493776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Pitaya (Hylocereus undatus; 2n=22) is an important fruit crop from the Cactaceae family, originally domesticated in Mexico and the USA, and is now widely cultivated for its nutritional benefits. It is characterized by its distinctive triangular-shaped stems and large, showy flowers, thriving in arid and semi-arid environments, particularly in hot, dry climates. However, systematic chromosomal studies, including chromosomal mapping of cytogenetic markers in pitaya, are limited, presenting challenges for its cytogenetic improvement. To address this issue, we designed oligo-barcodes specific to thirty-three chromosome regions based on the pitaya reference genome and applied them to both pitaya and cactus (Selenicerus grandifloras; 2n=22) for oligo-barcodes mapping, karyotyping, and chromosome identification. We utilized FISH technology, employing oligo, rDNA, and tandem repeat probes for chromosomal mapping, identification, and karyotyping of pitaya and related species. We successfully localized oligo-barcodes on eleven pairs of chromosomes in both pitaya and cactus, demonstrating the effectiveness of the synthesized oligo-barcodes. We used two ribosomal DNA (rDNA) probes (45S and 5S) and two tandem repeat probes (GTR11 and STR3) in pitaya (both diploid and tetraploid) and two other Cactaceae species (S. grandifloras and Opuntia humifusa; 2n=40) for chromosomal mapping. The analysis of rDNA distribution and CMA (Chromomycin A3) banding across different chromosomes in pitaya and cacti highlights the concept of conserved rDNA. This study provides fundamental insights into cytogenetic markers and their localization across different chromosomes in pitaya and other Cactaceae species.
Collapse
Affiliation(s)
- Arrashid Harun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xixi You
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
| | - Zhihao Cheng
- Sanya Research Institute, National Key Laboratory for Tropical Crop Breeding, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, China
| | - Chunli Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou, China
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, Hubei, China
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
6
|
Meng Z, Zheng Q, Shi S, Wang W, Wang F, Xie Q, Chen X, Shen H, Xiao G, Li H. Whole-chromosome oligo-painting in licorice unveils interspecific chromosomal evolutionary relationships and possible origin of triploid genome species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:2089-2100. [PMID: 39453890 DOI: 10.1111/tpj.17102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/24/2024] [Accepted: 10/12/2024] [Indexed: 10/27/2024]
Abstract
Licorice is one of the most extensively studied medicinal plants in the world, whose roots and rhizomes have long been used as both a sweetener and an essential component in numerous herbal preparations. However, the genus Glycyrrhiza has a complex composition, and the interspecies chromosomal relationships, origin, and evolution are still largely unclear. Here, we develop a set of whole-chromosome painting probes that allowed identification of all eight chromosomes of licorice on same metaphase chromosomes. Comparative chromosome painting analyses in seven different Glycyrrhiza species revealed that the genus Glycyrrhiza maintained extraordinarily conserved chromosomal synteny after about 3-12 million years of divergence. No cytologically visible inter-chromosomal rearrangements were identified in any species. By comparative chromosomal karyotype analyses, we revealed interspecific chromosome evolutionary relationships and dramatic variable chromosomal karyotype after independent divergence and demonstrated that G. prostrate was the most closely related to the ancestral type among the seven Glycyrrhiza species. Furthermore, we also discovered a G. glandulosa seed with distinct triploid-genome for the first time in China, suggesting the existence of a polyploid evolutionary pathway in the genus Glycyrrhiza, which challenges the previous notion that only diploids of licorice existed in nature. This study expands our knowledge of the chromosome evolution of licorice and will lay an important foundation for the genome origin and evolution studies in the genus Glycyrrhiza.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Qian Zheng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Wei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Xifeng Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Guanghui Xiao
- College of Life Sciences, Shanxi Normal University, Xi'an, 710062, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| |
Collapse
|
7
|
Chen Y, Gou Y, Huang T, Chen Y, You C, Que Y, Gao S, Su Y. Characterization of the chitinase gene family in Saccharum reveals the disease resistance mechanism of ScChiVII1. PLANT CELL REPORTS 2024; 43:299. [PMID: 39616552 DOI: 10.1007/s00299-024-03389-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024]
Abstract
KEY MESSAGE A chitinase gene ScChiVII1 which is involved in defense against pathogen stress was characterized in sugarcane. Chitinases, a subclass of pathogenesis-related proteins, catalyze chitin hydrolysis and play a key role in plant defense against chitin-containing pathogens. However, there is little research on disease resistance analysis of chitinase genes in sugarcane, and the systematic identification of their gene families has not been reported. In this study, 85 SsChi and 23 ShChi genes, which were divided into 6 groups, were identified from the wild sugarcane species Saccharum spontaneum and Saccharum hybrid cultivar R570, respectively. Transcriptome analysis and real-time quantitative PCR revealed that SsChi genes responded to smut pathogen stress. The chitinase crude extracted from the leaves of transgenic Nicotiana benthamiana plants overexpressing ScChiVII1 (a homologous gene of SsChi22a) inhibited the hyphal growth of Fusarium solani var. coeruleum and Sporisorium scitamineum. Notably, the chitinase and catalase activities and the jasmonic acid content in the leaves of ScChiVII1 transgenic N. benthamiana increased after inoculation with F solani var. coeruleum, but the salicylic acid, hydrogen peroxide, and malondialdehyde contents decreased. Comprehensive RNA sequencing of leaves before (0 day) and after inoculation (2 days) revealed that ScChiVII1 transgenic tobacco enhanced plant disease resistance by activating transcription factors and disease resistance-related signaling pathways, and modulating the expression of genes involved in the hypersensitive response and ethylene synthesis pathways. Taken together, this study provides comprehensive information on the chitinase gene family and offers potential genetic resources for disease resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Yanling Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yaxin Gou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Tingchen Huang
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yao Chen
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Chuihuai You
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shiwu Gao
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, Center for Genomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
8
|
Sun J, Zhang Q, Xu M, Yan M, Liu X, Sun J, Cao Q, Wang H, Yang J, Li Z, Han Y. Comparative karyotype analysis provides cytogenetic evidence for the origin of sweetpotato. Chromosome Res 2024; 32:14. [PMID: 39607639 DOI: 10.1007/s10577-024-09758-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 11/29/2024]
Abstract
The origin of hexaploid sweetpotato [Ipomoea batatas (L.) Lam.] remains controversial. Comparative karyotype analysis is particularly useful in determining species relationships and the origin of polyploid species. In previous study, we developed a set of oligo probes and identified all chromosomes of Ipomoea nil, a model diploid Ipomoea species. Here, we found that this set of oligo probes could be used to identify all chromosomes of sweetpotato and its wild relatives with different ploidy. Karyotypes based on individually identified chromosomes were established and the number and position of 5S and 35S rDNA loci were determined for these Ipomoea species. Comparison of their karyotypes revealed distinct variations in the karyotypic parameters. Karyological relationships among these species were revealed by principal coordinate analysis (PCoA) based on six quantitative parameters (x, 2n, TCL, MCA, CVCL and CVCI). These results show that I. trifida is the most closely related diploid species to sweetpotato, and other diploid species could be excluded from consideration as its possible diploid ancestor. In addition, our study also provides cytogenetic evidence for the segmental allopolyploid hypothesis of sweetpotato origin.
