1
|
Corbin JPM, Best RJ, Garthwaite IJ, Cooper HF, Doughty CE, Gehring CA, Hultine KR, Allan GJ, Whitham TG. Hyperspectral Leaf Reflectance Detects Interactive Genetic and Environmental Effects on Tree Phenotypes, Enabling Large-Scale Monitoring and Restoration Planning Under Climate Change. PLANT, CELL & ENVIRONMENT 2025; 48:1842-1857. [PMID: 39497286 PMCID: PMC11788971 DOI: 10.1111/pce.15263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/18/2024] [Accepted: 10/22/2024] [Indexed: 02/04/2025]
Abstract
Plants respond to rapid environmental change in ways that depend on both their genetic identity and their phenotypic plasticity, impacting their survival as well as associated ecosystems. However, genetic and environmental effects on phenotype are difficult to quantify across large spatial scales and through time. Leaf hyperspectral reflectance offers a potentially robust approach to map these effects from local to landscape levels. Using a handheld field spectrometer, we analyzed leaf-level hyperspectral reflectance of the foundation tree species Populus fremontii in wild populations and in three 6-year-old experimental common gardens spanning a steep climatic gradient. First, we show that genetic variation among populations and among clonal genotypes is detectable with leaf spectra, using both multivariate and univariate approaches. Spectra predicted population identity with 100% accuracy among trees in the wild, 87%-98% accuracy within a common garden, and 86% accuracy across different environments. Multiple spectral indices of plant health had significant heritability, with genotype accounting for 10%-23% of spectral variation within populations and 14%-48% of the variation across all populations. Second, we found gene by environment interactions leading to population-specific shifts in the spectral phenotype across common garden environments. Spectral indices indicate that genetically divergent populations made unique adjustments to their chlorophyll and water content in response to the same environmental stresses, so that detecting genetic identity is critical to predicting tree response to change. Third, spectral indicators of greenness and photosynthetic efficiency decreased when populations were transferred to growing environments with higher mean annual maximum temperatures relative to home conditions. This result suggests altered physiological strategies further from the conditions to which plants are locally adapted. Transfers to cooler environments had fewer negative effects, demonstrating that plant spectra show directionality in plant performance adjustments. Thus, leaf reflectance data can detect both local adaptation and plastic shifts in plant physiology, informing strategic restoration and conservation decisions by enabling high resolution tracking of genetic and phenotypic changes in response to climate change.
Collapse
Affiliation(s)
- Jaclyn P. M. Corbin
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Rebecca J. Best
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Iris J. Garthwaite
- School of Earth and SustainabilityNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Hillary F. Cooper
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Christopher E. Doughty
- School of Informatics, Computing and Cyber SystemsNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Catherine A. Gehring
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Kevin R. Hultine
- Department of Research, Conservation and CollectionsDesert Botanical GardenPhoenixArizonaUSA
| | - Gerard J. Allan
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| | - Thomas G. Whitham
- Department of Biological SciencesNorthern Arizona UniversityFlagstaffArizonaUSA
- Center for Adaptable Western LandscapesNorthern Arizona UniversityFlagstaffArizonaUSA
| |
Collapse
|
2
|
Graciano RP, Peixoto MA, Leach KA, Suzuki N, Gustin JL, Settles AM, Armstrong PR, Resende MFR. Integrating phenomic selection using single-kernel near-infrared spectroscopy and genomic selection for corn breeding improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:60. [PMID: 40009111 PMCID: PMC11865162 DOI: 10.1007/s00122-025-04843-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 01/28/2025] [Indexed: 02/27/2025]
Abstract
KEY MESSAGE Phenomic selection using intact seeds is a promising tool to improve gain and complement genomic selection in corn breeding. Models that combine genomic and phenomic data maximize the predictive ability. Phenomic selection (PS) is a cost-effective method proposed for predicting complex traits and enhancing genetic gain in breeding programs. The statistical procedures are similar to those utilized in genomic selection (GS) models, but molecular markers data are replaced with phenomic data, such as near-infrared spectroscopy (NIRS). However, the use of NIRS applied to PS typically utilized destructive sampling or collected data after the establishment of selection experiments in the field. Here, we explored the application of PS using nondestructive, single-kernel NIRS in a sweet corn breeding program, focusing on predicting future, unobserved field-based traits of economic importance, including ear and vegetative traits. Three models were employed on a diversity panel: genomic and phenomic best linear unbiased prediction models, which used relationship matrices based on SNP and NIRS data, respectively, and a combined model. The genomic relationship matrices were evaluated with varying numbers of SNPs. Additionally, the PS model trained on the diversity panel was used to select doubled haploid (DH) lines for germination before planting, with predictions validated using observed data. The findings indicate that PS generated good predictive ability (e.g., 0.46 for plant height) and distinguished between high and low germination rates in untested DH lines. Although GS generally outperformed PS, the model combining both information yielded the highest predictive ability, with higher accuracies than GS when low marker densities were used. This study highlights NIRS's potential to achieve genetic gain where GS may not be feasible and to maintain/improve accuracy with SNP-based information while reducing genotyping costs.
Collapse
Affiliation(s)
- Rafaela P Graciano
- Sweet Corn and Potato Breeding and Genomics Lab, University of Florida, Gainesville, FL, 32611, USA
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Marco Antônio Peixoto
- Sweet Corn and Potato Breeding and Genomics Lab, University of Florida, Gainesville, FL, 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Kristen A Leach
- Sweet Corn and Potato Breeding and Genomics Lab, University of Florida, Gainesville, FL, 32611, USA
| | - Noriko Suzuki
- Sweet Corn and Potato Breeding and Genomics Lab, University of Florida, Gainesville, FL, 32611, USA
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jeffery L Gustin
- Maize Genetics Cooperation Stock Center, USDA-ARS, Urbana, IL, 61801, USA
| | - A Mark Settles
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA
- Bioengineering Branch, NASA Ames Research Center, Moffett Field, Mountain View, CA, 94035, USA
| | | | - Márcio F R Resende
- Sweet Corn and Potato Breeding and Genomics Lab, University of Florida, Gainesville, FL, 32611, USA.
- Plant Breeding Graduate Program, University of Florida, Gainesville, FL, 32611, USA.
- Horticultural Sciences Department, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
3
|
Rincent R, Solin J, Lorenzi A, Nunes L, Griveau Y, Pirus L, Kermarrec D, Bauland C, Reymond M, Moreau L. Using phenomic selection to predict hybrid values with NIR spectra measured on the parental lines: proof of concept on maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:28. [PMID: 39797978 PMCID: PMC11724800 DOI: 10.1007/s00122-024-04809-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/21/2024] [Indexed: 01/13/2025]
Abstract
KEY MESSAGE Phenomic selection based on parental spectra can be used to predict GCA and SCA in a sparse factorial design. Prediction approaches such as genomic selection can be game changers in hybrid breeding. They allow predicting the genetic values of hybrids without the need for their physical production. This leads to significant reductions in breeding cycle length, and so to the increase in genetic progress. However, these methods are often underutilized in breeding programs due to the substantial cost involved in genotyping thousands of candidate parental lines annually. To address this limitation, we propose a cost-effective alternative based on phenomic selection, where genotyping of parental lines is replaced by NIR spectroscopy. Standard prediction models are then applied for genomic and phenomic selection, using similarity matrices derived from either genotyping data (genomic selection) or NIR spectral data (phenomic selection). Our hypothesis is that the chemical composition of parental tissues captured by NIRS reflects the genetic similarity between parental lines. We evaluated both strategies using a sparse factorial design, whose hybrids have been phenotyped in a multi-environment trial network, and with NIR spectra acquired on the parental lines on two independent environments. Both genomic and phenomic prediction approaches demonstrated moderate-to-high predictive abilities across various cross-validation scenarios. Our results also showcase the capability of phenomic selection to predict Mendelian sampling. This study serves as a proof of concept that low-cost high-throughput phenomics of parental lines can effectively be used to predict maize hybrids in independent trials. This paves the way for widespread adoption of prediction approaches at the very first stages of hybrid breeding, benefiting both major and orphan species.
