1
|
Reyes-Herrera PH, Delgadillo-Duran DA, Flores-Gonzalez M, Mueller LA, Cristancho MA, Barrero LS. Chromosome-scale genome assembly and annotation of the tetraploid potato cultivar Diacol Capiro adapted to the Andean region. G3 (BETHESDA, MD.) 2024; 14:jkae139. [PMID: 39058924 PMCID: PMC11537804 DOI: 10.1093/g3journal/jkae139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/05/2024] [Indexed: 07/28/2024]
Abstract
Potato (Solanum tuberosum) is an essential crop for food security and is ranked as the third most important crop worldwide for human consumption. The Diacol Capiro cultivar holds the dominant position in Colombian cultivation, primarily catering to the food processing industry. This highly heterozygous, autotetraploid cultivar belongs to the Andigenum group and it stands out for its adaptation to a wide variety of environments spanning altitudes from 1,800 to 3,200 meters above sea level. Here, a chromosome-scale assembly, referred to as DC, is presented for this cultivar. The assembly was generated by combining circular consensus sequencing with proximity ligation Hi-C for the scaffolding and represents 2.369 Gb with 48 pseudochromosomes covering 2,091 Gb and an anchor rate of 88.26%. The reference genome metrics, including an N50 of 50.5 Mb, a BUSCO (Benchmarking Universal Single-Copy Orthologue) score of 99.38%, and an Long Terminal Repeat Assembly Index score of 13.53, collectively signal the achieved high assembly quality. A comprehensive annotation yielded a total of 154,114 genes, and the associated BUSCO score of 95.78% for the annotated sequences attests to their completeness. The number of predicted NLR (Nucleotide-Binding and Leucine-Rich-Repeat genes) was 2107 with a large representation of NBARC (for nucleotide binding domain shared by Apaf-1, certain R gene products, and CED-4) containing domains (99.85%). Further comparative analysis of the proposed annotation-based assembly with high-quality known potato genomes, showed a similar genome metrics with differences in total gene numbers related to the ploidy status. The genome assembly and annotation of DC presented in this study represent a valuable asset for comprehending potato genetics. This resource aids in targeted breeding initiatives and contributes to the creation of enhanced, resilient, and more productive potato varieties, particularly beneficial for countries in Latin America.
Collapse
Affiliation(s)
- Paula H Reyes-Herrera
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Bogotá, Cundinamarca 250047, Colombia
| | - Diego A Delgadillo-Duran
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Bogotá, Cundinamarca 250047, Colombia
| | | | | | - Marco A Cristancho
- Vicerrectoría de Investigación y Creación, Universidad de los Andes, Bogotá 111711, Colombia
| | - Luz Stella Barrero
- Corporación Colombiana de Investigación Agropecuaria (AGROSAVIA), Bogotá, Cundinamarca 250047, Colombia
| |
Collapse
|
2
|
Tuttle HK, Del Rio AH, Bamberg JB, Shannon LM. Potato soup: analysis of cultivated potato gene bank populations reveals high diversity and little structure. FRONTIERS IN PLANT SCIENCE 2024; 15:1429279. [PMID: 39091313 PMCID: PMC11291250 DOI: 10.3389/fpls.2024.1429279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Cultivated potatoes are incredibly diverse, ranging from diploid to pentaploid and encompass four different species. They are adapted to disparate environments and conditions and carry unique alleles for resistance to pests and pathogens. Describing how diversity is partitioned within and among these populations is essential to understanding the potato genome and effectively utilizing landraces in breeding. This task is complicated by the difficulty of making comparisons across cytotypes and extensive admixture within section petota. We genotyped 730 accessions from the US Potato genebank including wild diploids and cultivated diploids and tetraploids using Genotype-by-sequencing. This data set allowed us to interrogate population structure and diversity as well as generate core subsets which will support breeders in efficiently screening genebank material for biotic and abiotic stress resistance alleles. We found that even controlling for ploidy, tetraploid material exhibited higher observed and expected heterozygosity than diploid accessions. In particular group chilotanum material was the most heterozygous and the only taxa not to exhibit any inbreeding. This may in part be because group chilotanum has a history of introgression not just from wild species, but landraces as well. All group chilotanum, exhibits introgression from group andigenum except clones from Southern South America near its origin, where the two groups are not highly differentiated. Moving north, we do not observe evidence for the same level of admixture back into group andigenum. This suggests that extensive history of admixture is a particular characteristic of chilotanum.
Collapse
Affiliation(s)
- Heather K. Tuttle
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| | - Alfonso H. Del Rio
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - John B. Bamberg
- U.S. Department of Agriculture (USDA)/Agricultural Research Service, Potato Genebank, Sturgeon Bay, WI, United States
| | - Laura M. Shannon
- Department of Horticultural Science, University of Minnesota, St. Paul, MN, United States
| |
Collapse
|
3
|
Achakkagari SR, Bozan I, Camargo-Tavares JC, McCoy HJ, Portal L, Soto J, Bizimungu B, Anglin NL, Manrique-Carpintero N, Lindqvist-Kreuze H, Tai HH, Strömvik MV. The phased Solanum okadae genome and Petota pangenome analysis of 23 other potato wild relatives and hybrids. Sci Data 2024; 11:454. [PMID: 38704417 PMCID: PMC11069515 DOI: 10.1038/s41597-024-03300-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 04/23/2024] [Indexed: 05/06/2024] Open
Abstract
Potato is an important crop in the genus Solanum section Petota. Potatoes are susceptible to multiple abiotic and biotic stresses and have undergone constant improvement through breeding programs worldwide. Introgression of wild relatives from section Petota with potato is used as a strategy to enhance the diversity of potato germplasm. The current dataset contributes a phased genome assembly for diploid S. okadae, and short read sequences and de novo assemblies for the genomes of 16 additional wild diploid species in section Petota that were noted for stress resistance and were of interest to potato breeders. Genome sequence data for three additional genomes representing polyploid hybrids with cultivated potato, and an additional genome from non-tuberizing S. etuberosum, which is outside of section Petota, were also included. High quality short reads assemblies were achieved with genome sizes ranging from 575 to 795 Mbp and annotations were performed utilizing transcriptome sequence data. Genomes were compared for presence/absence of genes and phylogenetic analyses were carried out using plastome and nuclear sequences.