Collapse
Affiliation(s)
- Jianying Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Qian Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Meiling Xu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Mengxiao Yan
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Xingyu Liu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Jian Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China
| | - Qinghe Cao
- Jiangsu Xuhuai Regional Xuzhou Institute of Agricultural Sciences, Chinese Academy of Agricultural Sciences, Xuzhou, 221121, Jiangsu, China
| | - Hongxia Wang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Jun Yang
- Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Botanical Garden, Shanghai, 201602, China
| | - Zongyun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| | - Yonghua Han
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, Jiangsu, China.
| |
Collapse
|
9
|
Shibly MAH, Islam MI, Rahat MNH, Billah MM, Rahman MM, Bashar MS, Abdul B, Alorfi HS. Extraction and characterization of a novel cellulosic fiber derived from the bark of Rosa hybrida plant. Int J Biol Macromol 2024; 257:128446. [PMID: 38029899 DOI: 10.1016/j.ijbiomac.2023.128446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/01/2023]
Abstract
The current investigation aims to choose an alternate potential replacement for the nonbiodegradable synthetic fibers used in polymer composites. This goal motivated the thorough characterization of Rosa hybrida bark (RHB) fibers. The research explored fiber characterization such as morphological, mechanical, thermal, and physical properties. The suggested fiber features a percentage of cellulose, hemicellulose molecules, and lignin of 52.99 wt%, 18.49 wt%, and 17.34 wt%, respectively according to chemical composition studies, which improves its mechanical properties. It is suitable for lightweight applications due to its decreased density (1.194 gcm-3). The purpose of the Fourier transform infrared spectroscope was to observe and record how various chemical groups were distributed throughout the surface of the fiber. The presence of 1.41 nm-sized crystalline cellulose and further XRD analysis showed a crystallinity index of 75.48 %. Scanning electron microscope studies revealed that RHB fibers have a rough surface. According to a single fiber tensile test, for gauge length (GL) 40 mm, Young's modulus and tensile strength of RHB fibers were 6.57 GPa and 352.01 MPa, respectively, and for GL 50 mm, 9.02 GPa and 311 MPa, respectively. Furthermore, thermo-gravimetric examination revealed that the isolated fibers were thermally stable up to 290 °C and the kinetic activation energy was found to be 75.32 kJ/mol. The fibers taken from the Rosa hybrida flower plants' bark exhibit qualities similar to those of currently used natural fibers, making them a highly promising replacement for synthetic fibers in polymer matrix composites.
Collapse
Affiliation(s)
- Mohammad Abul Hasan Shibly
- Center for Research and Industrial Relation, National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh.
| | - Md Ikramul Islam
- Center for Research and Industrial Relation, National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Md Nur Hossain Rahat
- Center for Research and Industrial Relation, National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | - Muhammad Maruf Billah
- Center for Research and Industrial Relation, National Institute of Textile Engineering and Research, University of Dhaka, Bangladesh
| | | | | | | | - Hajer S Alorfi
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
10
|
Dias S, de Oliveira Bustamante F, do Vale Martins L, da Costa VA, Montenegro C, Oliveira ARDS, de Lima GS, Braz GT, Jiang J, da Costa AF, Benko-Iseppon AM, Brasileiro-Vidal AC. Translocations and inversions: major chromosomal rearrangements during Vigna (Leguminosae) evolution. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:29. [PMID: 38261028 DOI: 10.1007/s00122-024-04546-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
KEY MESSAGE Inversions and translocations are the major chromosomal rearrangements involved in Vigna subgenera evolution, being Vigna vexillata the most divergent species. Centromeric repositioning seems to be frequent within the genus. Oligonucleotide-based fluorescence in situ hybridization (Oligo-FISH) provides a powerful chromosome identification system for inferring plant chromosomal evolution. Aiming to understand macrosynteny, chromosomal diversity, and the evolution of bean species from five Vigna subgenera, we constructed cytogenetic maps for eight taxa using oligo-FISH-based chromosome identification. We used oligopainting probes from chromosomes 2 and 3 of Phaseolus vulgaris L. and two barcode probes designed from V. unguiculata (L.) Walp. genome. Additionally, we analyzed genomic blocks among the Ancestral Phaseoleae Karyotype (APK), two V. unguiculata subspecies (V. subg. Vigna), and V. angularis (Willd.) Ohwi & Ohashi (V. subg. Ceratotropis). We observed macrosynteny for chromosomes 2, 3, 4, 6, 7, 8, 9, and 10 in all investigated taxa except for V. vexillata (L.) A. Rich (V. subg. Plectrotropis), in which only chromosomes 4, 7, and 9 were unambiguously identified. Collinearity breaks involved with chromosomes 2 and 3 were revealed. We identified minor differences in the painting pattern among the subgenera, in addition to multiple intra- and interblock inversions and intrachromosomal translocations. Other rearrangements included a pericentric inversion in chromosome 4 (V. subg. Vigna), a reciprocal translocation between chromosomes 1 and 5 (V. subg. Ceratotropis), a potential deletion in chromosome 11 of V. radiata (L.) Wilczek, as well as multiple intrablock inversions and centromere repositioning via genomic blocks. Our study allowed the visualization of karyotypic patterns in each subgenus, revealing important information for understanding intrageneric karyotypic evolution, and suggesting V. vexillata as the most karyotypically divergent species.
Collapse
Affiliation(s)
- Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade Federal do Piauí, Floriano, PI, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Geyse Santos de Lima
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Guilherme Tomaz Braz
- Departamento de Biologia, Universidade Estadual de Campinas, Campinas, SP, Brazil
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | | | |
Collapse
|
11
|
Chai J, Xue L, Lei J, Yao W, Zhang M, Deng Z, Yu F. All nonhomologous chromosomes and rearrangements in Saccharum officinarum × Saccharum spontaneum allopolyploids identified by oligo-based painting. FRONTIERS IN PLANT SCIENCE 2023; 14:1176914. [PMID: 37868320 PMCID: PMC10588481 DOI: 10.3389/fpls.2023.1176914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 09/01/2023] [Indexed: 10/24/2023]
Abstract
Modern sugarcane cultivars (Saccharum spp., 2n = 100~120) are complex polyploids primarily derived from interspecific hybridization between S. officinarum and S. spontaneum. Nobilization is the theory of utilizing wild germplasm in sugarcane breeding, and is the foundation for utilizing S. spontaneum for stress resistance. However, the exact chromosomal transmission remains elusive due to a lack of chromosome-specific markers. Here, we applied chromosome-specific oligonucleotide (oligo)-based probes for identifying chromosomes 1-10 of the F1 hybrids between S. officinarum and S. spontaneum. Then, S. spontaneum-specific repetitive DNA probes were used to distinguish S. spontaneum in these hybrids. This oligo- fluorescence in situ hybridization (FISH) system proved to be an efficient tool for revealing individual chromosomal inheritance during nobilization. We discovered the complete doubling of S. officinarum-derived chromosomes in most F1 hybrids. Notably, we also found defective S. officinarum-derived chromosome doubling in the F1 hybrid Yacheng75-4191, which exhibited 1.5n transmission for all nonhomologous chromosomes. Altogether, these results highlight the presence of variable chromosome transmission in nobilization between S. officinarum and S. spontaneum, including 1.5n + n and 2n + n. These findings provide robust chromosome markers for in-depth studies into the molecular mechanism underlying chromosome doubling during the nobilization, as well as tracing chromosomal inheritance for sugarcane breeding.
