1
|
Quan Y, Liu H, Li K, Xu L, Zhao Z, Xiao L, Yao Y, Du D. Genome-wide association study reveals genetic loci for seed density per silique in rapeseed (Brassica napus L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:80. [PMID: 40113624 DOI: 10.1007/s00122-025-04857-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 02/15/2025] [Indexed: 03/22/2025]
Abstract
KEY MESSAGE Two stable QTLs controlling seed density per silique were detected on chromosomes A09 and C05 in rapeseed via GWAS, and ARF18 was the only causal gene of QTL qSDPS-A09. Seed density per silique (SDPS) is a key agronomic trait that directly or indirectly affects seed yield in rapeseed (Brassica napus L.). Exploring the genetic control of SDPS is beneficial for increasing rapeseed production. In this study, we evaluated the SDPS phenotypes of 413 rapeseed cultivars (lines) across five natural environments and genotyped them by resequencing. A GWAS analysis was performed using 5,277,554 high-quality variants with the MLM_PCA + K and FarmCPU models. A total of 51 loci were identified to be significantly (p < - log10(1.88 × 10-6)) associated with SDPS, of which 5 were detected in all environments (except for SNP-2095656) by both GWAS models. Among the five loci, three were located on chromosome A09, whereas the other two loci were located on chromosome C05. The three loci on chromosome A09 and the two loci on chromosome C05 were physically close to each other. Therefore, only the two common candidate QTLs were integrated and named QTL qSDPS-A09 (320 kb) and qSDPS-C05 (331.48 kb), respectively. Sixty-seven and forty-eight candidate genes were initially identified on A09 and C05 and then narrowed down to 17 and 13 candidate genes, respectively, via LD block analyses. Gene-based association studies, haplotype analyses and expression analyses confirmed that three homologs of Arabidopsis auxin-response factor 18 (BnaA09G0559300ZS) was the most likely candidate genes underlying the QTL qSDPS-A09. ARF18Hap4 was identified as a favorable haplotype for high SDPS. These findings will aid in elucidating the genetic and molecular mechanisms of SDPS and promoting genetic modifications in rapeseed breeding.
Collapse
Affiliation(s)
- Youjuan Quan
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Haidong Liu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| | - Kaixiang Li
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Liang Xu
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Zhigang Zhao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Lu Xiao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Yanmei Yao
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China
| | - Dezhi Du
- Laboratory for Research and Utilization of Qinghai Tibet Plateau Germplasm Resources, Qinghai Spring Rape Engineering Research Center, Qinghai Research Branch of the National Oil Crop Genetic Improvement Center, Spring Rape Scientific Observation Experimental Station of Ministry of Agriculture and Rural Areas, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, 810016, Qinghai, China.
| |
Collapse
|
2
|
Tang B, Yang H, Yin Q, Miao W, Lei Y, Cui Q, Cheng J, Zhang X, Chen Y, Du J, Xie L, Tang S, Wang M, Li J, Cao M, Chen L, Xie F, Li X, Zhu F, Wang Z, Xiong C, Dai X, Zou X, Liu F. Fertility restorer gene CaRf and PepperSNP50K provide a promising breeding system for hybrid pepper. HORTICULTURE RESEARCH 2024; 11:uhae223. [PMID: 39415972 PMCID: PMC11480663 DOI: 10.1093/hr/uhae223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 07/28/2024] [Indexed: 10/19/2024]
Abstract
Cytoplasmic male sterility (CMS) is pivotal in plant breeding and widely employed in various crop hybrids, including pepper. However, the functional validation of the restorer of fertility (Rf) gene in pepper has been lacking until now. This study identifies and characterizes CaRf, a single dominant locus crucial for restoring CMS in the pepper strong recovery inbred line Zhangshugang. The CaRf gene encodes a mitochondria-targeted pentatricopeptide repeat protein, validated through the induction of male sterility upon its silencing in hybrid F1 plants. To enhance pepper breeding efficiency, 176 important pepper breeding parent materials were resequenced, and a PepperSNP50K liquid-phase breeding chip was developed, comprising 51 172 markers. Integration of CaRf functional characterization and PepperSNP50K facilitated the development of a high-quality red pepper hybrid. These findings provide significant insights and practical strategies for advancing molecular-designed breeding in peppers.