Collapse
Affiliation(s)
- S R Achakkagari
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - I Bozan
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - J C Camargo-Tavares
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - H J McCoy
- Department of Chemistry, University of New Brunswick, Fredericton, NB, Canada
| | - L Portal
- International Potato Center (CIP), Lima, Peru
| | - J Soto
- International Potato Center (CIP), Lima, Peru
| | - B Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - N L Anglin
- International Potato Center (CIP), Lima, Peru
- USDA ARS Small Grains and Potato Germplasm Research, Aberdeen, ID, USA
| | - N Manrique-Carpintero
- International Potato Center (CIP), Lima, Peru
- Alliance of Bioversity International and International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | | | - H H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, Fredericton, NB, Canada
| | - M V Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada.
| |
Collapse
|
4
|
Martina M, De Rosa V, Magon G, Acquadro A, Barchi L, Barcaccia G, De Paoli E, Vannozzi A, Portis E. Revitalizing agriculture: next-generation genotyping and -omics technologies enabling molecular prediction of resilient traits in the Solanaceae family. FRONTIERS IN PLANT SCIENCE 2024; 15:1278760. [PMID: 38375087 PMCID: PMC10875072 DOI: 10.3389/fpls.2024.1278760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/22/2024] [Indexed: 02/21/2024]
Abstract
This review highlights -omics research in Solanaceae family, with a particular focus on resilient traits. Extensive research has enriched our understanding of Solanaceae genomics and genetics, with historical varietal development mainly focusing on disease resistance and cultivar improvement but shifting the emphasis towards unveiling resilience mechanisms in genebank-preserved germplasm is nowadays crucial. Collecting such information, might help researchers and breeders developing new experimental design, providing an overview of the state of the art of the most advanced approaches for the identification of the genetic elements laying behind resilience. Building this starting point, we aim at providing a useful tool for tackling the global agricultural resilience goals in these crops.
Collapse
Affiliation(s)
- Matteo Martina
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Valeria De Rosa
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Gabriele Magon
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Alberto Acquadro
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Lorenzo Barchi
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| | - Gianni Barcaccia
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Emanuele De Paoli
- Department of Agricultural, Food, Environmental and Animal Sciences (DI4A), University of Udine, Udine, Italy
| | - Alessandro Vannozzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), Laboratory of Plant Genetics and Breeding, University of Padua, Legnaro, Italy
| | - Ezio Portis
- Department of Agricultural, Forest and Food Sciences (DISAFA), Plant Genetics, University of Torino, Grugliasco, Italy
| |
Collapse
|
5
|
Gebhardt C. A physical map of traits of agronomic importance based on potato and tomato genome sequences. Front Genet 2023; 14:1197206. [PMID: 37564870 PMCID: PMC10411547 DOI: 10.3389/fgene.2023.1197206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/30/2023] [Indexed: 08/12/2023] Open
Abstract
Potato, tomato, pepper, and eggplant are worldwide important crop and vegetable species of the Solanaceae family. Molecular linkage maps of these plants have been constructed and used to map qualitative and quantitative traits of agronomic importance. This research has been undertaken with the vision to identify the molecular basis of agronomic characters on the one hand, and on the other hand, to assist the selection of improved varieties in breeding programs by providing DNA-based markers that are diagnostic for specific agronomic characters. Since 2011, whole genome sequences of tomato and potato became available in public databases. They were used to combine the results of several hundred mapping and map-based cloning studies of phenotypic characters between 1988 and 2022 in physical maps of the twelve tomato and potato chromosomes. The traits evaluated were qualitative and quantitative resistance to pathogenic oomycetes, fungi, bacteria, viruses, nematodes, and insects. Furthermore, quantitative trait loci for yield and sugar content of tomato fruits and potato tubers and maturity or earliness were physically mapped. Cloned genes for pathogen resistance, a few genes underlying quantitative trait loci for yield, sugar content, and maturity, and several hundred candidate genes for these traits were included in the physical maps. The comparison between the physical chromosome maps revealed, in addition to known intrachromosomal inversions, several additional inversions and translocations between the otherwise highly collinear tomato and potato genomes. The integration of the positional information from independent mapping studies revealed the colocalization of qualitative and quantitative loci for resistance to different types of pathogens, called resistance hotspots, suggesting a similar molecular basis. Synteny between potato and tomato with respect to genomic positions of quantitative trait loci was frequently observed, indicating eventual similarity between the underlying genes.
Collapse
|
6
|
Analysis of Genome Structure and Its Variations in Potato Cultivars Grown in Russia. Int J Mol Sci 2023; 24:ijms24065713. [PMID: 36982787 PMCID: PMC10059000 DOI: 10.3390/ijms24065713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/19/2023] Open
Abstract
Solanum tuberosum L. (common potato) is one of the most important crops produced almost all over the world. Genomic sequences of potato opens the way for studying the molecular variations related to diversification. We performed a reconstruction of genomic sequences for 15 tetraploid potato cultivars grown in Russia using short reads. Protein-coding genes were identified; conserved and variable parts of pan-genome and the repertoire of the NBS-LRR genes were characterized. For comparison, we used additional genomic sequences for twelve South American potato accessions, performed analysis of genetic diversity, and identified the copy number variations (CNVs) in two these groups of potato. Genomes of Russian potato cultivars were more homogeneous by CNV characteristics and have smaller maximum deletion size in comparison with South American ones. Genes with different CNV occurrences in two these groups of potato accessions were identified. We revealed genes of immune/abiotic stress response, transport and five genes related to tuberization and photoperiod control among them. Four genes related to tuberization and photoperiod were investigated in potatoes previously (phytochrome A among them). A novel gene, homologous to the poly(ADP-ribose) glycohydrolase (PARG) of Arabidopsis, was identified that may be involved in circadian rhythm control and contribute to the acclimatization processes of Russian potato cultivars.