Collapse
Affiliation(s)
- Jin Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Li Xue
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Jiawei Lei
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Muqing Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| | - Zuhu Deng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fan Yu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, China
- Guangxi Key Laboratory for Sugarcane Biology, Guangxi University, Nanning, China
| |
Collapse
|
12
|
Surya Krishna S, Viswanathan R, Valarmathi R, Lakshmi K, Appunu C. CRISPR/Cas-Mediated Genome Editing Approach for Improving Virus Resistance in Sugarcane. SUGAR TECH 2023; 25:735-750. [DOI: 10.1007/s12355-023-01252-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/20/2023] [Indexed: 01/11/2025]
|
13
|
Harun A, Liu H, Song S, Asghar S, Wen X, Fang Z, Chen C. Oligonucleotide Fluorescence In Situ Hybridization: An Efficient Chromosome Painting Method in Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2816. [PMID: 37570972 PMCID: PMC10420648 DOI: 10.3390/plants12152816] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Fluorescence in situ hybridization (FISH) is an indispensable technique for studying chromosomes in plants. However, traditional FISH methods, such as BAC, rDNA, tandem repeats, and distributed repetitive sequence probe-based FISH, have certain limitations, including difficulties in probe synthesis, low sensitivity, cross-hybridization, and limited resolution. In contrast, oligo-based FISH represents a more efficient method for chromosomal studies in plants. Oligo probes are computationally designed and synthesized for any plant species with a sequenced genome and are suitable for single and repetitive DNA sequences, entire chromosomes, or chromosomal segments. Furthermore, oligo probes used in the FISH experiment provide high specificity, resolution, and multiplexing. Moreover, oligo probes made from one species are applicable for studying other genetically and taxonomically related species whose genome has not been sequenced yet, facilitating molecular cytogenetic studies of non-model plants. However, there are some limitations of oligo probes that should be considered, such as requiring prior knowledge of the probe design process and FISH signal issues with shorter probes of background noises during oligo-FISH experiments. This review comprehensively discusses de novo oligo probe synthesis with more focus on single-copy DNA sequences, preparation, improvement, and factors that affect oligo-FISH efficiency. Furthermore, this review highlights recent applications of oligo-FISH in a wide range of plant chromosomal studies.
Collapse
Affiliation(s)
- Arrashid Harun
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Sumeera Asghar
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| | - Xiaopeng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
| | - Zhongming Fang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
| | - Chunli Chen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Rice Industry Technology Research, College of Agricultural Sciences, Guizhou University, Guiyang 550025, China;
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, College of Life Science, Guizhou University, Guiyang 550025, China; (S.A.); (X.W.)
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan 430070, China; (H.L.); (S.S.)
| |
Collapse
|
14
|
Song S, Liu H, Miao L, He L, Xie W, Lan H, Yu C, Yan W, Wu Y, Wen XP, Xu Q, Deng X, Chen C. Molecular cytogenetic map visualizes the heterozygotic genome and identifies translocation chromosomes in Citrus sinensis. J Genet Genomics 2023; 50:410-421. [PMID: 36608932 DOI: 10.1016/j.jgg.2022.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/05/2023]
Abstract
Citrus sinensis is the most cultivated and economically valuable Citrus species in the world, whose genome has been assembled by three generation sequencings. However, chromosome recognition remains a problem due to the small size of chromosomes, and difficulty in differentiating between pseudo and real chromosomes because of a highly heterozygous genome. Here, we employ fluorescence in situ hybridization (FISH) with 9 chromosome painting probes, 30 oligo pools, and 8 repetitive sequences to visualize 18 chromosomes. Then, we develop an approach to identify each chromosome in one cell through single experiment of oligo-FISH and Chromoycin A3 (CMA) staining. By this approach, we construct a high-resolution molecular cytogenetic map containing the physical positions of CMA banding and 38 sequences of FISH including centromere regions, which enables us to visualize significant differences between homologous chromosomes. Based on the map, we locate several highly repetitive sequences on chromosomes and estimate sizes and copy numbers of each site. In particular, we discover the translocation regions of chromosomes 4 and 9 in C. sinensis "Valencia." The high-resolution molecular cytogenetic map will help improve understanding of sweet orange genome assembly and also provide a fundamental reference for investigating chromosome evolution and chromosome engineering for genetic improvement in Citrus.
Collapse
Affiliation(s)
- Shipeng Song
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hui Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Luke Miao
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Li He
- National-local Joint Engineering Laboratory of Citrus Breeding and Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan 610066, China
| | - Wenzhao Xie
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China; National Key Laboratory of Crop Genetics and Improvement, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hong Lan
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; Hubei Province Engineering Research Center of Legume Plants, College of Life Science, Jianghan University, Wuhan, Hubei 430056, China
| | - Changxiu Yu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wenkai Yan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yufeng Wu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiao-Peng Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-bioengineering, College of Life Science, Guizhou University, Guiyang, Guizhou 550025, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China
| | - Chunli Chen
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, Wuhan, Hubei 430070, China; College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
15
|
Meng Z, Wang F, Xie Q, Li R, Shen H, Li H. Reconstruction of karyotypic evolution in Saccharum spontaneum species by comparative oligo-FISH mapping. BMC PLANT BIOLOGY 2022; 22:599. [PMID: 36539690 PMCID: PMC9764494 DOI: 10.1186/s12870-022-04008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/15/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Karyotype dynamics driven by chromosomal rearrangements has long been considered as a fundamental question in the evolutionary genetics. Saccharum spontaneum, the most primitive and complex species in the genus Saccharum, has reportedly undergone at least two major chromosomal rearrangements, however, its karyotypic evolution remains unclear. RESULTS In this study, four representative accessions, i.e., hypothetical diploid sugarcane ancestor (sorghum, x = 10), Sa. spontaneum Np-X (x = 10, tetraploid), 2012-46 (x = 9, hexaploid) and AP85-441 (x = 8, tetraploid), were selected for karyotype evolution studies. A set of oligonucleotide (oligo)-based barcode probes was developed based on the sorghum genome, which allowed universal identification of all chromosomes from sorghum and Sa. spontaneum. By comparative FISH assays, we reconstructed the karyotype evolutionary history and discovered that although chromosomal rearrangements resulted in greater variation in relative lengths of some chromosomes, all chromosomes maintained a conserved metacentric structure. Additionally, we found that the barcode oligo probe was not applicable for chromosome identification in both Sa. robustum and Sa. officinarum species, suggesting that sorghum is more distantly related to Sa. robustum and Sa. officinarum compared with Sa. spontaneum species. CONCLUSIONS Our study demonstrated that the barcode oligo-FISH is an efficient tool for chromosome identification and karyotyping research, and expanded our understanding of the karyotypic and chromosomal evolution in the genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Rong Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Haitao Shen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-basin System Ecology of Xinjiang Production and Construction Corps, College of Life Sciences, Shihezi University, Shihezi, 832003, China.
| |
Collapse
|
16
|
Shearman JR, Pootakham W, Sonthirod C, Naktang C, Yoocha T, Sangsrakru D, Jomchai N, Tongsima S, Piriyapongsa J, Ngamphiw C, Wanasen N, Ukoskit K, Punpee P, Klomsa-ard P, Sriroth K, Zhang J, Zhang X, Ming R, Tragoonrung S, Tangphatsornruang S. A draft chromosome-scale genome assembly of a commercial sugarcane. Sci Rep 2022; 12:20474. [PMID: 36443360 PMCID: PMC9705387 DOI: 10.1038/s41598-022-24823-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
Sugarcane accounts for a large portion of the worlds sugar production. Modern commercial cultivars are complex hybrids of S. officinarum, S. spontaneum, and several other Saccharum species, resulting in an auto-allopolyploid with 8-12 copies of each chromosome. The current genome assembly gold standard is to generate a long read assembly followed by chromatin conformation capture sequencing to scaffold. We used the PacBio RSII and chromatin conformation capture sequencing to sequence and assemble the genome of a South East Asian commercial sugarcane cultivar, known as Khon Kaen 3. The Khon Kaen 3 genome assembled into 104,477 contigs totalling 7 Gb, which scaffolded into 56 pseudochromosomes containing 5.2 Gb of sequence. Genome annotation produced 242,406 genes from 30,927 orthogroups. Aligning the Khon Kaen 3 genome sequence to S. officinarum and S. spontaneum revealed a high level of apparent recombination, indicating a chimeric assembly. This assembly error is explained by high nucleotide identity between S. officinarum and S. spontaneum, where 91.8% of S. spontaneum aligns to S. officinarum at 94% identity. Thus, the subgenomes of commercial sugarcane are so similar that using short reads to correct long PacBio reads produced chimeric long reads. Future attempts to sequence sugarcane must take this information into account.