Collapse
Affiliation(s)
- Bingqian Tang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Huiping Yang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Qinbiao Yin
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha 410125, China
| | - Yuting Lei
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Qingzhi Cui
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jiawen Cheng
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Xinhao Zhang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Ying Chen
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Juan Du
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Lingling Xie
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Shunxue Tang
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Meiqi Wang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Jiayue Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Mingyue Cao
- Higentec Co. Ltd., Changsha, Hunan, 410125, China
| | - Li Chen
- Institute of Vegetable Research, Hunan Academy of Agricultural Science, Changsha 410125, China
| | - Fangling Xie
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiumin Li
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Fan Zhu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Zhongyi Wang
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Cheng Xiong
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiongze Dai
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xuexiao Zou
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Feng Liu
- Engineering Research Center of Education, Ministry for Germplasm Innovation and Breeding New Varieties of Horticultural Crops, Key Laboratory for Vegetable Biology of Hunan Province, College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
3
|
Wang Y, Zhang X, Yang J, Chen B, Zhang J, Li W, Du H, Geng S. Optimized Pepper Target SNP-Seq Applied in Population Structure and Genetic Diversity Analysis of 496 Pepper ( Capsicum spp.) Lines. Genes (Basel) 2024; 15:214. [PMID: 38397204 PMCID: PMC10887817 DOI: 10.3390/genes15020214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/26/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Peppers are a major vegetable crop worldwide. With the completion of additional genome assemblies, a multitude of single-nucleotide polymorphisms (SNPs) can be utilized for population structure and genetic diversity analysis. In this study, we used target SNP-sequencing as a new high-throughput sequencing technology, screening out 425 perfect SNPs for analyzing the genetic diversity and population structure among 496 pepper lines from five pepper species in China and abroad. The perfect SNP panel exhibited commendable discriminative ability, as indicated by the average values of polymorphism information content, observed heterozygosity, minor allele frequency, and genetic diversity, which were 0.346, 0.011, 0.371, and 0.449, respectively. Based on phylogenetic, population structure, and principal component analyses, 484 C. annuum lines were divided into four subpopulations according to the shape of fruit: blocky fruit, wide-horn fruit, narrow-horn fruit, and linear fruit. These subpopulations displayed clear clustering with minimal or no overlap. Moreover, F statistic (Fst) analysis revealed considerable distinctions among these subpopulations. Additionally, we established a set of 47 core SNPs that could effectively differentiate among all pepper lines. This core SNP set could precisely classify the C. annuum lines into four distinct fruit-shape groups. The blocky and narrow-horn fruit subpopulations displayed the lowest and highest genetic diversity, respectively. This study highlights the importance of fruit shape as a crucial trait in pepper breeding. Moreover, this work indicates the immense potential of optimized target SNP technology in the addition of foreground markers of important traits to improve molecular breeding efficiency, and demonstrates its broad application prospects in the genetic analysis and variety identification of peppers.
Collapse
Affiliation(s)
- Yihao Wang
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.W.); (B.C.)
| | - Xiaofen Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (X.Z.); (J.Y.); (J.Z.)
| | - Jingjing Yang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (X.Z.); (J.Y.); (J.Z.)
| | - Bin Chen
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.W.); (B.C.)
- Beijing Key Laboratory of Vegetable Germplasms Improvement, Beijing 100097, China
| | - Jian Zhang
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (X.Z.); (J.Y.); (J.Z.)