Collapse
Affiliation(s)
- Renaud Rincent
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
| | - Junita Solin
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | | | - Laura Nunes
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Yves Griveau
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | | | - Dominique Kermarrec
- INRAE, Unité Expérimentale Ressources Génétiques Végétales en Conditions Océaniques (UERGCO), Kéraïber, 29260, Ploudaniel, France
| | - Cyril Bauland
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| | - Matthieu Reymond
- Institut Jean-Pierre Bourgin (IJPB), Université Paris-Saclay, INRAE, AgroParisTech, Versailles, France
| | - Laurence Moreau
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
4
|
Raffo MA, Sarup P, Jensen J, Guo X, Jensen JD, Orabi J, Jahoor A, Christensen OF. Genomic prediction for yield and malting traits in barley using metabolomic and near-infrared spectra. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:24. [PMID: 39786601 PMCID: PMC11717810 DOI: 10.1007/s00122-024-04806-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025]
Abstract
KEY MESSAGE Genetic variation for malting quality as well as metabolomic and near-infrared features was identified. However, metabolomic and near-infrared features as additional omics-information did not improve accuracy of predicted breeding values. Significant attention has recently been given to the potential benefits of metabolomics and near-infrared spectroscopy technologies for enhancing genetic evaluation in breeding programs. In this article, we used a commercial barley breeding population phenotyped for grain yield, grain protein content, and five malting quality traits: extract yield, wort viscosity, wort color, filtering speed, and β-glucan, and aimed to: (i) investigate genetic variation and heritability of metabolomic intensities and near-infrared wavelengths originating from leaf tissue and malted grain, respectively; (ii) investigate variance components and heritabilities for genomic models including metabolomics (GOBLUP-MI) or near-infrared wavelengths (GOBLUP-NIR); and (iii) evaluate the developed models for prediction of breeding values for traits of interest. In total, 639 barley lines were genotyped using an iSelect9K-Illumina barley chip and recorded with 30,468 metabolomic intensities and 141 near-infrared wavelengths. First, we found that a significant proportion of metabolomic intensities and near-infrared wavelengths had medium to high additive genetic variances and heritabilities. Second, we observed that both GOBLUP-MI and GOBLUP-NIR, increased the proportion of estimated genetic variance for grain yield, protein, malt extract, and β-glucan compared to a genomic model (GBLUP). Finally, we assessed these models to predict accurate breeding values in fivefold and leave-one-breeding-cycle-out cross-validations, and we generally observed a similar accuracy between GBLUP and GOBLUP-MI, and a worse accuracy for GOBLUP-NIR. Despite this trend, GOBLUP-MI and GOBLUP-NIR enhanced predictive ability compared to GBLUP by 4.6 and 2.4% for grain protein in leave-one-breeding-cycle-out and grain yield in fivefold cross-validations, respectively, but differences were not significant (P-value > 0.01).
Collapse
Affiliation(s)
- Miguel A Raffo
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
| | | | - Just Jensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark
| | - Xiangyu Guo
- Danish Pig Research Centre, Danish Agriculture & Food Council, Copenhagen V, Denmark
| | | | | | | | - Ole F Christensen
- Center for Quantitative Genetics and Genomics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
5
|
de Verdal H, Segura V, Pot D, Salas N, Garin V, Rakotoson T, Raboin LM, VomBrocke K, Dusserre J, Castro Pacheco SA, Grenier C. Performance of phenomic selection in rice: Effects of population size and genotype-environment interactions on predictive ability. PLoS One 2024; 19:e0309502. [PMID: 39715250 DOI: 10.1371/journal.pone.0309502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 12/03/2024] [Indexed: 12/25/2024] Open
Abstract
Phenomic prediction (PP), a novel approach utilizing Near Infrared Spectroscopy (NIRS) data, offers an alternative to genomic prediction (GP) for breeding applications. In PP, a hyperspectral relationship matrix replaces the genomic relationship matrix, potentially capturing both additive and non-additive genetic effects. While PP boasts advantages in cost and throughput compared to GP, the factors influencing its accuracy remain unclear and need to be defined. This study investigated the impact of various factors, namely the training population size, the multi-environment information integration, and the incorporations of genotype x environment (GxE) effects, on PP compared to GP. We evaluated the prediction accuracies for several agronomically important traits (days to flowering, plant height, yield, harvest index, thousand-grain weight, and grain nitrogen content) in a rice diversity panel grown in four distinct environments. Training population size and GxE effects inclusion had minimal influence on PP accuracy. The key factor impacting the accuracy of PP was the number of environments included. Using data from a single environment, GP generally outperformed PP. However, with data from multiple environments, using genotypic random effect and relationship matrix per environment, PP achieved comparable accuracies to GP. Combining PP and GP information did not significantly improve predictions compared to the best model using a single source of information (e.g., average predictive ability of GP, PP, and combined GP and PP for grain yield were of 0.44, 0.42, and 0.44, respectively). Our findings suggest that PP can be as accurate as GP when all genotypes have at least one NIRS measurement, potentially offering significant advantages for rice breeding programs, reducing the breeding cycles and lowering program costs.
Collapse
Affiliation(s)
- Hugues de Verdal
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- AfricaRice Centre Régional Sénégal, BP96, Saint-Louis, Sénégal
| | - Vincent Segura
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- Geno-Vigne®, IFV-INRAE-Institut Agro, Montpellier, France
| | - David Pot
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Niclolas Salas
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Vincent Garin
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | - Tatiana Rakotoson
- Institut d'Enseignement Supérieur d'Antsirabe Vakinankaratra (IESAV), Université d'Antananarivo, Antananarivo, Madagascar
| | | | - Kirsten VomBrocke
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| | | | - Sergio Antonion Castro Pacheco
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Antsirabe, Madagascar
- Dispositif en Partenariat Système de Production d'Altitudes Durable (DP-SPAD), Antsirabe, Madagascar
| | - Cecile Grenier
- AGAP Institut, Université Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
| |
Collapse
|
6
|
Adak A, DeSalvio AJ, Arik MA, Murray SC. Field-based high-throughput phenotyping enhances phenomic and genomic predictions for grain yield and plant height across years in maize. G3 (BETHESDA, MD.) 2024; 14:jkae092. [PMID: 38776257 PMCID: PMC11228873 DOI: 10.1093/g3journal/jkae092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/24/2024] [Indexed: 05/24/2024]
Abstract
Field-based phenomic prediction employs novel features, like vegetation indices (VIs) from drone images, to predict key agronomic traits in maize, despite challenges in matching biomarker measurement time points across years or environments. This study utilized functional principal component analysis (FPCA) to summarize the variation of temporal VIs, uniquely allowing the integration of this data into phenomic prediction models tested across multiple years (2018-2021) and environments. The models, which included 1 genomic, 2 phenomic, 2 multikernel, and 1 multitrait type, were evaluated in 4 prediction scenarios (CV2, CV1, CV0, and CV00), relevant for plant breeding programs, assessing both tested and untested genotypes in observed and unobserved environments. Two hybrid populations (415 and 220 hybrids) demonstrated the visible atmospherically resistant index's strong temporal correlation with grain yield (up to 0.59) and plant height. The first 2 FPCAs explained 59.3 ± 13.9% and 74.2 ± 9.0% of the temporal variation of temporal data of VIs, respectively, facilitating predictions where flight times varied. Phenomic data, particularly when combined with genomic data, often were comparable to or numerically exceeded the base genomic model in prediction accuracy, particularly for grain yield in untested hybrids, although no significant differences in these models' performance were consistently observed. Overall, this approach underscores the effectiveness of FPCA and combined models in enhancing the prediction of grain yield and plant height across environments and diverse agricultural settings.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Aaron J DeSalvio
- Interdisciplinary Graduate Program in Genetics and Genomics (Department of Biochemistry and Biophysics), Texas A&M University, College Station, TX 77843-2128, USA
| | - Mustafa A Arik
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| |
Collapse
|
7
|
Laurençon M, Legrix J, Wagner MH, Demilly D, Baron C, Rolland S, Ducournau S, Laperche A, Nesi N. Genomic and phenomic predictions help capture low-effect alleles promoting seed germination in oilseed rape in addition to QTL analyses. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:156. [PMID: 38858297 PMCID: PMC11164772 DOI: 10.1007/s00122-024-04659-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/25/2024] [Indexed: 06/12/2024]
Abstract
KEY MESSAGE Phenomic prediction implemented on a large diversity set can efficiently predict seed germination, capture low-effect favorable alleles that are not revealed by GWAS and identify promising genetic resources. Oilseed rape faces many challenges, especially at the beginning of its developmental cycle. Achieving rapid and uniform seed germination could help to ensure a successful establishment and therefore enabling the crop to compete with weeds and tolerate stresses during the earliest developmental stages. The polygenic nature of seed germination was highlighted in several studies, and more knowledge is needed about low- to moderate-effect underlying loci in order to enhance seed germination effectively by improving the genetic background and incorporating favorable alleles. A total of 17 QTL were detected for seed germination-related traits, for which the favorable alleles often corresponded to the most frequent alleles in the panel. Genomic and phenomic predictions methods provided moderate-to-high predictive abilities, demonstrating the ability to capture small additive and non-additive effects for seed germination. This study also showed that phenomic prediction estimated phenotypic values closer to phenotypic values than GEBV. Finally, as the predictive ability of phenomic prediction was less influenced by the genetic structure of the panel, it is worth using this prediction method to characterize genetic resources, particularly with a view to design prebreeding populations.
