1
|
Zhou H, Guo S, Chen X, Song T, Guo B, Zhang Y, Zhang X. Wheat glutenin allele 1Ax2∗ improves dough and bread quality without compromising yield. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 220:109547. [PMID: 39884147 DOI: 10.1016/j.plaphy.2025.109547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 02/01/2025]
Abstract
High yield and good quality are two predominant objectives of most of the wheat breeding programs. Modulating HMW-GS composition is an effective approach to improve grain quality without yield penalty. In this study, we first analyzed the background similarity of three near-isogenic lines (NILs) with 1Ax-null, 1Ax1 or 1Ax2∗ alleles in the background of cultivar Xiaoyan-22 at the protein and DNA levels. On this basis, the yield, yield-related agronomic traits, flour, dough, and bread qualities of the three lines were studied in the 2021-2022 and 2022-2023 seasons. The results showed that, compared to the 1Ax-null allele, the grain yield of the 1Ax1 or 1Ax2∗ allele was not changed, and the 1Ax1 allele averagely decreased protein yield by up to 4.9% and dough yield by up to 6.5%. Notably, the grain yield of the 1Ax2∗ allele was higher than that of the 1Ax1 allele. Meanwhile, compared to the 1Ax-null allele, the 1Ax1 allele averagely increased unextractable polymeric protein content (UPP%) by up to 5.8%, and dough stability time by up to 27.8%, which increased specific volume by up to 4.2%, and the 1Ax2∗ allele averagely increased UPP% by up to 24.2% and dough stability time by up to 111.1%, which increased specific volume by up to 14.4%. These findings indicate that introgression of the 1Ax2∗ allele has a potential to increase wheat quality without negatively affecting grain yield, which provides glutenin allele selection for breeding high-yield and high-quality wheat cultivars in the background of wheat cultivar Xiaoyan-22 and other similar cultivars.
Collapse
Affiliation(s)
- Hongwei Zhou
- College of Agronomy, Northwest A & F University, Yangling, 712100, China; Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, 100193, China
| | - Sihai Guo
- College of Agronomy, Northwest A & F University, Yangling, 712100, China
| | - Xiaohong Chen
- College of Agronomy, Northwest A & F University, Yangling, 712100, China
| | - Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling, 712100, China
| | - Boli Guo
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Yingquan Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Comprehensive Utilization Laboratory of Cereal and Oil Processing, Ministry of Agriculture and Rural, Beijing, 100193, China; Institute of Western Agriculture, Chinese Academy of Agricultural Sciences, Changji, 831100, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling, 712100, China.
| |
Collapse
|
2
|
Qu G, Wang K, Mu J, Zhuo J, Wang X, Li S, Ye X, Li Y, Yan Y, Li X. Identifying cis-Acting Elements Associated with the High Activity and Endosperm Specificity of the Promoters of Genes Encoding Low-Molecular-Weight Glutenin Subunits in Common Wheat ( Triticum aestivum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37919930 DOI: 10.1021/acs.jafc.3c04209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
Low-molecular-weight glutenin subunits (LMW-GSs) associated with bread-baking quality and flour nutrient quality accumulate in endosperms of common wheat and related species. However, the mechanism underlying the expression regulation of genes encoding LMW-GSs has not been fully elucidated. In this study, we identified LMW-D2 and LMW-D7, which are highly and weakly expressed, respectively, via the analysis of RNA-sequencing data of Chinese Spring wheat and wheat transgenic lines transformed with 5' deletion promoter fragments and GUS fusion constructs. The 605-bp fragment upstream of the LMW-D2 start codon could drive high levels of GUS expression in the endosperm. The truncated endosperm box located at the -300 site resulted in the loss of LMW-D2 promoter activity, and a single-nucleotide polymorphism on the GCN4 motif was closely related to the expression of LMW-GSs. TCT and TGACG motifs, as well as the others located on the 5' distal end, might also be involved in the transcription regulation of LMW-GSs. In transgenic lines, fusion proteins of LMW-GS and GUS were deposited into protein bodies. Our findings provide new insights into the mechanism underlying the transcription regulation of LMW-GSs and will contribute to the development of wheat endosperm as a bioreactor for the production of nutraceuticals, antibodies, vaccines, and medicinal proteins.