Collapse
|
7
|
Cheng L, Li M, Wang Y, Han Q, Hao Y, Qiao Z, Zhang W, Qiu L, Gong A, Zhang Z, Li T, Luo S, Tang L, Liu D, Yin H, Lu S, Balbuena TS, Zhao Y. Transcriptome-based variations effectively untangling the intraspecific relationships and selection signals in Xinyang Maojian tea population. FRONTIERS IN PLANT SCIENCE 2023; 14:1114284. [PMID: 36890899 PMCID: PMC9986275 DOI: 10.3389/fpls.2023.1114284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/03/2023] [Indexed: 06/18/2023]
Abstract
As one of the world's top three popular non-alcoholic beverages, tea is economically and culturally valuable. Xinyang Maojian, this elegant green tea, is one of the top ten famous tea in China and has gained prominence for thousands of years. However, the cultivation history of Xinyang Maojian tea population and selection signals of differentiation from the other major variety Camellia sinensis var. assamica (CSA) remain unclear. We newly generated 94 Camellia sinensis (C. sinensis) transcriptomes including 59 samples in the Xinyang area and 35 samples collected from 13 other major tea planting provinces in China. Comparing the very low resolution of phylogeny inferred from 1785 low-copy nuclear genes with 94 C. sinensis samples, we successfully resolved the phylogeny of C. sinensis samples by 99,115 high-quality SNPs from the coding region. The sources of tea planted in the Xinyang area were extensive and complex. Specifically, Shihe District and Gushi County were the two earliest tea planting areas in Xinyang, reflecting a long history of tea planting. Furthermore, we identified numerous selection sweeps during the differentiation of CSA and CSS and these positive selection genes are involved in many aspects such as regulation of secondary metabolites synthesis, amino acid metabolism, photosynthesis, etc. Numerous specific selective sweeps of modern cultivars were annotated with functions in various different aspects, indicating the CSS and CSA populations possibly underwent independent specific domestication processes. Our study indicated that transcriptome-based SNP-calling is an efficient and cost-effective method in untangling intraspecific phylogenetic relationships. This study provides a significant understanding of the cultivation history of the famous Chinese tea Xinyang Maojian and unravels the genetic basis of physiological and ecological differences between the two major tea subspecies.
Collapse
Affiliation(s)
- Lin Cheng
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Mengge Li
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yachao Wang
- Laboratory of Systematic Evolution and Biogeography of Woody Plants, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Qunwei Han
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Yanlin Hao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhen Qiao
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Wei Zhang
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Lin Qiu
- Institute of Forestry Science, Xinyang Forestry Bureau, Xinyang, Henan, China
| | - Andong Gong
- Henan International Joint Laboratory of Tea-oil tree Biology and High Value Utilization, Xinyang Normal University, Xinyang, Henan, China
- College of Life Sciences, Xinyang Normal University, Xinyang, Henan, China
| | - Zhihan Zhang
- College of Engineering and Technology, Northeast Forestry University, Harbin, China
| | - Tao Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Shanshan Luo
- College of Agriculture, Guizhou University, Guiyang, China
| | - Linshuang Tang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Daliang Liu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Hao Yin
- College of Agriculture, Guizhou University, Guiyang, China
| | - Song Lu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Tiago Santana Balbuena
- Department of Agricultural, Livestock and Environmental Biotechnology, Sao Paulo State University, Jaboticabal, Brazil
| | - Yiyong Zhao
- College of Agriculture, Guizhou University, Guiyang, China
| |
Collapse
|
8
|
Rogozina EV, Gurina AA, Chalaya NA, Zoteyeva NM, Kuznetsova MA, Beketova MP, Muratova OA, Sokolova EA, Drobyazina PE, Khavkin EE. Diversity of Late Blight Resistance Genes in the VIR Potato Collection. PLANTS (BASEL, SWITZERLAND) 2023; 12:273. [PMID: 36678985 PMCID: PMC9862067 DOI: 10.3390/plants12020273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Late blight (LB) caused by the oomycete Phytophthora infestans (Mont.) de Bary is the greatest threat to potato production worldwide. Current potato breeding for LB resistance heavily depends on the introduction of new genes for resistance to P. infestans (Rpi genes). Such genes have been discovered in highly diverse wild, primitive, and cultivated species of tuber-bearing potatoes (Solanum L. section Petota Dumort.) and introgressed into the elite potato cultivars by hybridization and transgenic complementation. Unfortunately, even the most resistant potato varieties have been overcome by LB due to the arrival of new pathogen strains and their rapid evolution. Therefore, novel sources for germplasm enhancement comprising the broad-spectrum Rpi genes are in high demand with breeders who aim to provide durable LB resistance. The Genbank of the N.I. Vavilov Institute of Plant Genetic Resources (VIR) in St. Petersburg harbors one of the world's largest collections of potato and potato relatives. In this study, LB resistance was evaluated in a core selection representing 20 species of seven Petota series according to the Hawkes (1990) classification: Bulbocastana (Rydb.) Hawkes, Demissa Buk., Longipedicellata Buk., Maglia Bitt., Pinnatisecta (Rydb.) Hawkes, Tuberosa (Rydb.) Hawkes (wild and cultivated species), and Yungasensa Corr. LB resistance was assessed in 96 accessions representing 18 species in the laboratory test with detached leaves using a highly virulent and aggressive isolate of P. infestans. The Petota species notably differed in their LB resistance: S. bulbocastanum Dun., S. demissum Lindl., S. cardiophyllum Lindl., and S. berthaultii Hawkes stood out at a high frequency of resistant accessions (7-9 points on a 9-point scale). Well-established specific SCAR markers of ten Rpi genes-Rpi-R1, Rpi-R2/Rpi-blb3, Rpi-R3a, Rpi-R3b, Rpi-R8, Rpi-blb1/Rpi-sto1, Rpi-blb2, and Rpi-vnt1-were used to mine 117 accessions representing 20 species from seven Petota series. In particular, our evidence confirmed the diverse Rpi gene location in two American continents. The structural homologs of the Rpi-R2, Rpi-R3a, Rpi-R3b, and Rpi-R8 genes were found in the North American species other than S. demissum, the species that was the original source of these genes for early potato breeding, and in some cases, in the South American Tuberosa species. The Rpi-blb1/Rpi-sto1 orthologs from S. bulbocastanum and S. stoloniferum Schlechtd et Bché were restricted to genome B in the Mesoamerican series Bulbocastana, Pinnatisecta, and Longipedicellata. The structural homologs of the Rpi-vnt1 gene that were initially identified in the South American species S. venturii Hawkes and Hjert. were reported, for the first time, in the North American series of Petota species.