Collapse
Affiliation(s)
- Marianne Laurençon
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Julie Legrix
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Marie-Hélène Wagner
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Didier Demilly
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Cécile Baron
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sophie Rolland
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| | - Sylvie Ducournau
- Groupe d'Etude et de Contrôle des Variétés Et des Semences (GEVES), 49070, Beaucouzé, France
| | - Anne Laperche
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France.
| | - Nathalie Nesi
- Institute of Genetics, Environment and Plant Protection (IGEPP), INRAE - Institut Agro Rennes-Angers - Université de Rennes, 35650, Le Rheu, France
| |
Collapse
|
8
|
Kaushal S, Gill HS, Billah MM, Khan SN, Halder J, Bernardo A, Amand PS, Bai G, Glover K, Maimaitijiang M, Sehgal SK. Enhancing the potential of phenomic and genomic prediction in winter wheat breeding using high-throughput phenotyping and deep learning. FRONTIERS IN PLANT SCIENCE 2024; 15:1410249. [PMID: 38872880 PMCID: PMC11169824 DOI: 10.3389/fpls.2024.1410249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024]
Abstract
Integrating high-throughput phenotyping (HTP) based traits into phenomic and genomic selection (GS) can accelerate the breeding of high-yielding and climate-resilient wheat cultivars. In this study, we explored the applicability of Unmanned Aerial Vehicles (UAV)-assisted HTP combined with deep learning (DL) for the phenomic or multi-trait (MT) genomic prediction of grain yield (GY), test weight (TW), and grain protein content (GPC) in winter wheat. Significant correlations were observed between agronomic traits and HTP-based traits across different growth stages of winter wheat. Using a deep neural network (DNN) model, HTP-based phenomic predictions showed robust prediction accuracies for GY, TW, and GPC for a single location with R2 of 0.71, 0.62, and 0.49, respectively. Further prediction accuracies increased (R2 of 0.76, 0.64, and 0.75) for GY, TW, and GPC, respectively when advanced breeding lines from multi-locations were used in the DNN model. Prediction accuracies for GY varied across growth stages, with the highest accuracy at the Feekes 11 (Milky ripe) stage. Furthermore, forward prediction of GY in preliminary breeding lines using DNN trained on multi-location data from advanced breeding lines improved the prediction accuracy by 32% compared to single-location data. Next, we evaluated the potential of incorporating HTP-based traits in multi-trait genomic selection (MT-GS) models in the prediction of GY, TW, and GPC. MT-GS, models including UAV data-based anthocyanin reflectance index (ARI), green chlorophyll index (GCI), and ratio vegetation index 2 (RVI_2) as covariates demonstrated higher predictive ability (0.40, 0.40, and 0.37, respectively) as compared to single-trait model (0.23) for GY. Overall, this study demonstrates the potential of integrating HTP traits into DL-based phenomic or MT-GS models for enhancing breeding efficiency.
Collapse
Affiliation(s)
- Swas Kaushal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Harsimardeep S. Gill
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Mohammad Maruf Billah
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Shahid Nawaz Khan
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Jyotirmoy Halder
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Amy Bernardo
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Paul St. Amand
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Guihua Bai
- Hard Winter Wheat Genetics Research Unit, USDA-ARS, Manhattan, KS, United States
| | - Karl Glover
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| | - Maitiniyazi Maimaitijiang
- Department of Geography and Geospatial Sciences, Geospatial Sciences Center of Excellence, South Dakota State University, Brookings, SD, United States
| | - Sunish K. Sehgal
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD, United States
| |
Collapse
|
9
|
Alemu A, Åstrand J, Montesinos-López OA, Isidro Y Sánchez J, Fernández-Gónzalez J, Tadesse W, Vetukuri RR, Carlsson AS, Ceplitis A, Crossa J, Ortiz R, Chawade A. Genomic selection in plant breeding: Key factors shaping two decades of progress. MOLECULAR PLANT 2024; 17:552-578. [PMID: 38475993 DOI: 10.1016/j.molp.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/22/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024]
Abstract
Genomic selection, the application of genomic prediction (GP) models to select candidate individuals, has significantly advanced in the past two decades, effectively accelerating genetic gains in plant breeding. This article provides a holistic overview of key factors that have influenced GP in plant breeding during this period. We delved into the pivotal roles of training population size and genetic diversity, and their relationship with the breeding population, in determining GP accuracy. Special emphasis was placed on optimizing training population size. We explored its benefits and the associated diminishing returns beyond an optimum size. This was done while considering the balance between resource allocation and maximizing prediction accuracy through current optimization algorithms. The density and distribution of single-nucleotide polymorphisms, level of linkage disequilibrium, genetic complexity, trait heritability, statistical machine-learning methods, and non-additive effects are the other vital factors. Using wheat, maize, and potato as examples, we summarize the effect of these factors on the accuracy of GP for various traits. The search for high accuracy in GP-theoretically reaching one when using the Pearson's correlation as a metric-is an active research area as yet far from optimal for various traits. We hypothesize that with ultra-high sizes of genotypic and phenotypic datasets, effective training population optimization methods and support from other omics approaches (transcriptomics, metabolomics and proteomics) coupled with deep-learning algorithms could overcome the boundaries of current limitations to achieve the highest possible prediction accuracy, making genomic selection an effective tool in plant breeding.