- Key Laboratory of Biology and Genetics Improvement of Horticultural Crops (North China), Beijing 100097, China
| | - Wenyue Li
- Henan OULAND Seed Industry Co., Ltd., Zhengzhou 450003, China;
| | - Heshan Du
- National Engineering Research Center for Vegetables, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (X.Z.); (J.Y.); (J.Z.)
| | - Sansheng Geng
- State Key Laboratory of Vegetable Biobreeding, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Science, Beijing 100097, China; (Y.W.); (B.C.)
| |
Collapse
|
4
|
Zhang Z, Cao Y, Wang Y, Yu H, Wu H, Liu J, An D, Zhu Y, Feng X, Zhang B, Wang L. Development and validation of KASP markers for resistance to Phytophthora capsici in Capsicum annuum L. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:20. [PMID: 37313294 PMCID: PMC10248700 DOI: 10.1007/s11032-023-01367-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 02/25/2023] [Indexed: 06/15/2023]
Abstract
Resistance of Capsicum annuum to Phytophthora blight is dependent on the genetic background of the resistance source and the Phytophthora capsici isolate, which poses challenges for development of generally applicable molecular markers for marker-assisted selection. In this study, the resistance to P. capsici of C. annuum was genetically mapped to chromosome 5 within a 1.68-Mb interval by genome-wide association study analysis of 237 accessions. In this candidate region, 30 KASP markers were developed using genome resequencing data for a P. capsici-resistant line (0601 M) and a susceptible line (77,013). Seven of these KASP markers, located in the coding region of a probable leucine-rich repeats receptor-like serine/threonine-protein kinase gene (Capana05g000704), were validated in the 237 accessions, which showed an average accuracy of 82.7%. The genotyping of the seven KASP markers strongly corresponded with the phenotype of 42 individual plants in a pedigree family (PC83-163) developed from the P. capsici-resistant line CM334. This research provides a set of efficient and high-throughput KASP markers for marker-assisted selection of resistance to P. capsici in C. annuum. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01367-3.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yacong Cao
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yongfu Wang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Hailong Yu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Huamao Wu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Jing Liu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Dongliang An
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yanshu Zhu
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Xigang Feng
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Baoxi Zhang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Lihao Wang
- Key Laboratory of Vegetable Genetics and Physiology of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| |
Collapse
|
5
|
Identification and bioinformatic analysis of the CaCesA/Csls family members and the expression of the CaCslD1 in the flower buds of CMS/Rf system in pepper. Funct Integr Genomics 2022; 22:1411-1431. [PMID: 36138269 DOI: 10.1007/s10142-022-00896-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 08/23/2022] [Accepted: 08/25/2022] [Indexed: 11/04/2022]
Abstract
The cellulose synthase gene superfamily contains cellulose synthase (CesA) and cellulose synthase-like (Csl) gene families, which synthesize cellulose and hemicellulose in plant cell walls and play a crucial role in plant growth and development. However, the CesA/Csl gene family has not been reported in pepper. Therefore, the genome-wide research of the CaCesA/CaCsl gene family was conducted in pepper. In this study, a total of 39 CaCesA/CaCsls genes (10 CesAs genes and 29 Csls genes) were identified in pepper and unevenly distributed on 11 chromosomes. These CaCesA/Csls were divided into seven subfamilies (CesAs, CslAs, CslBs, CslCs, CslDs, CslEs, CslGs), and most of CaCesA/Csls genes are closely related to AtCesA/Csls genes. The cis-acting elements in the promoters of CaCesA/Csls genes are mainly related to hormone response and stress response. There are ten collinear gene pairs between the CesA/Csls gene family of pepper and Arabidopsis, and four fragment duplication gene pairs of the CaCesA/Csls genes were discovered. RNA-seq analysis shows that the majority of CaCesA/Csls are expressed in a variety of plant tissues, indicating that most CaCesA/Csls gene expression patterns are not organ-specific, and CaCslD1/D4 have the highest expression in anthers, followed by petal, ovary, and F9. RNA-seq analysis shows that most CaCesA/Csls are responsive to five hormones (IAA, GA3, ABA, SA, and MeJA). The tissue-specific expression analysis of the CaCslD1 gene shows that the CaCslD1 gene is expressed specifically in flowers. In the flower buds IV of cytoplasmic male sterility (CMS) and its restoration of fertility (Rf) system, CaCslD1 reach the highest expression respectively. However, the relative expression level of CaCslD1 in the fertile accessions is extremely significantly higher than in the sterile accessions. This study shows an overall understanding of the CaCesA/Csls gene family and provides a new insight for understanding the function of CaCslD1 in pollen development and exploring the fertility restoration of CMS in pepper.