Collapse
Affiliation(s)
- Elena V. Rogozina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Alyona A. Gurina
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda A. Chalaya
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | - Nadezhda M. Zoteyeva
- N.I. Vavilov Institute of Plant Genetic Resources (VIR), St. Petersburg 190000, Russia
| | | | | | | | | | | | - Emil E. Khavkin
- Institute of Agricultural Biotechnology, Moscow 127550, Russia
| |
Collapse
|
9
|
Chen W, Achakkagari SR, Strömvik M. Plastaumatic: Automating plastome assembly and annotation. FRONTIERS IN PLANT SCIENCE 2022; 13:1011948. [PMID: 36407635 PMCID: PMC9669643 DOI: 10.3389/fpls.2022.1011948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Plastome sequence data is most often extracted from plant whole genome sequencing data and need to be assembled and annotated separately from the nuclear genome sequence. In projects comprising multiple genomes, it is labour intense to individually process the plastomes as it requires many steps and software. This study developed Plastaumatic - an automated pipeline for both assembly and annotation of plastomes, with the scope of the researcher being able to load whole genome sequence data with minimal manual input, and therefore a faster runtime. The main structure of the current automated pipeline includes trimming of adaptor and low-quality sequences using fastp, de novo plastome assembly using NOVOPlasty, standardization and quality checking of the assembled genomes through a custom script utilizing BLAST+ and SAMtools, annotation of the assembled genomes using AnnoPlast, and finally generating the required files for NCBI GenBank submissions. The pipeline is demonstrated with 12 potato accessions and three soybean accessions.
Collapse
|
10
|
Dvorianinova EM, Bolsheva NL, Pushkova EN, Rozhmina TA, Zhuchenko AA, Novakovskiy RO, Povkhova LV, Sigova EA, Zhernova DA, Borkhert EV, Kaluzhny DN, Melnikova NV, Dmitriev AA. Isolating Linum usitatissimum L. Nuclear DNA Enabled Assembling High-Quality Genome. Int J Mol Sci 2022; 23:13244. [PMID: 36362031 PMCID: PMC9656206 DOI: 10.3390/ijms232113244] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022] Open
Abstract
High-quality genome sequences help to elucidate the genetic basis of numerous biological processes and track species evolution. For flax (Linum usitatissimum L.)-a multifunctional crop, high-quality assemblies from Oxford Nanopore Technologies (ONT) data were unavailable, largely due to the difficulty of isolating pure high-molecular-weight DNA. This article proposes a scheme for gaining a contiguous L. usitatissimum assembly using Nanopore data. We developed a protocol for flax nuclei isolation with subsequent DNA extraction, which allows obtaining about 5 μg of pure high-molecular-weight DNA from 0.5 g of leaves. Such an amount of material can be collected even from a single plant and yields more than 30 Gb of ONT data in two MinION runs. We performed a comparative analysis of different genome assemblers and polishers on the gained data and obtained the final 447.1-Mb assembly of L. usitatissimum line 3896 genome using the Canu-Racon (two iterations)-Medaka combination. The genome comprised 1695 contigs and had an N50 of 6.2 Mb and a completeness of 93.8% of BUSCOs from eudicots_odb10. Our study highlights the impact of the chosen genome construction strategy on the resulting assembly parameters and its eligibility for future genomic studies.
Collapse
Affiliation(s)
| | - Nadezhda L. Bolsheva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Elena N. Pushkova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | | | - Alexander A. Zhuchenko
- Federal Research Center for Bast Fiber Crops, Torzhok 172002, Russia
- All-Russian Horticultural Institute for Breeding, Agrotechnology and Nursery, Moscow 115598, Russia
| | - Roman O. Novakovskiy
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Liubov V. Povkhova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Elizaveta A. Sigova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Moscow Institute of Physics and Technology, Moscow 141701, Russia
| | - Daiana A. Zhernova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| | - Elena V. Borkhert
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Dmitry N. Kaluzhny
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Nataliya V. Melnikova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| | - Alexey A. Dmitriev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
11
|
Achakkagari SR, Kyriakidou M, Gardner KM, De Koeyer D, De Jong H, Strömvik MV, Tai HH. Genome sequencing of adapted diploid potato clones. FRONTIERS IN PLANT SCIENCE 2022; 13:954933. [PMID: 36003817 PMCID: PMC9394749 DOI: 10.3389/fpls.2022.954933] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Cultivated potato is a vegetatively propagated crop, and most varieties are autotetraploid with high levels of heterozygosity. Reducing the ploidy and breeding potato at the diploid level can increase efficiency for genetic improvement including greater ease of introgression of diploid wild relatives and more efficient use of genomics and markers in selection. More recently, selfing of diploids for generation of inbred lines for F1 hybrid breeding has had a lot of attention in potato. The current study provides genomics resources for nine legacy non-inbred adapted diploid potato clones developed at Agriculture and Agri-Food Canada. De novo genome sequence assembly using 10× Genomics and Illumina sequencing technologies show the genome sizes ranged from 712 to 948 Mbp. Structural variation was identified by comparison to two references, the potato DMv6.1 genome and the phased RHv3 genome, and a k-mer based analysis of sequence reads showed the genome heterozygosity range of 1 to 9.04% between clones. A genome-wide approach was taken to scan 5 Mb bins to visualize patterns of heterozygous deleterious alleles. These were found dispersed throughout the genome including regions overlapping segregation distortions. Novel variants of the StCDF1 gene conferring earliness of tuberization were found among these clones, which all produce tubers under long days. The genomes will be useful tools for genome design for potato breeding.