Collapse
Affiliation(s)
- Admas Alemu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Johanna Åstrand
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden; Lantmännen Lantbruk, Svalöv, Sweden
| | | | - Julio Isidro Y Sánchez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Javier Fernández-Gónzalez
- Centro de Biotecnología y Genómica de Plantas (CBGP, UPM-INIA), Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Campus de Montegancedo-UPM, 28223 Madrid, Spain
| | - Wuletaw Tadesse
- International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco
| | - Ramesh R Vetukuri
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| | | | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Km 45, Carretera México-Veracruz, Texcoco, México 52640, Mexico
| | - Rodomiro Ortiz
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| | - Aakash Chawade
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Alnarp, Sweden
| |
Collapse
|
10
|
Maggiorelli A, Baig N, Prigge V, Bruckmüller J, Stich B. Using drone-retrieved multispectral data for phenomic selection in potato breeding. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:70. [PMID: 38446220 PMCID: PMC10917832 DOI: 10.1007/s00122-024-04567-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/30/2024] [Indexed: 03/07/2024]
Abstract
Predictive breeding approaches, like phenomic or genomic selection, have the potential to increase the selection gain for potato breeding programs which are characterized by very large numbers of entries in early stages and the availability of very few tubers per entry in these stages. The objectives of this study were to (i) explore the capabilities of phenomic prediction based on drone-derived multispectral reflectance data in potato breeding by testing different prediction scenarios on a diverse panel of tetraploid potato material from all market segments and considering a broad range of traits, (ii) compare the performance of phenomic and genomic predictions, and (iii) assess the predictive power of mixed relationship matrices utilizing weighted SNP array and multispectral reflectance data. Predictive abilities of phenomic prediction scenarios varied greatly within a range of - 0.15 and 0.88 and were strongly dependent on the environment, predicted trait, and considered prediction scenario. We observed high predictive abilities with phenomic prediction for yield (0.45), maturity (0.88), foliage development (0.73), and emergence (0.73), while all other traits achieved higher predictive ability with genomic compared to phenomic prediction. When a mixed relationship matrix was used for prediction, higher predictive abilities were observed for 20 out of 22 traits, showcasing that phenomic and genomic data contained complementary information. We see the main application of phenomic selection in potato breeding programs to allow for the use of the principle of predictive breeding in the pot seedling or single hill stage where genotyping is not recommended due to high costs.
Collapse
Affiliation(s)
- Alessio Maggiorelli
- Institute of Quantitative Genetics and Genomics of Plants (QGGP), Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Nadia Baig
- Institute of Quantitative Genetics and Genomics of Plants (QGGP), Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Vanessa Prigge
- SaKa Pflanzenzucht GmbH & Co. KG, Eichenallee 9, 24340, Windeby, Germany
| | - Julien Bruckmüller
- SaKa Pflanzenzucht GmbH & Co. KG, Eichenallee 9, 24340, Windeby, Germany
| | - Benjamin Stich
- Institute of Quantitative Genetics and Genomics of Plants (QGGP), Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine-University, Universitätsstraße 1, 40225, Düsseldorf, Germany.
- Julius Kühn-Institut (JKI), Institute for Breeding Research on Agricultural Crops, Rudolf-Schick-Platz 3a, 18190, Sanitz, Germany.
| |
Collapse
|
11
|
Dallinger HG, Löschenberger F, Bistrich H, Ametz C, Hetzendorfer H, Morales L, Michel S, Buerstmayr H. Predictor bias in genomic and phenomic selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:235. [PMID: 37878079 PMCID: PMC10600307 DOI: 10.1007/s00122-023-04479-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 09/08/2023] [Indexed: 10/26/2023]
Abstract
KEY MESSAGE NIRS of wheat grains as phenomic predictors for grain yield show inflated prediction ability and are biased toward grain protein content. Estimating the breeding value of individuals using genome-wide marker data (genomic prediction) is currently one of the most important drivers of breeding progress in major crops. Recently, phenomic technologies, including remote sensing and aerial hyperspectral imaging of plant canopies, have made it feasible to predict the breeding value of individuals in the absence of genetic marker data. This is commonly referred to as phenomic prediction. Hyperspectral measurements in the form of near-infrared spectroscopy have been used since the 1980 s to predict compositional parameters of harvest products. Moreover, in recent studies NIRS from grains was used to predict grain yield. The same studies showed that phenomic prediction can outperform genomic prediction for grain yield. The genome is static and not environment dependent, thereby limiting genomic prediction ability. Gene expression is tissue specific and differs under environmental influences, leading to a tissue- and environment-specific phenome, potentially explaining the higher predictive ability of phenomic prediction. Here, we compare genomic prediction and phenomic prediction from hyperspectral measurements of wheat grains for the prediction of a variety of traits including grain yield. We show that phenomic predictions outperform genomic prediction for some traits. However, phenomic predictions are biased toward the information present in the predictor. Future studies on this topic should investigate whether population parameters are retained in phenomic prediction as they are in genomic prediction. Furthermore, we find that unbiased phenomic prediction abilities are considerably lower than previously reported and recommend a method to circumvent this issue.
Collapse
Affiliation(s)
- Hermann Gregor Dallinger
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria.
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria.
| | | | - Herbert Bistrich
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | - Christian Ametz
- Saatzucht Donau GesmbH & Co KG, Saatzuchtstrasse 11, 2301, Probstdorf, Austria
| | | | - Laura Morales
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Sebastian Michel
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| | - Hermann Buerstmayr
- Institute of Biotechnology in Plant Production, Department of Agrobiotechnology, IFA-Tulln, University of Natural Resources and Life Sciences Vienna, Konrad-Lorenz-Str. 20, 3430, Tulln, Austria
| |
Collapse
|
12
|
Adak A, Kang M, Anderson SL, Murray SC, Jarquin D, Wong RKW, Katzfuß M. Phenomic data-driven biological prediction of maize through field-based high-throughput phenotyping integration with genomic data. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5307-5326. [PMID: 37279568 DOI: 10.1093/jxb/erad216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 06/02/2023] [Indexed: 06/08/2023]
Abstract
High-throughput phenotyping (HTP) has expanded the dimensionality of data in plant research; however, HTP has resulted in few novel biological discoveries to date. Field-based HTP (FHTP), using small unoccupied aerial vehicles (UAVs) equipped with imaging sensors, can be deployed routinely to monitor segregating plant population interactions with the environment under biologically meaningful conditions. Here, flowering dates and plant height, important phenological fitness traits, were collected on 520 segregating maize recombinant inbred lines (RILs) in both irrigated and drought stress trials in 2018. Using UAV phenomic, single nucleotide polymorphism (SNP) genomic, as well as combined data, flowering times were predicted using several scenarios. Untested genotypes were predicted with 0.58, 0.59, and 0.41 prediction ability for anthesis, silking, and terminal plant height, respectively, using genomic data, but prediction ability increased to 0.77, 0.76, and 0.58 when phenomic and genomic data were used together. Using the phenomic data in a genome-wide association study, a heat-related candidate gene (GRMZM2G083810; hsp18f) was discovered using temporal reflectance phenotypes belonging to flowering times (both irrigated and drought) trials where heat stress also peaked. Thus, a relationship between plants and abiotic stresses belonging to a specific time of growth was revealed only through use of temporal phenomic data. Overall, this study showed that (i) it is possible to predict complex traits using high dimensional phenomic data between different environments, and (ii) temporal phenomic data can reveal a time-dependent association between genotypes and abiotic stresses, which can help understand mechanisms to develop resilient plants.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Myeongjong Kang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | | | - Seth C Murray
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Diego Jarquin
- Agronomy Department, University of Florida, Gainesville, FL 32611, USA
| | - Raymond K W Wong
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Matthias Katzfuß
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
13
|
Adak A, Murray SC, Anderson SL. Temporal phenomic predictions from unoccupied aerial systems can outperform genomic predictions. G3 (BETHESDA, MD.) 2022; 13:6851143. [PMID: 36445027 PMCID: PMC9836347 DOI: 10.1093/g3journal/jkac294] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 10/21/2022] [Indexed: 11/30/2022]
Abstract
A major challenge of genetic improvement and selection is to accurately predict individuals with the highest fitness in a population without direct measurement. Over the last decade, genomic predictions (GP) based on genome-wide markers have become reliable and routine. Now phenotyping technologies, including unoccupied aerial systems (UAS also known as drones), can characterize individuals with a data depth comparable to genomics when used throughout growth. This study, for the first time, demonstrated that the prediction power of temporal UAS phenomic data can achieve or exceed that of genomic data. UAS data containing red-green-blue (RGB) bands over 15 growth time points and multispectral (RGB, red-edge and near infrared) bands over 12 time points were compared across 280 unique maize hybrids. Through cross-validation of untested genotypes in tested environments (CV2), temporal phenomic prediction (TPP), outperformed GP (0.80 vs 0.71); TPP and GP performed similarly in 3 other cross-validation scenarios. Genome-wide association mapping using area under temporal curves of vegetation indices (VIs) revealed 24.5% of a total of 241 discovered loci (59 loci) had associations with multiple VIs, explaining up to 51% of grain yield variation, less than GP and TPP predicted. This suggests TPP, like GP, integrates small effect loci well improving plant fitness predictions. More importantly, TPP appeared to work successfully on unrelated individuals unlike GP.