Collapse
Affiliation(s)
- Jeremy R. Shearman
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Wirulda Pootakham
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chutima Sonthirod
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chaiwat Naktang
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Thippawan Yoocha
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Duangjai Sangsrakru
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nukoon Jomchai
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sissades Tongsima
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Jittima Piriyapongsa
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- grid.425537.20000 0001 2191 4408National Biobank of Thailand, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Nanchaya Wanasen
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kittipat Ukoskit
- grid.412434.40000 0004 1937 1127Department of Biotechnology, Faculty of Science and Technology, Thammasat University, Rangsit Campus, Klong Luang, Pathum Thani Thailand
| | - Prapat Punpee
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand ,Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Peeraya Klomsa-ard
- Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Klanarong Sriroth
- Crop Production, Mitr Phol Innovation and Research Center, Pathum Thani, Thailand
| | - Jisen Zhang
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Xingtan Zhang
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Ray Ming
- grid.256111.00000 0004 1760 2876Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian China
| | - Somvong Tragoonrung
- grid.425537.20000 0001 2191 4408National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Sithichoke Tangphatsornruang
- grid.425537.20000 0001 2191 4408National Omics Center, National Science and Technology Development Agency, Pathum Thani, Thailand
| |
Collapse
|
17
|
Xu Z, Chen J, Meng S, Xu P, Zhai C, Huang F, Guo Q, Zhao L, Quan Y, Shangguan Y, Meng Z, Wen T, Zhang Y, Zhang X, Zhao J, Xu J, Liu J, Gao J, Ni W, Chen X, Ji W, Wang N, Lu X, Wang S, Wang K, Zhang T, Shen X. Genome sequence of Gossypium anomalum facilitates interspecific introgression breeding. PLANT COMMUNICATIONS 2022; 3:100350. [PMID: 35733334 PMCID: PMC9483115 DOI: 10.1016/j.xplc.2022.100350] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 05/31/2023]
Abstract
Crop wild relatives are an important reservoir of natural biodiversity. However, incorporating wild genetic diversity into breeding programs is often hampered by reproductive barriers and a lack of accurate genomic information. We assembled a high-quality, accurately centromere-anchored genome of Gossypium anomalum, a stress-tolerant wild cotton species. We provided a strategy to discover and transfer agronomically valuable genes from wild diploid species to tetraploid cotton cultivars. With a (Gossypium hirsutum × G. anomalum)2 hexaploid as a bridge parent, we developed a set of 74 diploid chromosome segment substitution lines (CSSLs) of the wild cotton species G. anomalum in the G. hirsutum background. This set of CSSLs included 70 homozygous substitutions and four heterozygous substitutions, and it collectively contained about 72.22% of the G. anomalum genome. Twenty-four quantitative trait loci associated with plant height, yield, and fiber qualities were detected on 15 substitution segments. Integrating the reference genome with agronomic trait evaluation of the CSSLs enabled location and cloning of two G. anomalum genes that encode peroxiredoxin and putative callose synthase 8, respectively, conferring drought tolerance and improving fiber strength. We have demonstrated the power of a high-quality wild-species reference genome for identifying agronomically valuable alleles to facilitate interspecific introgression breeding in crops.
Collapse
Affiliation(s)
- Zhenzhen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jiedan Chen
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shan Meng
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Peng Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Caijiao Zhai
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Fang Huang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Qi Guo
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Liang Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | | | - Yixin Shangguan
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Zhuang Meng
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tian Wen
- JOIN HOPE SEEDS Co., Ltd., Changji, China
| | - Ya Zhang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xianggui Zhang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jun Zhao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianwen Xu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jianguang Liu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Jin Gao
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wanchao Ni
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xianglong Chen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Wei Ji
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nanyi Wang
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiaoxi Lu
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China; Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | | | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China.
| | - Tianzhen Zhang
- Institute of Crop Science, Plant Precision Breeding Academy, Zhejiang Provincial Key Laboratory of Crop Genetic Resources, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China.
| | - Xinlian Shen
- Key Laboratory of Cotton and Rapeseed (Nanjing), Ministry of Agriculture and Rural Affairs, the Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
18
|
Sun Y, Han H, Wang X, Han B, Zhou S, Zhang M, Liu W, Li X, Guo X, Lu Y, Yang X, Zhang J, Liu X, Li L. Development and application of universal ND-FISH probes for detecting P-genome chromosomes based on Agropyron cristatum transposable elements. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2022; 42:48. [PMID: 37313513 PMCID: PMC10248659 DOI: 10.1007/s11032-022-01320-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Fluorescence in situ hybridization (FISH) is a basic tool that is widely used in cytogenetic research. The detection efficiency of conventional FISH is limited due to its time-consuming nature. Oligonucleotide (oligo) probes with fluorescent labels have been applied in non-denaturing FISH (ND-FISH) assays, which greatly streamline experimental processes and save costs and time. Agropyron cristatum, which contains one basic genome, "P," is a vital wild relative for wheat improvement. However, oligo probes for detecting P-genome chromosomes based on ND-FISH assays have not been reported. In this study, according to the distribution of transposable elements (TEs) in Triticeae genomes, 94 oligo probes were designed based on three types of A. cristatum sequences. ND-FISH validation showed that 12 single oligo probes generated a stable and obvious hybridization signal on whole P chromosomes in the wheat background. To improve signal intensity, mixed probes (Oligo-pAc) were prepared by using the 12 successful probes and validated in the diploid accession A. cristatum Z1842, a small segmental translocation line and six allopolyploid wild relatives containing the P genome. The signals of Oligo-pAc covered the entire chromosomes of A. cristatum and were more intense than those of single probes. The results indicate that Oligo-pAc can replace conventional genomic in situ hybridization (GISH) probes to identify P chromosomes or segments in non-P-genome backgrounds. Finally, we provide a rapid and efficient method specifically for detecting P chromosomes in wheat backgrounds by combining the Oligo-pAc probe with the Oligo-pSc119.2-1 and Oligo-pTa535-1 probes, which can replace conventional sequential GISH/FISH assays. Altogether, we developed a set of oligo probes based on the ND-FISH assays to identify P-genome chromosomes, which can promote utilization of A. cristatum in wheat improvement programs.