Collapse
Affiliation(s)
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Kyle M. Gardner
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - David De Koeyer
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Hielke De Jong
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| | - Martina V. Strömvik
- Department of Plant Science, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Helen H. Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, NB, Canada
| |
Collapse
|
12
|
Jian H, Sun H, Liu R, Zhang W, Shang L, Wang J, Khassanov V, Lyu D. Construction of drought stress regulation networks in potato based on SMRT and RNA sequencing data. BMC PLANT BIOLOGY 2022; 22:381. [PMID: 35909124 PMCID: PMC9341072 DOI: 10.1186/s12870-022-03758-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Potato (Solanum tuberosum) is the fourth most important food crop in the world and plays an important role in food security. Drought stress has a significantly negative impact on potato growth and production. There are several publications involved drought stress in potato, this research contributes to enrich the knowledge. RESULTS In this study, next-generation sequencing (NGS) and single-molecule real-time (SMRT) sequencing technology were used to study the transcription profiles in potato in response to 20%PEG6000 simulates drought stress. The leaves of the variety "Désirée" from in vitro plantlets after drought stress at six time points from 0 to 48 hours were used to perform NGS and SMRT sequencing. According to the sequencing data, a total of 12,798 differentially expressed genes (DEGs) were identified in six time points. The real-time (RT)-PCR results are significantly correlated with the sequencing data, confirming the accuracy of the sequencing data. Gene ontology and KEGG analysis show that these DEGs participate in response to drought stress through galactose metabolism, fatty acid metabolism, plant-pathogen interaction, glutathione metabolism and other pathways. Through the analysis of alternative splicing of 66,888 transcripts, the functional pathways of these transcripts were enriched, and 51,098 transcripts were newly discovered from alternative splicing events and 47,994 transcripts were functionally annotated. Moreover, 3445 lncRNAs were predicted and enrichment analysis of corresponding target genes was also performed. Additionally, Alternative polyadenylation was analyzed by TADIS, and 26,153 poly (A) sites from 13,010 genes were detected in the Iso-Seq data. CONCLUSION Our research greatly enhanced potato drought-induced gene annotations and provides transcriptome-wide insights into the molecular basis of potato drought resistance.
Collapse
Affiliation(s)
- Hongju Jian
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Haonan Sun
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Rongrong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Wenzhe Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lina Shang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Jichun Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| | - Vadim Khassanov
- S. Seifullin Kazakh Agrotechnical University, Zhenis Avenue, 010011 Astana, Republic of Kazakhstan
| | - Dianqiu Lyu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing, 400715 China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing, 400715 China
| |
Collapse
|
13
|
Hosaka AJ, Sanetomo R, Hosaka K. A de novo genome assembly of Solanum verrucosum Schlechtendal, a Mexican diploid species geographically isolated from other diploid A-genome species of potato relatives. G3 GENES|GENOMES|GENETICS 2022; 12:6625657. [PMID: 35775942 PMCID: PMC9339273 DOI: 10.1093/g3journal/jkac166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/27/2022] [Indexed: 11/16/2022]
Abstract
There are over 100 known species of cultivated potatoes and their wild relatives. Many of these species, including cultivated potatoes, share the A genome; these species are mainly distributed in South America and are reproductively isolated from Mexican diploid species. The only diploid A-genome species distributed in Mexico is Solanum verrucosum Schlechtendal, which is also a maternal progenitor of Mexican polyploid species. In this study, we constructed a high-quality de novo assembly of the S. verrucosum genome using PacBio long-read sequencing and Hi-C scaffolding technologies. A monohaploid clone (2n = x = 12) of S. verrucosum was used to reduce assembly difficulty due to the heterozygous nature of the species. The final sequence assembly consisted of 780.2 Mb of sequence, 684.0 Mb of which were anchored to the 12 chromosomes, with a scaffold N50 of 55.2 Mb. Putative centromeres were identified using publicly available data obtained via chromatin immunoprecipitation sequencing against a centromere-specific histone 3 protein. Transposable elements accounted for approximately 61.8% (482.1 Mb) of the genome, and 46,904 genes were functionally annotated. High gene synteny and similarity were revealed among the genomes of S. verrucosum, Solanum commersonii, Solanum chacoense, Solanum phureja, Solanum tuberosum, and Solanum lycopersicum. The reference-quality S. verrucosum genome will provide new insights into the evolution of Mexican polyploid species and contribute to potato breeding programs.
Collapse
Affiliation(s)
| | - Rena Sanetomo
- Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Kazuyoshi Hosaka
- Corresponding author: Potato Germplasm Enhancement Laboratory, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan.
| |
Collapse
|
14
|
Tiwari JK, Buckseth T, Zinta R, Bhatia N, Dalamu D, Naik S, Poonia AK, Kardile HB, Challam C, Singh RK, Luthra SK, Kumar V, Kumar M. Germplasm, Breeding, and Genomics in Potato Improvement of Biotic and Abiotic Stresses Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:805671. [PMID: 35197996 PMCID: PMC8859313 DOI: 10.3389/fpls.2022.805671] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 01/17/2022] [Indexed: 05/23/2023]
Abstract
Potato is one of the most important food crops in the world. Late blight, viruses, soil and tuber-borne diseases, insect-pests mainly aphids, whiteflies, and potato tuber moths are the major biotic stresses affecting potato production. Potato is an irrigated and highly fertilizer-responsive crop, and therefore, heat, drought, and nutrient stresses are the key abiotic stresses. The genus Solanum is a reservoir of genetic diversity, however, a little fraction of total diversity has been utilized in potato breeding. The conventional breeding has contributed significantly to the development of potato varieties. In recent years, a tremendous progress has been achieved in the sequencing technologies from short-reads to long-reads sequence data, genomes of Solanum species (i.e., pan-genomics), bioinformatics and multi-omics platforms such as genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics. As such, genome editing has been extensively explored as a next-generation breeding tool. With the available high-throughput genotyping facilities and tetraploid allele calling softwares, genomic selection would be a reality in potato in the near future. This mini-review covers an update on germplasm, breeding, and genomics in potato improvement for biotic and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | - Rasna Zinta
- ICAR-Central Potato Research Institute, Shimla, India
| | - Nisha Bhatia
- ICAR-Central Potato Research Institute, Shimla, India
- School of Biotechnology, Shoolini University, Solan, India
| | - Dalamu Dalamu
- ICAR-Central Potato Research Institute, Shimla, India
| | - Sharmistha Naik
- ICAR-Central Potato Research Institute, Shimla, India
- ICAR-National Research Centre for Grapes, Pune, India