Collapse
|
6
|
Zhang Z, An D, Yu H, Sun L, Cao Y, Zhang B, Wang L. Fine mapping of Rf2, a minor Restorer-of-fertility (Rf) gene for cytoplasmic male sterility in chili pepper G164 (Capsicum annuum L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:2699-2709. [PMID: 35710637 DOI: 10.1007/s00122-022-04143-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Genome re-sequencing and recombination analyses identified Capana06g000193 as a strong candidate for the minor male fertility restoration locus Rf2 in chili pepper G164 harboring two dominant male fertility restoration genes. Male fertility restoration genes of chili pepper restorer line G164 (Capsicum annuum L.) were studied using molecular marker genotypes of an F2 population (7G) of G164 crossed with the cytoplasmic male sterility line 77013A. The ratio of sterile to fertile single plants in the F2 population was 1:15. This result indicates that chili pepper G164 has two dominant restoration genes, which we designated as Rf1 and Rf2. An individual plant recessive for Rf1 and heterozygous for Rf2, 7G-112 (rf1rf1Rf2rf2), was identified by molecular marker selection and genetic analysis, and a single Rf2 gene-segregating population with a 3:1 ratio of fertile to sterile plants was developed from the self-pollination of male fertile individuals of 77013A and 7G-112 hybrid progeny. Bulk segregant analysis of fertile and sterile pools from the segregating populations was used to genetically map Rf2 to a 3.1-Mb region on chromosome 6. Rf2 was further narrowed to a 179.3-kb interval through recombination analysis of molecular markers and obtained the most likely candidate gene, Capana06g000193.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Dongliang An
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Hailong Yu
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Liuqing Sun
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Yacong Cao
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Baoxi Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China
| | - Lihao Wang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081, China.
| |
Collapse
|
7
|
Fine Mapping and Gene Analysis of restorer-of-fertility Gene CaRfHZ in Pepper (Capsicum annuum L.). Int J Mol Sci 2022; 23:ijms23147633. [PMID: 35886981 PMCID: PMC9316182 DOI: 10.3390/ijms23147633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 11/17/2022] Open
Abstract
Cytoplasmic male sterility (CMS) is a common biological phenomenon used in hybrid production of peppers (Capsicum annuum L.). Although several restorer-of-fertility (Rf) genes of pepper CMS lines have been mapped, there is no report that the Rf gene with clear gene function has been isolated. Here, pepper CMS line HZ1A and its restorer line HZ1C were used to construct (HZ1A × HZ1C) F2 populations and map the Rf gene. A single dominant gene CaRfHZ conferred male fertility according to inheritance analysis. Using sterile plants from (HZ1A × HZ1C) F2 populations and bulked segregant analysis (BSA), the CaRfHZ gene was mapped between P06gInDel-66 and P06gInDel-89 on chromosome 6. This region spans 533.81 kb, where four genes are annotated according to Zunla-1 V2.0 gene models. Based on the analysis of genomic DNA sequences, gene expressions, and protein structures, Capana06g002968 was proposed as the strongest candidate for the CaRfHZ gene. Our results may help with hybrid pepper breeding and to elucidate the mechanism of male fertility restoration in peppers.