Collapse
Affiliation(s)
- Alper Adak
- Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA
| | - Seth C Murray
- Corresponding author: Department of Soil and Crop Sciences, Texas A&M University, College Station, TX 77843-2474, USA.
| | | |
Collapse
|
14
|
Tao H, Xu S, Tian Y, Li Z, Ge Y, Zhang J, Wang Y, Zhou G, Deng X, Zhang Z, Ding Y, Jiang D, Guo Q, Jin S. Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100344. [PMID: 35655429 PMCID: PMC9700174 DOI: 10.1016/j.xplc.2022.100344] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/08/2022] [Accepted: 05/27/2022] [Indexed: 06/01/2023]
Abstract
Plant phenomics (PP) has been recognized as a bottleneck in studying the interactions of genomics and environment on plants, limiting the progress of smart breeding and precise cultivation. High-throughput plant phenotyping is challenging owing to the spatio-temporal dynamics of traits. Proximal and remote sensing (PRS) techniques are increasingly used for plant phenotyping because of their advantages in multi-dimensional data acquisition and analysis. Substantial progress of PRS applications in PP has been observed over the last two decades and is analyzed here from an interdisciplinary perspective based on 2972 publications. This progress covers most aspects of PRS application in PP, including patterns of global spatial distribution and temporal dynamics, specific PRS technologies, phenotypic research fields, working environments, species, and traits. Subsequently, we demonstrate how to link PRS to multi-omics studies, including how to achieve multi-dimensional PRS data acquisition and processing, how to systematically integrate all kinds of phenotypic information and derive phenotypic knowledge with biological significance, and how to link PP to multi-omics association analysis. Finally, we identify three future perspectives for PRS-based PP: (1) strengthening the spatial and temporal consistency of PRS data, (2) exploring novel phenotypic traits, and (3) facilitating multi-omics communication.
Collapse
Affiliation(s)
- Haiyu Tao
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Shan Xu
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Yongchao Tian
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Zhaofeng Li
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yan Ge
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Jiaoping Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Wang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China
| | - Guodong Zhou
- Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Xiong Deng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ze Zhang
- The Key Laboratory of Oasis Eco-agriculture, Xinjiang Production and Construction Corps, Agriculture College, Shihezi University, Shihezi 832003, China
| | - Yanfeng Ding
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Dong Jiang
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China
| | - Qinghua Guo
- Institute of Ecology, College of Urban and Environmental Science, Peking University, Beijing 100871, China
| | - Shichao Jin
- Plant Phenomics Research Centre, Academy for Advanced Interdisciplinary Studies, National Engineering and Technology Center for Information Agriculture, Collaborative Innovation Centre for Modern Crop Production co-sponsored by Province and Ministry, Nanjing Agricultural University, Address: No. 1 Weigang, Xuanwu District, Nanjing 210095, China; Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China; Sanya Research Institute of Nanjing Agriculture University, Sanya 572024, China; Jiangsu Provincial Key Laboratory of Geographic Information Science and Technology, International Institute for Earth System Sciences, Nanjing University, Nanjing, Jiangsu 210023, China.
| |
Collapse
|
15
|
Robert P, Goudemand E, Auzanneau J, Oury FX, Rolland B, Heumez E, Bouchet S, Caillebotte A, Mary-Huard T, Le Gouis J, Rincent R. Phenomic selection in wheat breeding: prediction of the genotype-by-environment interaction in multi-environment breeding trials. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3337-3356. [PMID: 35939074 DOI: 10.1007/s00122-022-04170-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G × E). Phenomic selection is supposed to be efficient for modelling the G × E effect because it accounts for non-additive effects. Here, phenomic data are near-infrared (NIR) spectra obtained from plant material. While phenomic selection has recently been shown to accurately predict wheat grain yield in single environments, its accuracy needs to be investigated for MET. We used four datasets from two winter wheat breeding programs to test and compare the predictive abilities of phenomic and genomic models for grain yield and heading date in different MET scenarios. We also compared different methods to model the G × E using different covariance matrices based on spectra. On average, phenomic and genomic prediction abilities are similar in all different MET scenarios. Better predictive abilities were obtained when G × E effects were modelled with NIR spectra than without them, and it was better to use all the spectra of all genotypes in all environments for modelling the G × E. To facilitate the implementation of phenomic prediction, we tested MET designs where the NIR spectra were measured only on the genotype-environment combinations phenotyped for the target trait. Missing spectra were predicted with a weighted multivariate ridge regression. Intermediate predictive abilities for grain yield were obtained in a sparse testing scenario and for new genotypes, which shows that phenomic selection is an efficient and practicable prediction method for dealing with G × E.
Collapse
Affiliation(s)
- Pauline Robert
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France
- Agri-Obtentions, Ferme de Gauvilliers, 78660, Orsonville, France
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Ellen Goudemand
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Jérôme Auzanneau
- Agri-Obtentions, Ferme de Gauvilliers, 78660, Orsonville, France
| | - François-Xavier Oury
- INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Bernard Rolland
- INRAE-Agrocampus Ouest-Université Rennes 1, UMR1349, IGEPP, Domaine de la Motte, 35653, Le Rheu, France
| | - Emmanuel Heumez
- INRAE, UE 972, Grandes Cultures Innovation Environnement, 2 Chaussée Brunehaut, 80200, Estrées-Mons, France
| | - Sophie Bouchet
- INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Antoine Caillebotte
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Tristan Mary-Huard
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
- MIA, INRAE, AgroParisTech, Université Paris-Saclay, 75005, Paris, France
| | - Jacques Le Gouis
- INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France
| | - Renaud Rincent
- INRAE, CNRS, AgroParisTech, GQE - Le Moulon, Université Paris-Saclay, 91190, Gif-sur-Yvette, France.
- INRAE - Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, Clermont-Ferrand, France.
| |
Collapse
|
16
|
Brault C, Lazerges J, Doligez A, Thomas M, Ecarnot M, Roumet P, Bertrand Y, Berger G, Pons T, François P, Le Cunff L, This P, Segura V. Interest of phenomic prediction as an alternative to genomic prediction in grapevine. PLANT METHODS 2022; 18:108. [PMID: 36064570 PMCID: PMC9442960 DOI: 10.1186/s13007-022-00940-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/24/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Phenomic prediction has been defined as an alternative to genomic prediction by using spectra instead of molecular markers. A reflectance spectrum provides information on the biochemical composition within a tissue, itself being under genetic determinism. Thus, a relationship matrix built from spectra could potentially capture genetic signal. This new methodology has been mainly applied in several annual crop species but little is known so far about its interest in perennial species. Besides, phenomic prediction has only been tested for a restricted set of traits, mainly related to yield or phenology. This study aims at applying phenomic prediction for the first time in grapevine, using spectra collected on two tissues and over two consecutive years, on two populations and for 15 traits, related to berry composition, phenology, morphological and vigour. A major novelty of this study was to collect spectra and phenotypes several years apart from each other. First, we characterized the genetic signal in spectra and under which condition it could be maximized, then phenomic predictive ability was compared to genomic predictive ability. RESULTS For the first time, we showed that the similarity between spectra and genomic relationship matrices was stable across tissues or years, but variable across populations, with co-inertia around 0.3 and 0.6 for diversity panel and half-diallel populations, respectively. Applying a mixed model on spectra data increased phenomic predictive ability, while using spectra collected on wood or leaves from one year or another had less impact. Differences between populations were also observed for predictive ability of phenomic prediction, with an average of 0.27 for the diversity panel and 0.35 for the half-diallel. For both populations, a significant positive correlation was found across traits between predictive ability of genomic and phenomic predictions. CONCLUSION NIRS is a new low-cost alternative to genotyping for predicting complex traits in perennial species such as grapevine. Having spectra and phenotypes from different years allowed us to exclude genotype-by-environment interactions and confirms that phenomic prediction can rely only on genetics.