| | - Anuj K. Poonia
- School of Biotechnology, Shoolini University, Solan, India
| | - Hemant B. Kardile
- Department of Crop and Soil Science, Oregon State University, Corvallis, OR, United States
| | - Clarissa Challam
- ICAR-Central Potato Research Institute, Regional Station, Shillong, India
| | | | - Satish K. Luthra
- ICAR-Central Potato Research Institute, Regional Station, Meerut, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Shimla, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Regional Station, Meerut, India
| |
Collapse
|
15
|
Achakkagari SR, Tai HH, Davidson C, De Jong H, Strömvik MV. The complete mitogenome assemblies of ten diploid potato clones reveal recombination and overlapping variants. DNA Res 2021; 28:6319723. [PMID: 34254134 PMCID: PMC8386665 DOI: 10.1093/dnares/dsab009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/07/2021] [Indexed: 01/30/2023] Open
Abstract
The potato mitogenome is complex and to understand various biological functions and nuclear-cytoplasmic interactions, it is important to characterize its gene content and structure. In this study, the complete mitogenome sequences of nine diploid potato clones along with a diploid Solanum okadae clone were characterized. Each mitogenome was assembled and annotated from Pacific Biosciences (PacBio) long-reads and 10X genomics short reads. The results show that each mitogenome consists of multiple circular molecules with similar structure and gene organization, though two groups (clones 07506-01, DW84-1457, 08675-21, and H412-1 in one group, and clones W5281-2, 12625-02, 12120-03, and 11379-03 in another group) could be distinguished, and two mitogenomes (clone 10908-06 and OKA15) were not consistent with those or with each other. Significant differences in the repeat structure of the ten mitogenomes were found, as was recombination events leading to multiple sub-genomic circles. Comparison between individual molecules revealed a translocation of ∼774 bp region located between a short repeat of 40 bp in molecule 3 of each mitogenome, and an insertion of the same in the molecule 2 of the 10908-06 mitogenome. Finally, phylogenetic analyses revealed a close relationship between the mitogenomes of these clones and previously published potato mitogenomes.
Collapse
Affiliation(s)
| | - Helen H Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | - Charlotte Davidson
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | - Hielke De Jong
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | | |
Collapse
|
16
|
Jayakodi M, Schreiber M, Stein N, Mascher M. Building pan-genome infrastructures for crop plants and their use in association genetics. DNA Res 2021; 28:6117190. [PMID: 33484244 PMCID: PMC7934568 DOI: 10.1093/dnares/dsaa030] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Indexed: 12/20/2022] Open
Abstract
Pan-genomic studies aim at representing the entire sequence diversity within a species to provide useful resources for evolutionary studies, functional genomics and breeding of cultivated plants. Cost reductions in high-throughput sequencing and advances in sequence assembly algorithms have made it possible to create multiple reference genomes along with a catalogue of all forms of genetic variations in plant species with large and complex or polyploid genomes. In this review, we summarize the current approaches to building pan-genomes as an in silico representation of plant sequence diversity and outline relevant methods for their effective utilization in linking structural with phenotypic variation. We propose as future research avenues (i) transcriptomic and epigenomic studies across multiple reference genomes and (ii) the development of user-friendly and feature-rich pan-genome browsers.
Collapse
Affiliation(s)
- Murukarthick Jayakodi
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Mona Schreiber
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany
| | - Nils Stein
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,Center for Integrated Breeding Research (CiBreed), Georg-August-University Göttingen, Göttingen, Germany
| | - Martin Mascher
- Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Seeland, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Saxony, Germany
| |
Collapse
|
17
|
Achakkagari SR, Bozan I, Anglin NL, Ellis D, Tai HH, Strömvik MV. Complete mitogenome assemblies from a panel of 13 diverse potato taxa. MITOCHONDRIAL DNA PART B-RESOURCES 2021; 6:894-897. [PMID: 33796671 PMCID: PMC7971228 DOI: 10.1080/23802359.2021.1886016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mitochondrial DNA is maternally inherited and is shown to affect nuclear–cytoplasmic interactions in potato. Analyzing the mitogenome helps understand the evolutionary relationships and improve breeding programs in potato. We report complete mitogenome sequences from a panel of 13 potato accessions of various taxa. Each mitogenome has three independent circular molecules, except one of the S. bukasovii sample BUK2, which has a single circular molecule. Each mitogenome code for 37 non-redundant protein-coding genes, three rRNAs, 20 tRNAs, and 19 hypothetical open reading frames. Phylogenetic analysis reveals congruency between plastome and mitogenome phylogeny.
Collapse
Affiliation(s)
| | - Ilayda Bozan
- Department of Plant Science, McGill University, Montreal, Canada
| | | | | | - Helen H Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | | |
Collapse
|
18
|
Tiwari JK, Rawat S, Luthra SK, Zinta R, Sahu S, Varshney S, Kumar V, Dalamu D, Mandadi N, Kumar M, Chakrabarti SK, Rao AR, Rai A. Genome sequence analysis provides insights on genomic variation and late blight resistance genes in potato somatic hybrid (parents and progeny). Mol Biol Rep 2021; 48:623-635. [PMID: 33442830 DOI: 10.1007/s11033-020-06106-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/18/2020] [Indexed: 11/29/2022]
Abstract
Wild Solanum species are the important resources for potato improvement. With the availability of potato genome and sequencing progress, knowledge about genomic resources is essential for novel genes discovery. Hence, the aim of this study was to decipher draft genome sequences of unique potato genotypes i.e. somatic hybrid P8 (J1), wild species S. pinnatisectum (J2), progeny MSH/14-112 (P8 × cv. Kufri Jyoti) (J3), and S. tuberosum dihaploid C-13 (J4). Draft genome sequencing using Illumina platform and reference-based assemblies with the potato genome yielded genome assembly size of 725.01 Mb (J1), 724.95 Mb (J2), 725.01 Mb (J3), and 809.59 Mb (J4). Further, 39,260 (J1), 25,711 (J2), 39,730 (J3) and 30,241 (J4) genes were identified and 17,411 genes were found common in the genotypes particularly late blight resistance genes (R3a, RGA2, RGA3, R1B-16, Rpi-blb2, Rpi and Rpi-vnt1). Gene ontology (GO) analysis showed that molecular function was predominant and signal transduction was major KEGG pathways. Further, gene enrichment analysis revealed dominance of metabolic process (GO: 0008152) in all the samples. Phylogeny analysis showed relatedness with potato and other plant species. Heterozygous single nucleotide polymorphism (SNP) was more than homozygous, and SNP in genic region was more than inter-genic region. Copy number variation (CNV) analysis indicated greater number of deletions than duplications. Sequence diversity and conserved motifs analysis revealed variation for late blight resistance genes. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis showed differential expression of late blight resistance genes. Our study provides insights on genome sequence, structural variation and late blight resistance genes in potato somatic hybrid (parents and progeny) for future research.