Collapse
|
8
|
Kang MC, Kang HJ, Jung SY, Lee HY, Kang MY, Jo YD, Kang BC. The Unstable Restorer-of-fertility locus in pepper (Capsicum annuum. L) is delimited to a genomic region containing PPR genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1923-1937. [PMID: 35357525 DOI: 10.1007/s00122-022-04084-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/15/2022] [Indexed: 06/14/2023]
Abstract
Unstable Restorer-of-fertility (Rfu), conferring unstable fertility restoration in the pepper CGMS system, was delimited to a genomic region near Rf and is syntenic to the PPR-like gene-rich region in tomato. The use of cytoplasmic-genic male sterility (CGMS) systems greatly increases the efficiency of hybrid seed production. Although marker development and candidate gene isolation have been performed for the Restorer-of-fertility (Rf) gene in pepper (Capsicum annuum L.), the broad use of CGMS systems has been hampered by the instability of fertility restoration among pepper accessions, especially sweet peppers, due to the widespread presence of the Unstable Restorer-of-fertility (Rfu) locus. Therefore, to investigate the genetic factors controlling unstable fertility restoration in sweet peppers, we developed a segregation population (BC4F5) from crosses using a male-sterile line and an Rfu-containing line. Segregation did not significantly deviate from a 3:1 ratio for unstable fertility restoration to sterility, indicating single dominant locus control for unstable fertility restoration in this population. Genetic mapping delimited the Rfu locus to a 398 kb genomic region on chromosome 6, which is close to but different from the previously identified Rf-containing region. The Rfu-containing region harbors a pentatricopeptide repeat (PPR) gene, along with 10 other candidate genes. In addition, this region is syntenic to the genomic region containing the largest number of Rf-like PPR genes in tomato. Therefore, the dynamic evolution of PPR genes might be responsible for both the restoration and instability of fertility in pepper. During genetic mapping, we developed various molecular markers, including one that co-segregated with Rfu. These markers showed higher accuracy for genotyping than previously developed markers, pointing to their possible use in marker-assisted breeding of sweet peppers.
Collapse
Affiliation(s)
- Moo Chan Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hwa-Jeong Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - So-Young Jung
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Hae-Young Lee
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Min-Young Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeong Deuk Jo
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, 56212, Republic of Korea.
| | - Byoung-Cheorl Kang
- Department of Agriculture, Forestry and Bioresources, Research Institute of Agriculture and Life Sciences, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| |
Collapse
|
9
|
Sun Y, Zhang Y, Jia S, Lin C, Zhang J, Yan H, Peng B, Zhao L, Zhang W, Zhang C. Identification of a Candidate restorer-of-fertility Gene Rf3 Encoding a Pentatricopeptide Repeat Protein for the Cytoplasmic Male Sterility in Soybean. Int J Mol Sci 2022; 23:5388. [PMID: 35628200 PMCID: PMC9140608 DOI: 10.3390/ijms23105388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 12/04/2022] Open
Abstract
The cytoplasmic male sterility/restorer-of-fertility (CMS/Rf) system plays a vital role in high-efficiency hybrid seed production in crops, including soybean (Glycine max (L.) Merr.). The markers linked to fertility restoration and the restorer-of-fertility (Rf) genes are essential because they can facilitate the breeding of new CMS lines and production of commercial hybrid soybean seeds. To date, several soybean Rf genes have been mapped to various genetic loci in diverse genetic populations. However, the mapping range of restorer genes remains narrow, with relatively limited practical applicability. Therefore, in the present study, F2 and F3 segregating populations derived from the CMS line JLCMS5A crossed with the restorer line JLR2 were developed and used for Rf3 gene fine mapping. Genetic investigation indicated that the restorer line JLR2 was controlled by a single dominant gene, Rf3. By integrating bulk-segregant analysis and next-generation sequencing, a 4 Mb region on chromosome 9 was identified, which was most likely the target region harboring the candidate gene responsible for fertility restoration. This region was further narrowed down to 86.44 Kb via fine mapping in F2 and F3 populations using SSR, InDel, and dCAPS markers. This region contained 10 putative genes (Glyma.09G171100-Glyma.09G172000). Finally, Glyma.09G171200, which encodes a mitochondria-targeted pentatricopeptide repeat protein, was proposed as the potential candidate for Rf3 using sequence alignment and expression analysis in restorer and CMS lines. Based on single-nucleotide polymorphisms in Glyma.09G171200, a CAPS marker co-segregated with Rf3 named CAPS1712 was developed. Our results will be fundamental in the assisted selection and creation of potent lines for the production and rapid selection of novel restorer lines.