Collapse
Affiliation(s)
- Yangyang Sun
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Haiming Han
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiao Wang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Bohui Han
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Shenghui Zhou
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Meng Zhang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Weihui Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiuquan Li
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xiaomin Guo
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Yuqing Lu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xinming Yang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Jinpeng Zhang
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Xu Liu
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| | - Lihui Li
- National Crop Genebank, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081 China
| |
Collapse
|
19
|
Metcalfe CJ, Li J, Zheng B, Stiller J, Healey A, Piperidis N, Aitken KS. Isolation and sequencing of a single copy of an introgressed chromosome from a complex genome for gene and SNP identification. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1279-1292. [PMID: 35275251 DOI: 10.1007/s00122-022-04030-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 12/31/2021] [Indexed: 06/14/2023]
Abstract
This manuscript describes the identification, isolation and sequencing of a single chromosome containing high value resistance genes from a complex polyploid where sequencing the whole genome is too costly. The large complex genomes of many crops constrain the use of new technologies for genome-assisted selection and genetic improvement. One method to simplify a genome is to break it into individual chromosomes by flow cytometry; however, in many crop species most chromosomes cannot be isolated individually. Flow sorting of a single copy of a chromosome has been developed in wheat, and here we demonstrate its use to identify markers of interest in an Erianthus/Sacchurum hybrid. Erianthus/Saccharum hybrids are of interest because Erianthus is known to be highly resistant to soil borne diseases which cause extensive sugarcane yield losses in Australia. Sugarcane (Saccharum) cultivars are autopolyploids with a highly complex genome and over 100 chromosomes. Flow cytometry for sugarcane, as in most crops, does not resolve individual chromosomes to a karyotype peak for sorting. To isolate a single chromosome, we used genomic in situ hybridization (GISH) to identify the flow karyotype region containing the Erianthus chromosomes, flow sorted single chromosomes from this region, PCR screened for the Erianthus chromosomes and sequenced them. One Erianthus chromosome amplified and sequenced well, and from this data we could identify 57 resistant type genes and SNPs in nearly half of these genes. We developed KASP SNP assays and demonstrated that the identified SNP markers segregated as expected in a small introgression population. The pipeline we developed here to flow sort and sequence single chromosomes could be used in any crop with a large complex genome to rapidly discover and develop markers to important loci.
Collapse
Affiliation(s)
- Cushla J Metcalfe
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jingchuan Li
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Bangyou Zheng
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Jiri Stiller
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia
| | - Adam Healey
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | | | - Karen S Aitken
- CSIRO Agriculture and Food, Queensland Biosciences Precinct, 306 Carmody Rd, St. Lucia, QLD, 4067, Australia.
| |
Collapse
|
20
|
Šimoníková D, Čížková J, Zoulová V, Christelová P, Hřibová E. Advances in the Molecular Cytogenetics of Bananas, Family Musaceae. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11040482. [PMID: 35214815 PMCID: PMC8879896 DOI: 10.3390/plants11040482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 05/03/2023]
Abstract
The banana is a staple food crop and represents an important trade commodity for millions of people living in tropical and subtropical countries. The most important edible banana clones originated from natural crosses between diploid Musa balbisiana and various subspecies of M. acuminata. It is worth mentioning that evolution and speciation in the Musaceae family were accompanied by large-scale chromosome structural changes, indicating possible reasons for lower fertility or complete sterility of these vegetatively propagated clones. Chromosomal changes, often accompanied by changes in genome size, are one of the driving forces underlying speciation in plants. They can clarify the genomic constitution of edible bananas and shed light on their origin and on diversification processes in members of the Musaceae family. This article reviews the development of molecular cytogenetic approaches, ranging from classical fluorescence in situ hybridization (FISH) using common cytogenetic markers to oligo painting FISH. We discuss differences in genome size and chromosome number across the Musaceae family in addition to the development of new chromosome-specific cytogenetic probes and their use in genome structure and comparative karyotype analysis. The impact of these methodological advances on our knowledge of Musa genome evolution at the chromosomal level is demonstrated. In addition to citing published results, we include our own new unpublished results and outline future applications of molecular cytogenetics in banana research.
Collapse
Affiliation(s)
- Denisa Šimoníková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Jana Čížková
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Veronika Zoulová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
- Department of Cell Biology and Genetics, Faculty of Science, Palacký University, 77900 Olomouc, Czech Republic
| | - Pavla Christelová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
| | - Eva Hřibová
- Institute of Experimental Botany of the Czech Academy of Sciences, Centre of the Region Hana for Biotechnological and Agricultural Research, 77900 Olomouc, Czech Republic; (D.Š.); (J.Č.); (V.Z.); (P.C.)
- Correspondence: ; Tel.: +420-585-238-713
| |
Collapse
|
21
|
Yu F, Zhao X, Chai J, Ding X, Li X, Huang Y, Wang X, Wu J, Zhang M, Yang Q, Deng Z, Jiang J. Chromosome-specific painting unveils chromosomal fusions and distinct allopolyploid species in the Saccharum complex. THE NEW PHYTOLOGIST 2022; 233:1953-1965. [PMID: 34874076 DOI: 10.1111/nph.17905] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/29/2021] [Indexed: 06/13/2023]
Abstract
Karyotypes provide key cytogenetic information on the phylogenetic relationships and evolutionary origins in related eukaryotic species. Despite our knowledge of the chromosome numbers of sugarcane and its wild relatives, the chromosome composition and evolution among the species in the Saccharum complex have been elusive owing to the complex polyploidy and the large numbers of chromosomes of these species. Oligonucleotide-based chromosome painting has become a powerful tool of cytogenetic studies especially for plant species with large numbers of chromosomes. We developed oligo-based chromosome painting probes for all 10 chromosomes in Saccharum officinarum (2n = 8x = 80). The 10 painting probes generated robust fluorescence in situ hybridization signals in all plant species within the Saccharum complex, including species in the genera Saccharum, Miscanthus, Narenga and Erianthus. We conducted comparative chromosome analysis using the same set of probes among species from four different genera within the Saccharum complex. Excitingly, we discovered several novel cytotypes and chromosome rearrangements in these species. We discovered that fusion from two different chromosomes is a common type of chromosome rearrangement associated with the species in the Saccharum complex. Such fusion events changed the basic chromosome number and resulted in distinct allopolyploids in the Saccharum complex.
Collapse
Affiliation(s)
- Fan Yu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Xinwang Zhao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jin Chai
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xueer Ding
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Xueting Li
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Yongji Huang
- Marine and Agricultural Biotechnology Laboratory, Fuzhou Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Xianhong Wang
- College of Agriculture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Jiayun Wu
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, Guangzhou, 510316, China
| | - Muqing Zhang
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
| | - Qinghui Yang
- College of Agriculture, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
| | - Zuhu Deng
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- State Key Laboratory for Protection and Utilization of Subtropical Agro-bioresources, Guangxi University, Nanning, 530004, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, MSU AgBioResearch, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
22
|
Luo X, Liu J, He Z. Oligo-FISH Can Identify Chromosomes and Distinguish Hippophaë rhamnoides L. Taxa. Genes (Basel) 2022; 13:genes13020195. [PMID: 35205242 PMCID: PMC8872433 DOI: 10.3390/genes13020195] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/04/2023] Open
Abstract
Oligo-fluorescence in situ hybridization (FISH) facilitates precise chromosome identification and comparative cytogenetic analysis. Detection of autosomal chromosomes of Hippophaë rhamnoides has not been achieved using oligonucleotide sequences. Here, the chromosomes of five H. rhamnoides taxa in the mitotic metaphase and mitotic metaphase to anaphase were detected using the oligo-FISH probes (AG3T3)3, 5S rDNA, and (TTG)6. In total, 24 small chromosomes were clearly observed in the mitotic metaphase (0.89–3.03 μm), whereas 24–48 small chromosomes were observed in the mitotic metaphase to anaphase (0.94–3.10 μm). The signal number and intensity of (AG3T3)3, 5S rDNA, and (TTG)6 in the mitotic metaphase to anaphase chromosomes were nearly consistent with those in the mitotic metaphase chromosomes when the two split chromosomes were integrated as one unit. Of note, 14 chromosomes (there is a high chance that sex chromosomes are included) were exclusively identified by (AG3T3)3, 5S rDNA, and (TTG)6. The other 10 also showed a terminal signal with (AG3T3)3. Moreover, these oligo-probes were able to distinguish one wild H. rhamnoides taxon from four H. rhamnoides taxa. These chromosome identification and taxa differentiation data will help in elucidating visual and elaborate physical mapping and guide breeders’ utilization of wild resources of H. rhamnoides.