Collapse
Affiliation(s)
- Jagesh Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India.
| | - Shashi Rawat
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Satish K Luthra
- ICAR-Central Potato Research Institute, Regional Station, Modipuram, Meerut, 250110, Uttar Pradesh, India
| | - Rasna Zinta
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Sarika Sahu
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Shivangi Varshney
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Vinod Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Dalamu Dalamu
- ICAR-Central Potato Research Institute, Regional Station, Kufri, Shimla, 171012, Himachal Pradesh, India
| | - Nagesh Mandadi
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | - Manoj Kumar
- ICAR-Central Potato Research Institute, Shimla, 171001, Himachal Pradesh, India
| | | | - Atmakuri R Rao
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Anil Rai
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
19
|
Achakkagari SR, Kyriakidou M, Tai HH, Anglin NL, Ellis D, Strömvik MV. Complete plastome assemblies from a panel of 13 diverse potato taxa. PLoS One 2020; 15:e0240124. [PMID: 33031462 PMCID: PMC7544113 DOI: 10.1371/journal.pone.0240124] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/20/2020] [Indexed: 01/24/2023] Open
Abstract
The chloroplasts are a crucial part of photosynthesizing plant cells and are extensively utilized in phylogenetic studies mainly due to their maternal inheritance. Characterization and analysis of complete plastome sequences is necessary to understand their diversity and evolutionary relationships. Here, a panel of thirteen plastomes from various potato taxa are presented. Though they are highly similar with respect to gene order and content, there is also a great extent of SNPs and InDels between them, with one of the Solanum bukasovii plastomes (BUK2) having the highest number of SNPs and InDels. Five different potato plastome types (C, S, A, W, W2) are present in the panel. Interestingly, the S. tuberosum subsp. tuberosum (TBR) accession has a W-type plastome, which is not commonly found in this species. The S-type plastome has a conserved 48 bp deletion not found in other types, which is responsible for the divergence of the S-type from the C-type plastome. Finally, a phylogenetic analysis shows that these plastomes cluster according to their types. Congruence between the nuclear genome and the plastome phylogeny of these accessions was seen, however with considerable differences, supporting the hypothesis of introgression and hybridization between potato species.
Collapse
Affiliation(s)
| | - Maria Kyriakidou
- Department of Plant Science, McGill University, Montreal, Canada
| | - Helen H. Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, Fredericton, Canada
| | | | | | | |
Collapse
|
20
|
Halewood M, Jamora N, Noriega IL, Anglin NL, Wenzl P, Payne T, Ndjiondjop MN, Guarino L, Kumar PL, Yazbek M, Muchugi A, Azevedo V, Tchamba M, Jones CS, Venuprasad R, Roux N, Rojas E, Lusty C. Germplasm Acquisition and Distribution by CGIAR Genebanks. PLANTS 2020; 9:plants9101296. [PMID: 33019539 PMCID: PMC7601315 DOI: 10.3390/plants9101296] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/03/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022]
Abstract
The international collections of plant genetic resources for food and agriculture (PGRFA) hosted by 11 CGIAR Centers are important components of the United Nations Food and Agriculture Organization's global system of conservation and use of PGRFA. They also play an important supportive role in realizing Target 2.5 of the Sustainable Development Goals. This paper analyzes CGIAR genebanks' trends in acquiring and distributing PGRFA over the last 35 years, with a particular focus on the last decade. The paper highlights a number of factors influencing the Centers' acquisition of new PGRFA to include in the international collections, including increased capacity to analyze gaps in those collections and precisely target new collecting missions, availability of financial resources, and the state of international and national access and benefit-sharing laws and phytosanitary regulations. Factors contributing to Centers' distributions of PGRFA included the extent of accession-level information, users' capacity to identify the materials they want, and policies. The genebanks' rates of both acquisition and distribution increased over the last decade. The paper ends on a cautionary note concerning the potential of unresolved tensions regarding access and benefit sharing and digital genomic sequence information to undermine international cooperation to conserve and use PGRFA.
Collapse
Affiliation(s)
- Michael Halewood
- Alliance of Bioversity International and the International Center for Tropical Agriculture (Alliance of Bioversity and CIAT), Via dei Tre Denari 472/a, 00057 Maccarese (Fiumicino) Rome, Italy; (I.L.N.); (P.W.); (N.R.)
- Correspondence:
| | - Nelissa Jamora
- Global Crop Diversity Trust (Crop Trust), Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (N.J.); (L.G.); (C.L.)
| | - Isabel Lopez Noriega
- Alliance of Bioversity International and the International Center for Tropical Agriculture (Alliance of Bioversity and CIAT), Via dei Tre Denari 472/a, 00057 Maccarese (Fiumicino) Rome, Italy; (I.L.N.); (P.W.); (N.R.)
| | - Noelle L. Anglin
- International Potato Center (CIP), Av. La Molina 1895, La Molina Apartado 1558, Lima 12, Peru; (N.L.A.); (E.R.)
| | - Peter Wenzl
- Alliance of Bioversity International and the International Center for Tropical Agriculture (Alliance of Bioversity and CIAT), Via dei Tre Denari 472/a, 00057 Maccarese (Fiumicino) Rome, Italy; (I.L.N.); (P.W.); (N.R.)