Collapse
Affiliation(s)
- Ge Qu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Ke Wang
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Junyi Mu
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Jiahui Zhuo
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xinyu Wang
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Shasha Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xingguo Ye
- National Wheat Improvement Center, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yaxuan Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Yueming Yan
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| | - Xiaohui Li
- Key Laboratory of Genetics and Biotechnology, College of Life Science, Capital Normal University, Beijing 100048, China
| |
Collapse
|
3
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
4
|
Zhao Y, Zhao J, Hu M, Sun L, Liu Q, Zhang Y, Li Q, Wang P, Ma W, Li H, Gao H, Zhang Y. Transcriptome and Proteome Analysis Revealed the Influence of High-Molecular-Weight Glutenin Subunits (HMW-GSs) Deficiency on Expression of Storage Substances and the Potential Regulatory Mechanism of HMW-GSs. Foods 2023; 12:foods12020361. [PMID: 36673453 PMCID: PMC9857648 DOI: 10.3390/foods12020361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
The processing quality of wheat is affected by seed storage substances, such as protein and starch. High-molecular-weight glutenin subunits (HMW-GSs) are the major components of wheat seed storage proteins (SSPs); they are also key determinators of wheat end-use quality. However, the effects of HMW-GSs absence on the expression of other storage substances and the regulation mechanism of HMW-GSs are still limited. Previously, a wheat transgenic line LH-11 with complete deletions of HMW-GSs was obtained through introducing an exogenous gene Glu-1Ebx to the wild-type cultivar Bobwhite by transgenic approach. In this study, comparative seed transcriptomics and proteomics of transgenic and non-transgenic lines at different seed developmental stages were carried out to explore the changes in genes and proteins and the underlying regulatory mechanism. Results revealed that a number of genes, including genes related to SSPs, carbohydrates metabolism, amino acids metabolism, transcription, translation, and protein process were differentially enriched. Seed storage proteins displayed differential expression patterns between the transgenic and non-transgenic line, a major rise in the expression levels of gliadins were observed at 21 and 28 days post anthesis (DPA) in the transgenic line. Changes in expressions of low-molecular-weight glutenins (LMW-GSs), avenin-like proteins (ALPs), lipid transfer proteins (LTPs), and protease inhibitors (PIs) were also observed. In addition, genes related to carbohydrate metabolism were differentially expressed, which probably leads to a difference in starch component and deposition. A list of gene categories participating in the accumulation of SSPs was proposed according to the transcriptome and proteome data. Six genes from the MYB and eight genes from the NAC transcription families are likely important regulators of HMW-GSs accumulation. This study will provide data support for understanding the regulatory network of wheat storage substances. The screened candidate genes can lay a foundation for further research on the regulation mechanism of HMW-GSs.
Collapse
Affiliation(s)
- Yun Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Jie Zhao
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Mengyun Hu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Lijing Sun
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qian Liu
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Yelun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Qianying Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Peinan Wang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Food Futures Institute, College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Hui Li
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
| | - Huimin Gao
- Institute of Cash Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China
- Correspondence: (H.G.); (Y.Z.)
| | - Yingjun Zhang
- Laboratory of Crop Genetics and Breeding of Hebei, Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050035, China
- Correspondence: (H.G.); (Y.Z.)
| |
Collapse
|
5
|
Liu G, Gao Y, Wang H, Wang Y, Chen J, Zhang P, Ma H. Premature Termination Codon of 1Dy12 Gene Improves Cookie Quality in Ningmai9 Wheat. FRONTIERS IN PLANT SCIENCE 2022; 13:835164. [PMID: 35646032 PMCID: PMC9134186 DOI: 10.3389/fpls.2022.835164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
The area between middle and lower reaches of the Yangtze River is the largest region for soft wheat production in China. In soft wheat breeding, the lack of germplasm with desirable quality for end-use products is a barrier. Ningmai9 is the main variety of soft wheat planted in this area. To create germplasm with better quality and yield potential than Ningmai9, mutants of HMW-GSs in Ningmai9 induced by ethylmethanesulfonate (EMS) were obtained. SDS-PAGE showed that two mutants, md10 and md11, were HMW-GS 1Dy deletions. DNA sequencing confirmed that one mutation was caused by a C/T substitution, resulting in the change of CAA encoding glutamine into the termination codon TAA, and another mutation was due to a G/A substitution in the central repetitive domain of the coding region, causing TGG encoding tryptophan to become the termination codon TGA. The premature termination codon of the 1Dy12 gene affected the expression of 1Dy12 and kept the mRNA at a lower transcription level during the kernel development stage in comparison with the wild type. HMW-GS 1Dy12 deletion mutants decreased the content of HMW-GSs and glutenin macropolymers, mixograph envelope peak time and TIMEX width, water solvent retention capacity (WSRC), and lactic acid solvent retention capacity (LASRC). In the HMW-GS 1Dy12 deletion lines, the sugar-snap cookie diameter was 8.70-8.74 cm, which was significantly larger than that in the wild type of 8.0 cm. There were no significant differences in spike number, kernel number, thousand kernel weight, and yield between the deletion lines and wild type. Overall, the study indicated that the knockout of the HMW-GS gene induced by EMS is an effective way to improve wheat quality, and deletion mutants of HMW-GS 1Dy12 decrease gluten strength and increase sugar snap cookie diameter without yield penalty in Ningmai9 wheat.