Collapse
|
23
|
A comprehensive molecular cytogenetic analysis of the genome architecture in modern sugarcane cultivars. Chromosome Res 2022; 30:29-41. [PMID: 34988746 DOI: 10.1007/s10577-021-09680-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/15/2021] [Accepted: 11/28/2021] [Indexed: 01/09/2023]
Abstract
Modern sugarcane cultivars are derived from the hybridization of Saccharum officinarum (2n = 80) and S. spontaneum (2n = 40-128), leading to a variety of complex genomes with highly polyploid and varied chromosome structures. These complex genomes have hindered deciphering the genome structure and marker-assisted selection in sugarcane breeding. Ten cultivars were analyzed by fluorescence in situ hybridization adopting chromosome painting and S. spontaneum-specific probes. The results showed six types of chromosomes in the studied cultivars, including S. spontaneum or S. officinarum chromosomes, interspecific recombinations from homoeologous or nonhomoeologous chromosomes, and translocations of S. spontaneum or S. officinarum chromosomes. The results showed unexpectedly high proportions of interspecific recombinations in these cultivars (11.9-40.9%), which renew our knowledge that less than 13% of chromosomes result from interspecific exchanges. Also, the results showed a high frequency of translocations (an average of 2.15 translocations per chromosome) between S. officinarum chromosomes. The diverse types of chromosomes in cultivars imply that hybrid gametes of S. spontaneum and S. officinarum may form unusual chromosome pairs, including homoeologous or nonhomoeologous chromosomes either between or within S. spontaneum and S. officinarum. Moreover, we consistently observed 11 or 12 copies for the four studied chromosomes, i.e., chromosomes 1, 2, 7, and 8, suggesting steady transmission during the breeding program. By comparison, we found a relatively fewer copies of S. spontaneum chromosome 1 than those of S. spontaneum chromosomes 2, 7, and 8. These results provide deep insights into the structure of cultivars and may facilitate chromosome-assisted selection in sugarcane breeding.
Collapse
|
24
|
de Oliveira Bustamante F, do Nascimento TH, Montenegro C, Dias S, do Vale Martins L, Braz GT, Benko-Iseppon AM, Jiang J, Pedrosa-Harand A, Brasileiro-Vidal AC. Oligo-FISH barcode in beans: a new chromosome identification system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3675-3686. [PMID: 34368889 DOI: 10.1007/s00122-021-03921-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/17/2021] [Indexed: 06/13/2023]
Abstract
An Oligo-FISH barcode system was developed for two model legumes, allowing the identification of all cowpea and common bean chromosomes in a single FISH experiment, and revealing new chromosome rearrangements. The FISH barcode system emerges as an effective tool to understand the chromosome evolution of economically important legumes and their related species. Current status on plant cytogenetic and cytogenomic research has allowed the selection and design of oligo-specific probes to individually identify each chromosome of the karyotype in a target species. Here, we developed the first chromosome identification system for legumes based on oligo-FISH barcode probes. We selected conserved genomic regions between Vigna unguiculata (Vu, cowpea) and Phaseolus vulgaris (Pv, common bean) (diverged ~ 9.7-15 Mya), using cowpea as a reference, to produce a unique barcode pattern for each species. We combined our oligo-FISH barcode pattern with a set of previously developed FISH probes based on BACs and ribosomal DNA sequences. In addition, we integrated our FISH maps with genome sequence data. Based on this integrated analysis, we confirmed two translocation events (involving chromosomes 1, 5, and 8; and chromosomes 2 and 3) between both species. The application of the oligo-based probes allowed us to demonstrate the participation of chromosome 5 in the translocation complex for the first time. Additionally, we detailed a pericentric inversion on chromosome 4 and identified a new paracentric inversion on chromosome 10. We also detected centromere repositioning associated with chromosomes 2, 3, 5, 7, and 9, confirming previous results for chromosomes 2 and 3. This first barcode system for legumes can be applied for karyotyping other Phaseolinae species, especially non-model, orphan crop species lacking genomic assemblies and cytogenetic maps, expanding our understanding of the chromosome evolution and genome organization of this economically important legume group.
Collapse
Affiliation(s)
- Fernanda de Oliveira Bustamante
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Universidade do Estado de Minas Gerais, Unidade Divinópolis, Divinópolis, MG, Brazil
| | | | - Claudio Montenegro
- Departamento de Botânica, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Sibelle Dias
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Lívia do Vale Martins
- Departamento de Genética, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Biologia, Universidade Federal do Piauí, Teresina, PI, Brazil
| | | | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | | | |
Collapse
|
25
|
Zaki NM, Schwarzacher T, Singh R, Madon M, Wischmeyer C, Hanim Mohd Nor N, Zulkifli MA, Heslop-Harrison JSP. Chromosome identification in oil palm (Elaeis guineensis) using in situ hybridization with massive pools of single copy oligonucleotides and transferability across Arecaceae species. Chromosome Res 2021; 29:373-390. [PMID: 34657216 DOI: 10.1007/s10577-021-09675-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 11/26/2022]
Abstract
Chromosome identification is essential for linking sequence and chromosomal maps, verifying sequence assemblies, showing structural variations and tracking inheritance or recombination of chromosomes and chromosomal segments during evolution and breeding programs. Unfortunately, identification of individual chromosomes and chromosome arms has been a major challenge for some economically important crop species with a near-continuous chromosome size range and similar morphology. Here, we developed oligonucleotide-based chromosome-specific probes that enabled us to establish a reference chromosome identification system for oil palm (Elaeis guineensis Jacq., 2n = 32). Massive oligonucleotide sequence pools were anchored to individual chromosome arms using dual and triple fluorescent in situ hybridization (EgOligoFISH). Three fluorescently tagged probe libraries were developed to contain, in total 52,506 gene-rich single-copy 47-mer oligonucleotides spanning each 0.2-0.5 Mb across strategically placed chromosome regions. They generated 19 distinct FISH signals and together with rDNA probes enabled identification of all 32 E. guineensis chromosome arms. The probes were able to identify individual homoeologous chromosome regions in the related Arecaceae palm species: American oil palm (Elaeis oleifera), date palm (Phoenix dactylifera) and coconut (Cocos nucifera) showing the comparative organization and concerted evolution of genomes in the Arecaceae. The oligonucleotide probes developed here provide a valuable approach to chromosome arm identification and allow tracking chromosome transfer in hybridization and breeding programs in oil palm, as well as comparative studies within Arecaceae.