Collapse
Affiliation(s)
- Charlotte Brault
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Juliette Lazerges
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Agnès Doligez
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Miguel Thomas
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Martin Ecarnot
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
| | - Yves Bertrand
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Gilles Berger
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Thierry Pons
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Pierre François
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Loïc Le Cunff
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
- Institut Français de la vigne et du vin, 34398, Montpellier, France
| | - Patrice This
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France
| | - Vincent Segura
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro Montpellier, Montpellier, 34398, France.
- UMT Geno-Vigne®, IFV, INRAE, Institut Agro Montpellier, 34398, Montpellier, France.
| |
Collapse
|
17
|
Kyaw TY, Siegert CM, Dash P, Poudel KP, Pitts JJ, Renninger HJ. Using hyperspectral leaf reflectance to estimate photosynthetic capacity and nitrogen content across eastern cottonwood and hybrid poplar taxa. PLoS One 2022; 17:e0264780. [PMID: 35271605 PMCID: PMC8912144 DOI: 10.1371/journal.pone.0264780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/16/2022] [Indexed: 02/05/2023] Open
Abstract
Eastern cottonwood (Populus deltoides W. Bartram ex Marshall) and hybrid poplars are well-known bioenergy crops. With advances in tree breeding, it is increasingly necessary to find economical ways to identify high-performing Populus genotypes that can be planted under different environmental conditions. Photosynthesis and leaf nitrogen content are critical parameters for plant growth, however, measuring them is an expensive and time-consuming process. Instead, these parameters can be quickly estimated from hyperspectral leaf reflectance if robust statistical models can be developed. To this end, we measured photosynthetic capacity parameters (Rubisco-limited carboxylation rate (Vcmax), electron transport-limited carboxylation rate (Jmax), and triose phosphate utilization-limited carboxylation rate (TPU)), nitrogen per unit leaf area (Narea), and leaf reflectance of seven taxa and 62 genotypes of Populus from two study plantations in Mississippi. For statistical modeling, we used least absolute shrinkage and selection operator (LASSO) and principal component analysis (PCA). Our results showed that the predictive ability of LASSO and PCA models was comparable, except for Narea in which LASSO was superior. In terms of model interpretability, LASSO outperformed PCA because the LASSO models needed 2 to 4 spectral reflectance wavelengths to estimate parameters. The LASSO models used reflectance values at 758 and 935 nm for estimating Vcmax (R2 = 0.51 and RMSPE = 31%) and Jmax (R2 = 0.54 and RMSPE = 32%); 687, 746, and 757 nm for estimating TPU (R2 = 0.56 and RMSPE = 31%); and 304, 712, 921, and 1021 nm for estimating Narea (R2 = 0.29 and RMSPE = 21%). The PCA model also identified 935 nm as a significant wavelength for estimating Vcmax and Jmax. Therefore, our results suggest that hyperspectral leaf reflectance modeling can be used as a cost-effective means for field phenotyping and rapid screening of Populus genotypes because of its capacity to estimate these physicochemical parameters.
Collapse
Affiliation(s)
- Thu Ya Kyaw
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Starkville, Mississippi, United States of America
- * E-mail:
| | - Courtney M. Siegert
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Starkville, Mississippi, United States of America
| | - Padmanava Dash
- Department of Geosciences, Mississippi State University, Starkville, Mississippi, United States of America
| | - Krishna P. Poudel
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Starkville, Mississippi, United States of America
| | - Justin J. Pitts
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Starkville, Mississippi, United States of America
| | - Heidi J. Renninger
- Department of Forestry, Forest and Wildlife Research Center, Mississippi State University, Starkville, Mississippi, United States of America
| |
Collapse
|
18
|
Phenomic Selection: A New and Efficient Alternative to Genomic Selection. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2467:397-420. [PMID: 35451784 DOI: 10.1007/978-1-0716-2205-6_14] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Recently, it has been proposed to switch molecular markers to near-infrared (NIR) spectra for inferring relationships between individuals and further performing phenomic selection (PS), analogous to genomic selection (GS). The PS concept is similar to genomic-like omics-based (GLOB) selection, in which molecular markers are replaced by endophenotypes, such as metabolites or transcript levels, except that the phenomic information obtained for instance by near-infrared spectroscopy (NIRS ) has usually a much lower cost than other omics. Though NIRS has been routinely used in breeding for several decades, especially to deal with end-product quality traits, its use to predict other traits of interest and further make selections is new. Since the seminal paper on PS , several publications have advocated the use of spectral acquisition (including NIRS and hyperspectral imaging) in plant breeding towards PS , potentially providing a scope of what is possible. In the present chapter, we first come back to the concept of PS as originally proposed and provide a classification of selected papers related to the use of phenomics in breeding. We further provide a review of the selected literature concerning the type of technology used, the preprocessing of the spectra, and the statistical modeling to make predictions. We discuss the factors that likely affect the efficiency of PS and compare it to GS in terms of predictive ability. Finally, we propose several prospects for future work and application of PS in the context of plant breeding.
Collapse
|
19
|
Weiß TM, Zhu X, Leiser WL, Li D, Liu W, Schipprack W, Melchinger AE, Hahn V, Würschum T. Unraveling the potential of phenomic selection within and among diverse breeding material of maize (Zea mays L.). G3 (BETHESDA, MD.) 2022; 12:6509517. [PMID: 35100379 PMCID: PMC8895988 DOI: 10.1093/g3journal/jkab445] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/16/2021] [Indexed: 12/19/2022]
Abstract
Genomic selection is a well-investigated approach that facilitates and supports selection decisions for complex traits and has meanwhile become a standard tool in modern plant breeding. Phenomic selection has only recently been suggested and uses the same statistical procedures to predict the targeted traits but replaces marker data with near-infrared spectroscopy data. It may represent an attractive low-cost, high-throughput alternative but has not been sufficiently studied until now. Here, we used 400 genotypes of maize (Zea mays L.) comprising elite lines of the Flint and Dent heterotic pools as well as 6 Flint landraces, which were phenotyped in multienvironment trials for anthesis-silking-interval, early vigor, final plant height, grain dry matter content, grain yield, and phosphorus concentration in the maize kernels, to compare the predictive abilities of genomic as well as phenomic prediction under different scenarios. We found that both approaches generally achieved comparable predictive abilities within material groups. However, phenomic prediction was less affected by population structure and performed better than its genomic counterpart for predictions among diverse groups of breeding material. We therefore conclude that phenomic prediction is a promising tool for practical breeding, for instance when working with unknown and rather diverse germplasm. Moreover, it may make the highly monopolized sector of plant breeding more accessible also for low-tech institutions by combining well established, widely available, and cost-efficient spectral phenotyping with the statistical procedures elaborated for genomic prediction - while achieving similar or even better results than with marker data.