Collapse
Affiliation(s)
- Guangxiao Liu
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Yujiao Gao
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Huadun Wang
- Co-innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yonggang Wang
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Jianmin Chen
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| | - Pingping Zhang
- Co-innovation Center for Modern Crop Production Co-sponsored by Province and Ministry, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Hongxiang Ma
- Jiangsu Co-innovation Center for Modern Production Technology of Grain Crops/Jiangsu Key Lab of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou, China
| |
Collapse
|
6
|
Wang X, Song R, An Y, Pei H, Gao S, Sun D, Ren X. Allelic variation and genetic diversity of HMW glutenin subunits in Chinese wheat ( Triticum aestivum L.) landraces and commercial cultivars. BREEDING SCIENCE 2022; 72:169-180. [PMID: 36275938 PMCID: PMC9522535 DOI: 10.1270/jsbbs.21076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 11/17/2021] [Indexed: 06/16/2023]
Abstract
Wheat landraces have abundant genetic variation at the Glu-1 loci, which is desirable germplasms for genetic enhancement of modern wheat varieties, especially for quality improvement. In the current study, we analyzed the allelic variations of the Glu-1 loci of 597 landraces and 926 commercial wheat varieties from the four major wheat-growing regions in China using SDS-PAGE. As results, alleles Null, 7+8, and 2+12 were the dominant HMW-GSs in wheat landraces. Compared to landraces, the commercial varieties contain higher frequencies of high-quality alleles, including 1, 7+9, 14+15 and 5+10. The genetic diversity of the four commercial wheat populations (alleles per locus (A) = 7.33, percent polymorphic loci (P) = 1.00, effective number of alleles per locus (Ae) = 2.347 and expected heterozygosity (He) = 0.563) was significantly higher than that of the landraces population, with the highest genetic diversity found in the Southwestern Winter Wheat Region population. The genetic diversity of HMW-GS is mainly present within the landraces and commercial wheat populations instead of between populations. The landraces were rich in rare subunits or alleles may provide germplasm resources for improving the quality of modern wheat.
Collapse
Affiliation(s)
- Xiaofang Wang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ruilian Song
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yue An
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyi Pei
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Song Gao
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Daokun Sun
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xifeng Ren
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
7
|
Yu L, Ma Y, Zhao Y, Rehman AU, Guo L, Liu Y, Yang Y, Wang Z, Cao X, Gao X. Interaction of B-type starch with gluten skeleton improves wheat dough mixing properties by stabilizing gluten micro-structure. Food Chem 2022; 371:131390. [PMID: 34808780 DOI: 10.1016/j.foodchem.2021.131390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 10/04/2021] [Accepted: 10/10/2021] [Indexed: 11/04/2022]
Abstract
Some recent studies have revealed individual and the combined interactions of gluten and starch affecting dough mixing properties. However, the combined influence of high-molecular-weight glutenin subunits (HMW-GS) and starch on dough mixing and rheological properties requires elucidation. Thus four recombinant inbred lines, SS 1, SS 2, ZZ 1 and ZZ 2, were selected based on their HMW-GSs compositions. Compared to ZZ 1 and ZZ 2, both SS 1 and SS 2 carried superior HMW-GS alleles, and exhibited extended dough development and stability time, indicating their significant dough mixing characteristics. The gluten skeleton of the wheat lines SS 2 and ZZ 2 with higher B-type starch proportions exhibited fewer breakages along with the rise of dough temperature during mixing. Higher content of B-type starch strengthens interaction between starch and gluten skeleton at the dough heating stage, suggesting a specific range of B-type starch proportion can improve dough mixing characteristics.