Collapse
Affiliation(s)
- Yanyan Sun
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Yan Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Shungeng Jia
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Chunjing Lin
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Jingyong Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Hao Yan
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Bao Peng
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Limei Zhao
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Wei Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| | - Chunbao Zhang
- Soybean Research Institute, Jilin Academy of Agricultural Sciences, Changchun 130033, China; (Y.S.); (Y.Z.); (S.J.); (C.L.); (J.Z.); (H.Y.); (B.P.); (L.Z.); (W.Z.)
- Key Laboratory of Hybrid Soybean Breeding of the Ministry of Agriculture and Rural Affairs, Changchun 130033, China
| |
Collapse
|
10
|
Comparative Transcriptome Analysis of the Anthers from the Cytoplasmic Male-Sterile Pepper Line HZ1A and Its Maintainer Line HZ1B. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7120580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Cytoplasmic male-sterility (CMS) is important for the utilization of crop heterosis and study of the molecular mechanisms involved in CMS could improve breeding programs. In the present study, anthers of the pepper CMS line HZ1A and its maintainer line HZ1B were collected from stages S1, S2, and S3 for transcriptome sequencing. A total of 47.95 million clean reads were obtained, and the reads were assembled into 31,603 unigenes. We obtained 42 (27 up-regulated and 15 down-regulated), 691 (346 up-regulated and 345 down-regulated), and 709 (281 up-regulated and 428 down-regulated) differentially expressed genes (DEGs) in stages S1, S2, and S3, respectively. Through Gene Ontology (GO) analysis, the DEGs were found to be composed of 46 functional groups. Two GO terms involved in photosynthesis, photosynthesis (GO:0015986) and photosystem I (GO:0009522), may be related to CMS. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, oxidative phosphorylation (ko00190) and phenylpropanoid biosynthesis (ko00940) were significantly enriched in the S1 and S2 stages, respectively. Through the analysis of 104 lipid metabolism-related DEGs, four significantly enriched KEGG pathways may help to regulate male sterility during anther development. The mitochondrial genes orf470 and atp6 were identified as candidate genes of male sterility for the CMS line HZ1A. Overall, the results will provide insights into the molecular mechanisms of pepper CMS.
Collapse
|
11
|
Zhang Z, An D, Cao Y, Yu H, Zhu Y, Mei Y, Zhang B, Wang L. Development and application of KASP markers associated with Restorer-of-fertility gene in Capsicum annuum L. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2757-2765. [PMID: 35035134 PMCID: PMC8720122 DOI: 10.1007/s12298-021-01109-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/08/2021] [Accepted: 11/25/2021] [Indexed: 05/09/2023]
Abstract
Fertility restoration of cytoplasmic male sterility (CMS) in Capsicum annuum is controlled by multiple alleles of Restorer-of-fertility (Rf) genes. The isolation of additional Rf genes should therefore enrich the knowledge of CMS/Rf systems and accelerate their exploitation in hybrid seed production. In this study, the fertility restorer gene CaRfm of '0601 M', a non-pungent bell pepper, was genetically mapped to a 1.2-cM region flanked by KASP markers S761 and S183. CaRfm was then physically mapped to a 128.96-Kb interval predicted from 24 recombinants with two co-segregated markers, S423 and S424. CaPPR6 encoding a pentatricopeptide repeat (PPR) protein was suggested as the most likely candidate gene for the CaRfm locus on the basis of sequence alignment as well as genotyping of tightly linked markers. In addition, molecular markers S1597 and S1609, which are immediately adjacent to CaRfm at 15.7 and 57.8-Kb respectively, were developed and applied to marker-assisted selection. The results provided friendly markers for breeding pepper restorer lines and laid the foundation for elucidating the male fertility restoration mechanism. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-021-01109-9.