Collapse
Affiliation(s)
- Thea Mi Weiß
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany.,Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Xintian Zhu
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany.,Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany
| | - Dongdong Li
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wenxin Liu
- Key Laboratory of Crop Heterosis and Utilization, Ministry of Education, Key Laboratory of Crop Genetic Improvement, Beijing Municipality, National Maize Improvement Center, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Wolfgang Schipprack
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Albrecht E Melchinger
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, Stuttgart 70593, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart 70593, Germany
| |
Collapse
|
20
|
Robert P, Auzanneau J, Goudemand E, Oury FX, Rolland B, Heumez E, Bouchet S, Le Gouis J, Rincent R. Phenomic selection in wheat breeding: identification and optimisation of factors influencing prediction accuracy and comparison to genomic selection. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:895-914. [PMID: 34988629 DOI: 10.1007/s00122-021-04005-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/23/2021] [Indexed: 05/15/2023]
Abstract
Phenomic selection is a promising alternative or complement to genomic selection in wheat breeding. Models combining spectra from different environments maximise the predictive ability of grain yield and heading date of wheat breeding lines. Phenomic selection (PS) is a recent breeding approach similar to genomic selection (GS) except that genotyping is replaced by near-infrared (NIR) spectroscopy. PS can potentially account for non-additive effects and has the major advantage of being low cost and high throughput. Factors influencing GS predictive abilities have been intensively studied, but little is known about PS. We tested and compared the abilities of PS and GS to predict grain yield and heading date from several datasets of bread wheat lines corresponding to the first or second years of trial evaluation from two breeding companies and one research institute in France. We evaluated several factors affecting PS predictive abilities including the possibility of combining spectra collected in different environments. A simple H-BLUP model predicted both traits with prediction ability from 0.26 to 0.62 and with an efficient computation time. Our results showed that the environments in which lines are grown had a crucial impact on predictive ability based on the spectra acquired and was specific to the trait considered. Models combining NIR spectra from different environments were the best PS models and were at least as accurate as GS in most of the datasets. Furthermore, a GH-BLUP model combining genotyping and NIR spectra was the best model of all (prediction ability from 0.31 to 0.73). We demonstrated also that as for GS, the size and the composition of the training set have a crucial impact on predictive ability. PS could therefore replace or complement GS for efficient wheat breeding programs.
Collapse
Affiliation(s)
- Pauline Robert
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France
- INRAE-Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, ClermontFerrand, France
- Agri-Obtentions, Ferme de Gauvilliers, 78660, Orsonville, France
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - Jérôme Auzanneau
- Agri-Obtentions, Ferme de Gauvilliers, 78660, Orsonville, France
| | - Ellen Goudemand
- Florimond-Desprez Veuve & Fils SAS, 3 rue Florimond-Desprez, BP 41, 59242, Cappelle-en-Pévèle, France
| | - François-Xavier Oury
- INRAE-Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, ClermontFerrand, France
| | - Bernard Rolland
- INRAE-Agrocampus Ouest-Université Rennes 1, UMR1349, IGEPP, Domaine de la Motte, 35653, Le Rheu, France
| | - Emmanuel Heumez
- INRAE, UE 972, Grandes Cultures Innovation Environnement, 2 Chaussée Brunehaut, 80200, EstréesMons, France
| | - Sophie Bouchet
- INRAE-Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, ClermontFerrand, France
| | - Jacques Le Gouis
- INRAE-Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, ClermontFerrand, France
| | - Renaud Rincent
- Université Paris-Saclay, INRAE, CNRS, AgroParisTech, GQE - Le Moulon, 91190, Gif-sur-Yvette, France.
- INRAE-Université Clermont-Auvergne, UMR1095, GDEC, 5 chemin de Beaulieu, 63000, ClermontFerrand, France.
| |
Collapse
|
21
|
Zhu X, Maurer HP, Jenz M, Hahn V, Ruckelshausen A, Leiser WL, Würschum T. The performance of phenomic selection depends on the genetic architecture of the target trait. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:653-665. [PMID: 34807268 PMCID: PMC8866387 DOI: 10.1007/s00122-021-03997-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The phenomic predictive ability depends on the genetic architecture of the target trait, being high for complex traits and low for traits with major QTL. Genomic selection is a powerful tool to assist breeding of complex traits, but a limitation is the costs required for genotyping. Recently, phenomic selection has been suggested, which uses spectral data instead of molecular markers as predictors. It was shown to be competitive with genomic prediction, as it achieved predictive abilities as high or even higher than its genomic counterpart. The objective of this study was to evaluate the performance of phenomic prediction for triticale and the dependency of the predictive ability on the genetic architecture of the target trait. We found that for traits with a complex genetic architecture, like grain yield, phenomic prediction with NIRS data as predictors achieved high predictive abilities and performed better than genomic prediction. By contrast, for mono- or oligogenic traits, for example, yellow rust, marker-based approaches achieved high predictive abilities, while those of phenomic prediction were very low. Compared with molecular markers, the predictive ability obtained using NIRS data was more robust to varying degrees of genetic relatedness between the training and prediction set. Moreover, for grain yield, smaller training sets were required to achieve a similar predictive ability for phenomic prediction than for genomic prediction. In addition, our results illustrate the potential of using field-based spectral data for phenomic prediction. Overall, our result confirmed phenomic prediction as an efficient approach to improve the selection gain for complex traits in plant breeding.
Collapse
Affiliation(s)
- Xintian Zhu
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Hans Peter Maurer
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Mario Jenz
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- Hochschule Osnabrück, Sedanstr. 26, 49076, Osnabrück, Germany
| | - Volker Hahn
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | | | - Willmar L Leiser
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | - Tobias Würschum
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
22
|
Sandhu KS, Merrick LF, Sankaran S, Zhang Z, Carter AH. Prospectus of Genomic Selection and Phenomics in Cereal, Legume and Oilseed Breeding Programs. Front Genet 2022. [PMCID: PMC8814369 DOI: 10.3389/fgene.2021.829131] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The last decade witnessed an unprecedented increase in the adoption of genomic selection (GS) and phenomics tools in plant breeding programs, especially in major cereal crops. GS has demonstrated the potential for selecting superior genotypes with high precision and accelerating the breeding cycle. Phenomics is a rapidly advancing domain to alleviate phenotyping bottlenecks and explores new large-scale phenotyping and data acquisition methods. In this review, we discuss the lesson learned from GS and phenomics in six self-pollinated crops, primarily focusing on rice, wheat, soybean, common bean, chickpea, and groundnut, and their implementation schemes are discussed after assessing their impact in the breeding programs. Here, the status of the adoption of genomics and phenomics is provided for those crops, with a complete GS overview. GS’s progress until 2020 is discussed in detail, and relevant information and links to the source codes are provided for implementing this technology into plant breeding programs, with most of the examples from wheat breeding programs. Detailed information about various phenotyping tools is provided to strengthen the field of phenomics for a plant breeder in the coming years. Finally, we highlight the benefits of merging genomic selection, phenomics, and machine and deep learning that have resulted in extraordinary results during recent years in wheat, rice, and soybean. Hence, there is a potential for adopting these technologies into crops like the common bean, chickpea, and groundnut. The adoption of phenomics and GS into different breeding programs will accelerate genetic gain that would create an impact on food security, realizing the need to feed an ever-growing population.
Collapse
Affiliation(s)
- Karansher S. Sandhu
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
- *Correspondence: Karansher S. Sandhu,
| | - Lance F. Merrick
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Sindhuja Sankaran
- Department of Biological System Engineering, Washington State University, Pullman, WA, United States
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| | - Arron H. Carter
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA, United States
| |
Collapse
|
23
|
Abstract
In this chapter, we discuss the motivation for integrating other types of omics data into genomic prediction methods. We give an overview of literature investigating the performance of omics-enhanced predictions, and highlight potential pitfalls when applying these methods in breeding. We emphasize that the statistical methods available for genomic data can be transferred to the general omics case. However, when using a framework of omic relationship matrices, the standardization of the variables may be more relevant than it is for a genomic relationship matrix based on single-nucleotide polymorphisms.