Collapse
Affiliation(s)
- Noorhariza Mohd Zaki
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia.
| | | | - Rajinder Singh
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | | | | - Nordiana Hanim Mohd Nor
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | - Muhammad Azwan Zulkifli
- MPOB Malaysian Palm Oil Board, 6 Persiaran Institusi, Bandar Baru Bangi, 43000, Kajang, Selangor, Malaysia
| | | |
Collapse
|
26
|
Meng Z, Wang Q, Khurshid H, Raza G, Han J, Wang B, Wang K. Chromosome Painting Provides Insights Into the Genome Structure and Evolution of Sugarcane. FRONTIERS IN PLANT SCIENCE 2021; 12:731664. [PMID: 34512706 PMCID: PMC8429501 DOI: 10.3389/fpls.2021.731664] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
The genus Saccharum is composed of species with high polyploidy and highly varied chromosome numbers, laying a challenge for uncovering its genomic structure and evolution. We developed a chromosome 2 painting (CP2) probe by designing oligonucleotides covering chromosome 2 of Saccharum spontaneum (2n = 8x = 64). Fluorescence in situ hybridization (FISH) using this CP2 probe revealed six types of ploidies from twenty S. spontaneum clones, including 6x, 8x, 10x, 11x, 12x, and 13x clones. The finding of S. spontaneum clones with uneven of ploid suggested that certain S. spontaneum clones come from hybridization. It renews our knowledge that S. spontaneum is derived from autopolyploidization. Combined with a S. spontaneum-specific probe, chromosome 2-derived chromosome or fragments from either S. spontaneum or Saccharum officinarum can be identified in sugarcane modern cultivars. We revealed unexpected high level of interspecific recombination from introgressive S. spontaneum chromosomes (>50.0%) in cultivars ROC22 and ZZ1, indicating frequent chromosome exchange in cultivars. Intriguingly, we observed interspecific recombination recurring among either homoeologous or non-homoeologous chromosomes in sugarcane cultivars. These results demonstrated that chromosome painting FISH is a powerful tool in the genome dissection of sugarcane and provide new insights into the genome structure and evolution of the complex genus Saccharum.
Collapse
Affiliation(s)
- Zhuang Meng
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qinnan Wang
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| | - Haris Khurshid
- Oilseeds Research Program, National Agricultural Research Centre, Islamabad, Pakistan
| | - Ghulam Raza
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Jinlei Han
- School of Life Sciences, Nantong University, Nantong, China
| | - Baohua Wang
- School of Life Sciences, Nantong University, Nantong, China
| | - Kai Wang
- School of Life Sciences, Nantong University, Nantong, China
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
27
|
Qu M, Zhang L, Li K, Sun J, Li Z, Han Y. Karyotypic stability of Fragaria (strawberry) species revealed by cross-species chromosome painting. Chromosome Res 2021; 29:285-300. [PMID: 34152515 DOI: 10.1007/s10577-021-09666-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/30/2022]
Abstract
Chromosome karyotyping analysis is particularly useful in determining species relationships and the origin of polyploid species. Identification of individual chromosomes is the foundation for karyotype development. For Fragaria (strawberry) species, definitive identification of the individual chromosomes is extremely difficult because of their small size and similar shape. Here, we identified all chromosomes for 11 representative Fragaria species with different ploidy using a set of oligonucleotide-based probes developed in Fragaria vesca. Comprehensive molecular cytogenetic karyotypes were established based on the individually identified chromosomes. In addition, we used oligo probes to assign the 5S and 45S rDNA loci to specific chromosomes in 16 Fragaria species. We found that these Fragaria species maintained a remarkably conserved karyotype. No inter-chromosomal structural rearrangements at the cytological level were observed in any of the chromosomes among these species. Despite karyotypic stability and similarity, variations in the signal intensity of oligo probes were observed among the homologous chromosomes in several polyploid species. Moreover, most Fragaria species also showed differences in the distribution patterns of 45S and 5S rDNA. These data provide new insights into the origins of several polyploid Fragaria species.
Collapse
Affiliation(s)
- Manman Qu
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Luyue Zhang
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Kunpeng Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Jianying Sun
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China
| | - Zongyun Li
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
| | - Yonghua Han
- School of Life Sciences, Jiangsu Normal University, Xuzhou, 221116, China.
| |
Collapse
|
28
|
Huang Y, Ding W, Zhang M, Han J, Jing Y, Yao W, Hasterok R, Wang Z, Wang K. The formation and evolution of centromeric satellite repeats in Saccharum species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:616-629. [PMID: 33547688 DOI: 10.1111/tpj.15186] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 05/04/2023]
Abstract
Centromeres in eukaryotes are composed of tandem DNAs and retrotransposons. However, centromeric repeats exhibit considerable diversity, even among closely related species, and their origin and evolution are largely unknown. We conducted a genome-wide characterization of the centromeric sequences in sugarcane (Saccharum officinarum). Four centromeric tandem repeat sequences, So1, So103, So137 and So119, were isolated. So1 has a monomeric length of 137 bp, typical of a centromeric satellite, and has evolved four variants. However, these So1 variants had distinct centromere distributions and some were unique to an individual centromere. The distributions of the So1 variants were unexpectedly consistent among the Saccharum species that had different basic chromosome numbers or ploidy levels, thus suggesting evolutionary stability for approximately 7 million years in sugarcane. So103, So137 and So119 had unusually longer monomeric lengths that ranged from 327 to 1371 bp and lacked translational phasing on the CENH3 nucleosomes. Moreover, So103, So137 and So119 seemed to be highly similar to retrotransposons, which suggests that they originated from these mobile elements. Notably, all three repeats were flanked by direct repeats, and formed extrachromosomal circular DNAs (eccDNAs). The presence of circular molecules for these retrotransposon-derived centromeric satellites suggests an eccDNA-mediated centromeric satellite formation pathway in sugarcane.
Collapse
Affiliation(s)
- Yongji Huang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Wenjie Ding
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muqing Zhang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Jinlei Han
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yanfen Jing
- Ruili Breeding Station, Sugarcane Institute, Yunnan Academy of Agricultural Sciences, Ruili, 678600, China
| | - Wei Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro- Bioresources, Guangxi Key Lab for Sugarcane Biology, Guangxi University, Nanning, 530004, China
| | - Robert Hasterok
- Plant Cytogenetics and Molecular Biology Group, Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, 40-032, Poland
| | - Zonghua Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
- Institute of Oceanography, Minjiang University, Fuzhou, 350108, China
| | - Kai Wang
- Guangxi Key Laboratory of Sugarcane Biology & Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops (MOE), College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
29
|
do Vale Martins L, de Oliveira Bustamante F, da Silva Oliveira AR, da Costa AF, de Lima Feitoza L, Liang Q, Zhao H, Benko-Iseppon AM, Muñoz-Amatriaín M, Pedrosa-Harand A, Jiang J, Brasileiro-Vidal AC. BAC- and oligo-FISH mapping reveals chromosome evolution among Vigna angularis, V. unguiculata, and Phaseolus vulgaris. Chromosoma 2021; 130:133-147. [PMID: 33909141 DOI: 10.1007/s00412-021-00758-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 02/17/2021] [Accepted: 04/05/2021] [Indexed: 01/29/2023]
Abstract
Cytogenomic resources have accelerated synteny and chromosome evolution studies in plant species, including legumes. Here, we established the first cytogenetic map of V. angularis (Va, subgenus Ceratotropis) and compared this new map with those of V. unguiculata (Vu, subgenus Vigna) and P. vulgaris (Pv) by BAC-FISH and oligopainting approaches. We mapped 19 Vu BACs and 35S rDNA probes to the 11 chromosome pairs of Va, Vu, and Pv. Vigna angularis shared a high degree of macrosynteny with Vu and Pv, with five conserved syntenic chromosomes. Additionally, we developed two oligo probes (Pv2 and Pv3) used to paint Vigna orthologous chromosomes. We confirmed two reciprocal translocations (chromosomes 2 and 3 and 1 and 8) that have occurred after the Vigna and Phaseolus divergence (~9.7 Mya). Besides, two inversions (2 and 4) and one translocation (1 and 5) have occurred after Vigna and Ceratotropis subgenera separation (~3.6 Mya). We also observed distinct oligopainting patterns for chromosomes 2 and 3 of Vigna species. Both Vigna species shared similar major rearrangements compared to Pv: one translocation (2 and 3) and one inversion (chromosome 3). The sequence synteny identified additional inversions and/or intrachromosomal translocations involving pericentromeric regions of both orthologous chromosomes. We propose chromosomes 2 and 3 as hotspots for chromosomal rearrangements and de novo centromere formation within and between Vigna and Phaseolus. Our BAC- and oligo-FISH mapping contributed to physically trace the chromosome evolution of Vigna and Phaseolus and its application in further studies of both genera.