Collapse
Affiliation(s)
- Liwei Yu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanrong Ma
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yiyue Zhao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ata-Ur Rehman
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2650, Australia
| | - Lei Guo
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yingchun Liu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yang Yang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhonghua Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xinyou Cao
- Crop Research Institute, Shandong Academy of Agricultural Sciences/National Engineering Laboratory for Wheat and Maize/Key Laboratory of Wheat Biology and Genetic Improvement in North Yellow and Huai River Valley, Ministry of Agriculture, Jinan 250100, China.
| | - Xin Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
8
|
Peng Y, Zhao Y, Yu Z, Zeng J, Xu D, Dong J, Ma W. Wheat Quality Formation and Its Regulatory Mechanism. FRONTIERS IN PLANT SCIENCE 2022; 13:834654. [PMID: 35432421 PMCID: PMC9006054 DOI: 10.3389/fpls.2022.834654] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/09/2022] [Indexed: 05/07/2023]
Abstract
Elucidation of the composition, functional characteristics, and formation mechanism of wheat quality is critical for the sustainable development of wheat industry. It is well documented that wheat processing quality is largely determined by its seed storage proteins including glutenins and gliadins, which confer wheat dough with unique rheological properties, making it possible to produce a series of foods for human consumption. The proportion of different gluten components has become an important target for wheat quality improvement. In many cases, the processing quality of wheat is closely associated with the nutritional value and healthy effect of the end-products. The components of wheat seed storage proteins can greatly influence wheat quality and some can even cause intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors have great impacts on seed storage protein synthesis and accumulation, and fertilization and irrigation strategies also greatly affect the seed storage protein content and composition, which together determine the final end-use quality of wheat. This review summarizes the recent progress in research on the composition, function, biosynthesis, and regulatory mechanism of wheat storage proteins and their impacts on wheat end-product quality.
Collapse
Affiliation(s)
- Yanchun Peng
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yun Zhao
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Zitong Yu
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jing Dong
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- Food Futures Institute and College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
- *Correspondence: Wujun Ma,
| |
Collapse
|
9
|
Cao H, Duncan O, Islam S, Zhang J, Ma W, Millar AH. Increased Wheat Protein Content via Introgression of an HMW Glutenin Selectively Reshapes the Grain Proteome. Mol Cell Proteomics 2021; 20:100097. [PMID: 34000434 PMCID: PMC8214148 DOI: 10.1016/j.mcpro.2021.100097] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 05/11/2021] [Indexed: 11/24/2022] Open
Abstract
Introgression of a high-molecular-weight glutenin subunit (HMW-GS) allele, 1Ay21∗, into commercial wheat cultivars increased overall grain protein content and bread-making quality, but the role of proteins beyond this HMW-GS itself was unknown. In addition to increased abundance of 1Ay HMW-GS, 115 differentially accumulated proteins (DAPs) were discovered between three cultivars and corresponding introgressed near-isogenic lines. Functional category analysis showed that the DAPs were predominantly other storage proteins and proteins involved in protein synthesis, protein folding, protein degradation, stress response, and grain development. Nearly half the genes encoding the DAPs showed strong coexpression patterns during grain development. Promoters of these genes are enriched in elements associated with transcription initiation and light response, indicating a potential connection between these cis-elements and grain protein accumulation. A model of how this HMW-GS enhances the abundance of machinery for protein synthesis and maturation during grain filling is proposed. This analysis not only provides insights into how introgression of the 1Ay21∗ improves grain protein content but also directs selection of protein candidates for future wheat quality breeding programs.
Collapse
Affiliation(s)
- Hui Cao
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Owen Duncan
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia
| | - Jingjuan Zhang
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Centre, College of Science Health Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia; Australia-China Joint Centre for Wheat Improvement, Murdoch University, Perth, Western Australia, Australia.