Collapse
Affiliation(s)
- Zhenghai Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Dongliang An
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yacong Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Hailong Yu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yanshu Zhu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Yajie Mei
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Baoxi Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| | - Lihao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, Beijing, 100081 China
| |
Collapse
|
12
|
Cheng Q, Yao P, Li H, Han Y, Xu K, Heng S, Fu T, Wan Z. Genetic mapping reveals BjRf as a candidate gene controlling fertility restoration of the oxa CMS in Brassica juncea. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:2355-2365. [PMID: 34173856 DOI: 10.1007/s00122-021-03767-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 01/06/2021] [Indexed: 06/13/2023]
Abstract
A candidate gene for male fertility restoration in Brassica juncea, BjRf, was isolated from a 23-kb interval on chromosome A05 using map-based cloning and BSA methods. The cytoplasmic male sterility/fertility restoration (CMS/Rf) system has been extensively used for heterosis in plants. It also provides valuable resources for studying mitochondrial-nuclear coevolution and interaction. The oxa CMS, which is a new CMS type reported in Brassica juncea (B. juncea), has been broadly used in the exploitation and application of heterosis in this species. However, the oxa CMS fertility restorer gene BjRf has not been reported. In this study, a stable restorer line was successfully constructed via continuous testcross and artificial selection. Besides, a new Rf gene was mapped in a 23-kb region on chromosome A05 in B. juncea with a genetic distance of 0.5 cM by the method incorporating bulk segregant analysis (BSA) and conventional map-based cloning. Finally, BjuA017917, a non-PPR Rf gene encoding a guanosine nucleotide diphosphate dissociation inhibitor (GDI), is proposed to be the candidate gene for fertility restoration of the oxa CMS line in B. juncea. Moreover, a functional marker, CRY3, was developed for marker-assisted selection for Brassica juncea breeding.
Collapse
Affiliation(s)
- Qiqi Cheng
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Peijie Yao
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hui Li
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yiming Han
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kejing Xu
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangping Heng
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
- College of Life Science, Xinyang Normal University, Xinyang, 464000, People's Republic of China
| | - Tingdong Fu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhengjie Wan
- College of Horticulture and Forestry, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
13
|
Wei B, Bosland PW, Zhang Z, Wang Y, Zhang G, Wang L, Yu J. A predicted NEDD8 conjugating enzyme gene identified as a Capsicum candidate Rf gene using bulk segregant RNA sequencing. HORTICULTURE RESEARCH 2020; 7:210. [PMID: 35051251 PMCID: PMC7721708 DOI: 10.1038/s41438-020-00425-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 09/19/2020] [Accepted: 09/20/2020] [Indexed: 05/09/2023]
Abstract
Cytoplasmic male sterility (CMS) is an important tool for producing F1 hybrids, which can exhibit heterosis. The companion system, restorer-of-fertility (Rf), is poorly understood at the molecular level and would be valuable in producing restorer lines for hybrid seed production. The identity of the Rf gene in Capsicum (pepper) is currently unclear. In this study, using bulked segregant RNA sequencing (BSR-seq), a strong candidate Rf gene, Capana06g002866, which is annotated as a NEDD8 conjugating enzyme E2, was identified. Capana06g002866 has an ORF of 555 bp in length encoding 184 amino acids; it can be cloned from F1 plants from the hybridization of the CMS line 8A and restorer line R1 but is not found in CMS line 8A. With qRT-PCR validation, Capana06g002866 was found to be upregulated in restorer accessions compared to sterile accessions. The relative expression in flower buds increased with the developmental stage in F1 plants, while the expression was very low in all flower bud stages of the CMS lines. These results provide new insights into the Rf gene in pepper and will be useful for other crops utilizing the CMS system.
Collapse
Affiliation(s)
- Bingqiang Wei
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Paul W. Bosland
- Plant and Environmental Sciences Department, New Mexico State University, P.O. Box 30003, Las Cruces, 88001 NM USA
| | - Zhenghai Zhang
- Key Laboratory of Vegetable Genetics and Physiology of Ministry of the Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie, 100081 Beijing, China
| | - Yongfu Wang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Gaoyuan Zhang
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| | - Lanlan Wang
- Vegetable Institute, Gansu Academy of Agricultural Sciences, 1 Nongkeyuan New Village, 730070 Lanzhou, China
| | - Jihua Yu
- College of Horticulture, Gansu Agricultural University, 1 Yingmeng Village, Anning District, 730070 Lanzhou, China
| |
Collapse
|