Collapse
Affiliation(s)
- Johannes W R Martini
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz, CP, Mexico.
| | - Ning Gao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - José Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Veracruz, CP, Mexico
| |
Collapse
|
24
|
Gogolev YV, Ahmar S, Akpinar BA, Budak H, Kiryushkin AS, Gorshkov VY, Hensel G, Demchenko KN, Kovalchuk I, Mora-Poblete F, Muslu T, Tsers ID, Yadav NS, Korzun V. OMICs, Epigenetics, and Genome Editing Techniques for Food and Nutritional Security. PLANTS (BASEL, SWITZERLAND) 2021; 10:1423. [PMID: 34371624 PMCID: PMC8309286 DOI: 10.3390/plants10071423] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/30/2021] [Accepted: 07/07/2021] [Indexed: 12/22/2022]
Abstract
The incredible success of crop breeding and agricultural innovation in the last century greatly contributed to the Green Revolution, which significantly increased yields and ensures food security, despite the population explosion. However, new challenges such as rapid climate change, deteriorating soil, and the accumulation of pollutants require much faster responses and more effective solutions that cannot be achieved through traditional breeding. Further prospects for increasing the efficiency of agriculture are undoubtedly associated with the inclusion in the breeding strategy of new knowledge obtained using high-throughput technologies and new tools in the future to ensure the design of new plant genomes and predict the desired phenotype. This article provides an overview of the current state of research in these areas, as well as the study of soil and plant microbiomes, and the prospective use of their potential in a new field of microbiome engineering. In terms of genomic and phenomic predictions, we also propose an integrated approach that combines high-density genotyping and high-throughput phenotyping techniques, which can improve the prediction accuracy of quantitative traits in crop species.
Collapse
Affiliation(s)
- Yuri V. Gogolev
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Sunny Ahmar
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | | | - Hikmet Budak
- Montana BioAg Inc., Missoula, MT 59802, USA; (B.A.A.); (H.B.)
| | - Alexey S. Kiryushkin
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Vladimir Y. Gorshkov
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Kazan Institute of Biochemistry and Biophysics, 420111 Kazan, Russia;
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, 40225 Dusseldorf, Germany;
- Centre of the Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, 78371 Olomouc, Czech Republic
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute of the Russian Academy of Sciences, 197376 Saint Petersburg, Russia; (A.S.K.); (K.N.D.)
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile; (S.A.); (F.M.-P.)
| | - Tugdem Muslu
- Faculty of Engineering and Natural Sciences, Sabanci University, 34956 Istanbul, Turkey;
| | - Ivan D. Tsers
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
| | - Narendra Singh Yadav
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (I.K.); (N.S.Y.)
| | - Viktor Korzun
- Federal Research Center Kazan Scientific Center of Russian Academy of Sciences, Laboratory of Plant Infectious Diseases, 420111 Kazan, Russia;
- KWS SAAT SE & Co. KGaA, Grimsehlstr. 31, 37555 Einbeck, Germany
| |
Collapse
|
25
|
Galán RJ, Bernal-Vasquez AM, Jebsen C, Piepho HP, Thorwarth P, Steffan P, Gordillo A, Miedaner T. Early prediction of biomass in hybrid rye based on hyperspectral data surpasses genomic predictability in less-related breeding material. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1409-1422. [PMID: 33630103 PMCID: PMC8081675 DOI: 10.1007/s00122-021-03779-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 01/19/2021] [Indexed: 05/15/2023]
Abstract
Hyperspectral data is a promising complement to genomic data to predict biomass under scenarios of low genetic relatedness. Sufficient environmental connectivity between data used for model training and validation is required. The demand for sustainable sources of biomass is increasing worldwide. The early prediction of biomass via indirect selection of dry matter yield (DMY) based on hyperspectral and/or genomic prediction is crucial to affordably untap the potential of winter rye (Secale cereale L.) as a dual-purpose crop. However, this estimation involves multiple genetic backgrounds and genetic relatedness is a crucial factor in genomic selection (GS). To assess the prospect of prediction using reflectance data as a suitable complement to GS for biomass breeding, the influence of trait heritability ([Formula: see text]) and genetic relatedness were compared. Models were based on genomic (GBLUP) and hyperspectral reflectance-derived (HBLUP) relationship matrices to predict DMY and other biomass-related traits such as dry matter content (DMC) and fresh matter yield (FMY). For this, 270 elite rye lines from nine interconnected bi-parental families were genotyped using a 10 k-SNP array and phenotyped as testcrosses at four locations in two years (eight environments). From 400 discrete narrow bands (410 nm-993 nm) collected by an uncrewed aerial vehicle (UAV) on two dates in each environment, 32 hyperspectral bands previously selected by Lasso were incorporated into a prediction model. HBLUP showed higher prediction abilities (0.41 - 0.61) than GBLUP (0.14 - 0.28) under a decreased genetic relationship, especially for mid-heritable traits (FMY and DMY), suggesting that HBLUP is much less affected by relatedness and [Formula: see text]. However, the predictive power of both models was largely affected by environmental variances. Prediction abilities for DMY were further enhanced (up to 20%) by integrating both matrices and plant height into a bivariate model. Thus, data derived from high-throughput phenotyping emerges as a suitable strategy to efficiently leverage selection gains in biomass rye breeding; however, sufficient environmental connectivity is needed.
Collapse
Affiliation(s)
- Rodrigo José Galán
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
| | | | | | - Hans-Peter Piepho
- Biostatistics Unit, Institute of Crop Science, University of Hohenheim, 70593, Stuttgart, Germany
| | - Patrick Thorwarth
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany
- KWS SAAT SE, Grimsehlstraße 31, 37574, Einbeck, Germany
| | - Philipp Steffan
- KWS LOCHOW GMBH, Ferdinand-von-Lochow Straße 5, 29303, Bergen, Germany
| | - Andres Gordillo
- KWS LOCHOW GMBH, Ferdinand-von-Lochow Straße 5, 29303, Bergen, Germany
| | - Thomas Miedaner
- State Plant Breeding Institute, University of Hohenheim, 70593, Stuttgart, Germany.
| |
Collapse
|
26
|
Shu M, Shen M, Zuo J, Yin P, Wang M, Xie Z, Tang J, Wang R, Li B, Yang X, Ma Y. The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines. PLANT PHENOMICS (WASHINGTON, D.C.) 2021; 2021:9890745. [PMID: 33889850 PMCID: PMC8054988 DOI: 10.34133/2021/9890745] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 03/19/2021] [Indexed: 05/19/2023]
Abstract
Crop traits such as aboveground biomass (AGB), total leaf area (TLA), leaf chlorophyll content (LCC), and thousand kernel weight (TWK) are important indices in maize breeding. How to extract multiple crop traits at the same time is helpful to improve the efficiency of breeding. Compared with digital and multispectral images, the advantages of high spatial and spectral resolution of hyperspectral images derived from unmanned aerial vehicle (UAV) are expected to accurately estimate the similar traits among breeding materials. This study is aimed at exploring the feasibility of estimating AGB, TLA, SPAD value, and TWK using UAV hyperspectral images and at determining the optimal models for facilitating the process of selecting advanced varieties. The successive projection algorithm (SPA) and competitive adaptive reweighted sampling (CARS) were used to screen sensitive bands for the maize traits. Partial least squares (PLS) and random forest (RF) algorithms were used to estimate the maize traits. The results can be summarized as follows: The sensitive bands for various traits were mainly concentrated in the near-red and red-edge regions. The sensitive bands screened by CARS were more abundant than those screened by SPA. For AGB, TLA, and SPAD value, the optimal combination was the CARS-PLS method. Regarding the TWK, the optimal combination was the CARS-RF method. Compared with the model built by RF, the model built by PLS was more stable. This study provides guiding significance and practical value for main trait estimation of maize inbred lines by UAV hyperspectral images at the plot level.
Collapse
Affiliation(s)
- Meiyan Shu
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Mengyuan Shen
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jinyu Zuo
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Pengfei Yin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Min Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Ziwen Xie
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Jihua Tang
- College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Wang
- Agricultural Artificial Intelligence and Crop Phenotype Engineering Research Center, Inner Mongolia Institute of Biotechnology, Huhhot 010070, China
| | - Baoguo Li
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xiaohong Yang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| | - Yuntao Ma
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| |
Collapse
|