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley, Western Australia, Australia; School of Molecular Science, University of Western Australia, Crawley, Western Australia, Australia.
| |
Collapse
|
10
|
Roy N, Islam S, Al-Habbar Z, Yu Z, Liu H, Lafiandra D, Masci S, Lu M, Sultana N, Ma W. Contribution to Breadmaking Performance of Two Different HMW Glutenin 1Ay Alleles Expressed in Hexaploid Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:36-44. [PMID: 33356215 DOI: 10.1021/acs.jafc.0c03880] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Two expressed alleles of the 1Ay high-molecular-weight glutenin subunit (HMW-GS), 1Ay21* and 1AyT1, previously introduced in durum and bread wheat, were separately introgressed into the Australian bread wheat (Triticum aestivum L.) cv. Livingston. The developed lines had different allelic compositions compared to that of the parental cultivar (1Ax1), having either 1Ax21+1Ay21* or 1Ax1+1AyT1 at the Glu-A1 locus. Since 1Ax21 and 1Ax1 are known to have the same effects on quality, differences observed between the two sets of the developed lines are attributed to the two introgressed Ay genes. Yield and agronomic performance of the lines were evaluated in the field, and the protein, dough, and baking quality attributes were evaluated by large-scale quality testing. Results demonstrated that the subunit 1Ay21* increased unextractable polymeric protein by up to 14.3% and improved bread loaf volume by up to 9.2%. On the other hand, subunit 1AyT1 increased total grain protein by up to 9% along with dough elasticity. Furthermore, milling extraction was higher, and flour ash was lower in the 1Ay21* lines compared to the lines integrating 1AyT1. Both sets of the 1Ay introgression lines reduced dough-mixing time compared to the recurrent parent Livingston. The results also showed that 1Ay21* had a higher potential to improve the baking quality than 1AyT1 under the Livingston genetic background. Both alleles showed the potential to be utilized in breeding programs to improve the breadmaking quality.
Collapse
Affiliation(s)
- Nandita Roy
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| | - Shahidul Islam
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| | - Zaid Al-Habbar
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
- Department of Field Crops, College of Agriculture and Forestry, Mosul University, Mosul 41002, Iraq
| | - Zitong Yu
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| | - Hang Liu
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| | - Domenico Lafiandra
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Stefania Masci
- Department of Agriculture and Forest Sciences, University of Tuscia, 01100 Viterbo, Italy
| | - Meiqin Lu
- Australian Grain Technologies, 12656 Newell Highway, Narrabri, New South Wales 2390, Australia
| | - Nigarin Sultana
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| | - Wujun Ma
- State Agricultural Biotechnology Centre, Murdoch University, Perth, Western Australia 6150, Australia
| |
Collapse
|
11
|
Li Y, Fu J, Shen Q, Yang D. High-Molecular-Weight Glutenin Subunits: Genetics, Structures, and Relation to End Use Qualities. Int J Mol Sci 2020; 22:E184. [PMID: 33375389 PMCID: PMC7795185 DOI: 10.3390/ijms22010184] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/16/2020] [Accepted: 12/23/2020] [Indexed: 02/06/2023] Open
Abstract
High-molecular-weight glutenin subunits (HMW-GSs) are storage proteins present in the starchy endosperm cells of wheat grain. Encoding the synthesis of HMW-GS, the Glu-1 loci located on the long arms of group 1 chromosomes of the hexaploid wheat (1A, 1B, and 1D) present multiple allelism. In hexaploid wheat cultivars, almost all of them express 3 to 5 HMW-GSs and the 1Ay gene is always silent. Though HMW-GSs are the minor components in gluten, they are crucial for dough properties, and certain HMW-GSs make more positive contributions than others. The HMW-GS acts as a "chain extender" and provides a disulfide-bonded backbone in gluten network. Hydrogen bonds mediated by glutamine side chains are also crucial for stabilizing the gluten structure. In most cases, HMW-GSs with additional or less cysteines are related to the formation of relatively more or less interchain disulfide bonds and HMW-GSs also affect the gluten secondary structures, which in turn impact the end use qualities of dough.
Collapse
Affiliation(s)
- Yi Li
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| | - Jiahui Fu
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
| | - Qun Shen
- Key Laboratory of Plant Protein and Grain Processing, National Engineering Research Center for Fruit and Vegetable Processing, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China;
| | - Dong Yang
- Beijing Key Laboratory of Functional Food from Plant Resources, College of Food Science & Nutritional Engineering, China Agricultural University, 17 East Tsinghua Rd., Beijing 100083, China; (Y.L.); (J.F.)