Collapse
Affiliation(s)
| | | | | | | | | | - Qihua Liang
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | | | - María Muñoz-Amatriaín
- Department of Soil and Crop Sciences, Colorado State University, Fort Collins, CO, USA
| | | | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
30
|
He J, Lin S, Yu Z, Song A, Guan Z, Fang W, Chen S, Zhang F, Jiang J, Chen F, Wang H. Identification of 5S and 45S rDNA sites in Chrysanthemum species by using oligonucleotide fluorescence in situ hybridization (Oligo-FISH). Mol Biol Rep 2021; 48:21-31. [PMID: 33454907 DOI: 10.1007/s11033-020-06102-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022]
Abstract
Fluorescence in situ hybridization (FISH) is a conventional method used to visualize the distribution of DNA elements within a genome. To examine the relationships within the Chrysanthemum genus, ribosomal DNA (rDNA), a popular cytogenetic marker, was utilized as a probe for FISH within this genus. Based on the genome data of Chrysanthemum nankingense, C. seticuspe and its allied genera in the Compositae(Asteraceae), we explored rDNA sequences to design oligonucleotide probes and perform oligonucleotide fluorescence in situ hybridization (Oligo-FISH) in eight Chrysanthemum accessions. The results showed that the majority of 5S rDNA signals were located in subterminal chromosome regions and that the number of 5S rDNA sites might be tightly associated with ploidy. For 45S rDNA sites, the number and intensity of signals differed from those of previously investigated Chrysanthemum resources. These findings may provide an optimally reliable method of examining the chromosome composition and structural variation of Chrysanthemum and its related species and allow researchers to understand the evolutionary history and phylogenetic relationships of Chrysanthemum.
Collapse
Affiliation(s)
- Jun He
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sisi Lin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhongyu Yu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Aiping Song
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhiyong Guan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Weimin Fang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Sumei Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fei Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiafu Jiang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Fadi Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Haibin Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture, College of Horticulture, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
31
|
Sobhakumari VP. Evolutionary Dynamics of Chromosomal Diversity in <i>Saccharum spontaneum</i> Population from Punjab and Haryana, India. CYTOLOGIA 2020. [DOI: 10.1508/cytologia.85.313] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
32
|
He L, Zhao H, He J, Yang Z, Guan B, Chen K, Hong Q, Wang J, Liu J, Jiang J. Extraordinarily conserved chromosomal synteny of Citrus species revealed by chromosome-specific painting. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2225-2235. [PMID: 32578280 DOI: 10.1111/tpj.14894] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/28/2020] [Accepted: 06/05/2020] [Indexed: 05/20/2023]
Abstract
Reliable identification of individual chromosomes in eukaryotic species is the foundation for comparative chromosome synteny and evolutionary studies. Unfortunately, chromosome identification has been a major challenge for plants with small chromosomes, such as the Citrus species. We developed oligonucleotide-based chromosome painting probes for all nine chromosomes in Citrus maxima (Pummelo). We were able to identify all C. maxima chromosomes in the same metaphase cells using multiple rounds of sequential fluorescence in situ hybridization with the painting probes. We conducted comparative chromosome painting analysis in six different Citrus and related species. We found that each painting probe hybridized to only a single chromosome in all other five species, suggesting that the six species have maintained a complete chromosomal synteny after more than 9 million years of divergence. No interchromosomal rearrangement was identified in any species. These results support the hypothesis that karyotypes of woody species are more stable than herbaceous plants because woody plants need a longer period to fix chromosome structural variants in natural populations.
Collapse
Affiliation(s)
- Li He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Hainan Zhao
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
| | - Jian He
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Zujun Yang
- Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Bin Guan
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Keling Chen
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Qibin Hong
- National Citrus Engineering Research Center, Citrus Research Institute, Southwest University/Chinese Academy of Agricultural Sciences, Chongqing, 400712, China
| | - Jianhui Wang
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jianjun Liu
- National-local Joint Engineering Laboratory of Citrus Breeding, Cultivation/Horticulture Institute, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Jiming Jiang
- Department of Plant Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Horticulture, Michigan State University, East Lansing, MI, 48824, USA
- Michigan State University AgBioResearch, East Lansing, MI, 48824, USA
| |
Collapse
|
33
|
Piperidis N, D'Hont A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:2039-2051. [PMID: 32537783 DOI: 10.1111/tpj.14881] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 06/02/2020] [Indexed: 05/04/2023]
Abstract
Sugarcane (Saccharum spp.) is probably the crop with the most complex genome. Modern cultivars (2n = 100-120) are highly polyploids and aneuploids derived from interspecific hybridization between Saccharum officinarum (2n = 80) and Saccharum spontaneum (2n = 40-128). Chromosome-specific oligonucleotide probes were used in combination with genomic in situ hybridization to analyze the genome architecture of modern cultivars and representatives of their parental species. The results validated a basic chromosome number of x = 10 for S. officinarum. In S. spontaneum, rearrangements occurred from a basic chromosome of x = 10, probably in the Northern part of India, in two steps leading to x = 9 and then x = 8. Each step involved three chromosomes that were rearranged into two. Further polyploidization led to the wide geographical extension of clones with x = 8. We showed that the S. spontaneum contribution to modern cultivars originated from cytotypes with x = 8 and varied in proportion between cultivars (13-20%). Modern cultivars had mainly 12 copies for each of the first four basic chromosomes, and a more variable number for those basic chromosomes whose structure differs between the two parental species. One-four of these copies corresponded to entire S. spontaneum chromosomes or interspecific recombinant chromosomes. In addition, a few inter-chromosome translocations were revealed. The new information and cytogenetic tools described in this study substantially improve our understanding of the extreme level of complexity of modern sugarcane cultivar genomes.
Collapse
Affiliation(s)
- Nathalie Piperidis
- SRA, Sugar Research Australia, 26135 Peak Downs Highway, Te Kowai, Qld, 4741, Australia
| | - Angélique D'Hont
- CIRAD, UMR AGAP, Montpellier, F-34398, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, 34060, France
| |
Collapse
|
34
|
A universal chromosome identification system for maize and wild Zea species. Chromosome Res 2020; 28:183-194. [PMID: 32219602 DOI: 10.1007/s10577-020-09630-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 03/16/2020] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Maize was one of the first eukaryotic species in which individual chromosomes can be identified cytologically, which made maize one of the oldest models for genetics and cytogenetics research. Nevertheless, consistent identification of all 10 chromosomes from different maize lines as well as from wild Zea species remains a challenge. We developed a new technique for maize chromosome identification based on fluorescence in situ hybridization (FISH). We developed two oligonucleotide-based probes that hybridize to 24 chromosomal regions. Individual maize chromosomes show distinct FISH signal patterns, which allow universal identification of all chromosomes from different Zea species. We developed karyotypes from three Zea mays subspecies and two additional wild Zea species based on individually identified chromosomes. A paracentric inversion was discovered on the long arm of chromosome 4 in Z. nicaraguensis and Z. luxurians based on modifications of the FISH signal patterns. Chromosomes from these two species also showed distinct distribution patterns of terminal knobs compared with other Zea species. These results support that Z. nicaraguensis and Z. luxurians are closely related species.
Collapse
|