| | - Thomas Payne
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, 06600 Mexico, D.F., Mexico;
| | | | - Luigi Guarino
- Global Crop Diversity Trust (Crop Trust), Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (N.J.); (L.G.); (C.L.)
| | - P. Lava Kumar
- International Institute for Tropical Agriculture (IITA), PMB 5320, Ibadan 200001, Oyo State, Nigeria; (P.L.K.); (M.T.)
| | - Mariana Yazbek
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 114/5055, Beirut, Lebanon;
| | - Alice Muchugi
- World Agroforestry (ICRAF), Box 30677, Nairobi 00100, Kenya;
| | - Vania Azevedo
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, Telangana State, India;
| | - Marimagne Tchamba
- International Institute for Tropical Agriculture (IITA), PMB 5320, Ibadan 200001, Oyo State, Nigeria; (P.L.K.); (M.T.)
| | - Chris S. Jones
- International Livestock Research Institute (ILRI), Box 30709, Nairobi 00100, Kenya;
| | - Ramaiah Venuprasad
- International Rice Research Institute (IRRI), Los Baños 4030, Laguna, Philippines;
| | - Nicolas Roux
- Alliance of Bioversity International and the International Center for Tropical Agriculture (Alliance of Bioversity and CIAT), Via dei Tre Denari 472/a, 00057 Maccarese (Fiumicino) Rome, Italy; (I.L.N.); (P.W.); (N.R.)
| | - Edwin Rojas
- International Potato Center (CIP), Av. La Molina 1895, La Molina Apartado 1558, Lima 12, Peru; (N.L.A.); (E.R.)
| | - Charlotte Lusty
- Global Crop Diversity Trust (Crop Trust), Platz der Vereinten Nationen 7, 53113 Bonn, Germany; (N.J.); (L.G.); (C.L.)
| |
Collapse
|
21
|
Clot CR, Polzer C, Prodhomme C, Schuit C, Engelen CJM, Hutten RCB, van Eck HJ. The origin and widespread occurrence of Sli-based self-compatibility in potato. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:2713-2728. [PMID: 32514711 PMCID: PMC7419354 DOI: 10.1007/s00122-020-03627-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/26/2020] [Indexed: 05/06/2023]
Abstract
Self-compatible (SC) diploid potatoes allow innovative potato breeding. Therefore, the Sli gene, originally described in S. chacoense, has received much attention. In elite S. tuberosum diploids, spontaneous berry set is occasionally observed. We aimed to map SC from S. tuberosum origin. Two full-sib mapping populations from non-inbred diploids were used. Bulks were composed based on both pollen tube growth and berry set upon selfing. After DNA sequencing of the parents and bulks, we generated k-mer tables. Set algebra and depth filtering were used to identify bulk-specific k-mers. Coupling and repulsion phase k-mers, transmitted from the SC parent, mapped in both populations to the distal end of chromosome 12. Intersection between the k-mers from both populations, in coupling phase with SC, exposed a shared haplotype of approximately 1.5 Mb. Subsequently, we screened read archives of potatoes and wild relatives for k-mers specific to this haplotype. The well-known SC clones US-W4 and RH89-039-16, but surprisingly, also S. chacoense clone M6 were positives. Hence, the S. tuberosum source of SC seems identical to Sli. Furthermore, the candidate region drastically reduced to 333 kb. Haplotype-specific KASP markers were designed and validated on a panel of diploid clones including another renown SC dihaploid G254. Interestingly, k-mers specific to the SC haplotype were common in tetraploid varieties. Pedigree information suggests that the SC haplotype was introduced into tetraploid varieties via the founder "Rough Purple Chili". We show that Sli is surprisingly widespread and indigenous to the cultivated gene pool of potato.
Collapse
Affiliation(s)
- Corentin R Clot
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Clara Polzer
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- Aardevo B.V., Johannes Postweg 8, 8308 PB, Nagele, The Netherlands
| | - Charlotte Prodhomme
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
- La Fédération Nationale des Producteurs de Plants de Pomme de Terre (FN3PT), Agrocampus Ouest, UMR IGEPP, 29260, Ploudaniel, France
| | - Cees Schuit
- Bejo Zaden B.V., Trambaan 1, 1749 CZ, Warmenhuizen, The Netherlands
| | - Christel J M Engelen
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Ronald C B Hutten
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands
| | - Herman J van Eck
- Plant Breeding, Wageningen University, P.O. Box 386, 6700 AJ, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Kyriakidou M, Anglin NL, Ellis D, Tai HH, Strömvik MV. Genome assembly of six polyploid potato genomes. Sci Data 2020; 7:88. [PMID: 32161269 PMCID: PMC7066127 DOI: 10.1038/s41597-020-0428-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 02/14/2020] [Indexed: 02/06/2023] Open
Abstract
Genome assembly of polyploid plant genomes is a laborious task as they contain more than two copies of the genome, are often highly heterozygous with a high level of repetitive DNA. Next Generation genome sequencing data representing one Chilean and five Peruvian polyploid potato (Solanum spp.) landrace genomes was used to construct genome assemblies comprising five taxa. Third Generation sequencing data (Linked and Long-read data) was used to improve the assembly for one of the genomes. Native landraces are valuable genetic resources for traits such as disease and pest resistance, environmental tolerance and other qualities of interest such as nutrition and fiber for breeding programs. The need for conservation and enhanced understanding of genetic diversity of cultivated potato from South America is also crucial to North American and European cultivars. Here, we report draft genomes from six polyploid potato landraces representing five taxa, illustrating how Third Generation Sequencing can aid in assembling polyploid genomes.
Collapse
Affiliation(s)
- Maria Kyriakidou
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada
| | - Noelle L Anglin
- CIP-International Potato Center, Avenida La Molina 1895, Lima, 12, Peru
| | - David Ellis
- CIP-International Potato Center, Avenida La Molina 1895, Lima, 12, Peru
| | - Helen H Tai
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, PO Box 20280, 850 Lincoln Rd., Fredericton, NB, E3B 4Z7, Canada
| | - Martina V Strömvik
- Department of Plant Science, McGill University, 21111 Lakeshore Rd., Sainte-Anne-de-Bellevue, QC, H9X3V9, Canada.
| |
Collapse
|