- Xinghua Industrial Research Centre for Food Science and Human Health, China Agricultural University, Xinghua 225700, China
| |
Collapse
|
12
|
Gómez M, Gutkoski LC, Bravo‐Núñez Á. Understanding whole‐wheat flour and its effect in breads: A review. Compr Rev Food Sci Food Saf 2020; 19:3241-3265. [DOI: 10.1111/1541-4337.12625] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/11/2020] [Accepted: 08/02/2020] [Indexed: 12/13/2022]
Affiliation(s)
- Manuel Gómez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| | - Luiz C. Gutkoski
- Programa de Pós‐Graduação em Ciência e Tecnologia de Alimentos Universidade de Passo Fundo Passo Fundo RS Brazil
| | - Ángela Bravo‐Núñez
- Food Technology Area, College of Agricultural Engineering University of Valladolid Palencia Spain
| |
Collapse
|
13
|
Effects of 1Dy12 subunit silencing on seed storage protein accumulation and flour-processing quality in a common wheat somatic variation line. Food Chem 2020; 335:127663. [PMID: 32738540 DOI: 10.1016/j.foodchem.2020.127663] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 06/13/2020] [Accepted: 07/21/2020] [Indexed: 01/06/2023]
Abstract
Dissecting the functions of high molecular weight glutenin subunits (HMW-GSs) is helpful for improving wheat quality via breeding. In this study, we used a wheat mutant AS273 in which HMW-GS 1Dy12 was silenced to investigate the silencing mechanism of 1Dy12 and its effects on gluten accumulation and flour-processing quality. Results suggested that the expression of 1Dy12 in AS273 was decreased by one fifth during grain development; a stop codon produced by a base mutation (C/T) led to truncated translation; the absence of 1Dy12 stimulated the accumulation of low molecular weight glutenin subunits (LMW-GSs), gliadins, and glutenin macropolymers, and was resulted in larger protein bodies; AS273 had an inferior flour-processing performance. Based on the outputs achieved in this study it is concluded that 1Dy12 makes important contributions to bread, sponge cake and biscuit-processing quality.
Collapse
|
14
|
Gao S, Sun G, Liu W, Sun D, Peng Y, Ren X. High‐molecular‐weight glutenin subunit compositions in current Chinese commercial wheat cultivars and the implication on Chinese wheat breeding for quality. Cereal Chem 2020. [DOI: 10.1002/cche.10290] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Song Gao
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Genlou Sun
- Biology Department Saint Mary's University Halifax NS Canada
| | - Weihua Liu
- Institute of Crop Sciences Chinese Academy of Agricultural Sciences Beijing China
| | - Daokun Sun
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Yanchun Peng
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Xifeng Ren
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| |
Collapse
|
15
|
Wang D, Li F, Cao S, Zhang K. Genomic and functional genomics analyses of gluten proteins and prospect for simultaneous improvement of end-use and health-related traits in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1521-1539. [PMID: 32020238 PMCID: PMC7214497 DOI: 10.1007/s00122-020-03557-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/24/2020] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE Recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins, which are important determinants of wheat grain quality traits. The new insights obtained and the availability of precise, versatile and high-throughput genome editing technologies will accelerate simultaneous improvement of wheat end-use and health-related traits. Being a major staple food crop in the world, wheat provides an indispensable source of dietary energy and nutrients to the human population. As worldwide population grows and living standards rise in both developed and developing countries, the demand for wheat with high quality attributes increases globally. However, efficient breeding of high-quality wheat depends on critically the knowledge on gluten proteins, which mainly include several families of prolamin proteins specifically accumulated in the endospermic tissues of grains. Although gluten proteins have been studied for many decades, efficient manipulation of these proteins for simultaneous enhancement of end-use and health-related traits has been difficult because of high complexities in their expression, function and genetic variation. However, recent genomic and functional genomics analyses have substantially improved the understanding on gluten proteins. Therefore, the main objective of this review is to summarize the genomic and functional genomics information obtained in the last 10 years on gluten protein chromosome loci and genes and the cis- and trans-factors regulating their expression in the grains, as well as the efforts in elucidating the involvement of gluten proteins in several wheat sensitivities affecting genetically susceptible human individuals. The new insights gathered, plus the availability of precise, versatile and high-throughput genome editing technologies, promise to speed up the concurrent improvement of wheat end-use and health-related traits and the development of high-quality cultivars for different consumption needs.
Collapse
Affiliation(s)
- Daowen Wang
- College of Agronomy, State Key Laboratory of Wheat and Maize Crop Science, and Center for Crop Genome Engineering, Henan Agricultural University, 15 Longzi Lake College Park, Zhengzhou, 450046, China.
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| | - Feng Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China
| | - Shuanghe Cao
- Institute of Crop Science, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kunpu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Science, 1 West Beichen Road, Beijing, 100101, China.
| |
Collapse
|