1
|
Fakude M, Murithi A, Frei UK, Scott PM, Lübberstedt T. Genome-wide association study of haploid female fertility (HFF) and haploid male fertility (HMF) in BS39-derived doubled haploid maize lines. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 138:5. [PMID: 39663254 DOI: 10.1007/s00122-024-04789-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 11/19/2024] [Indexed: 12/13/2024]
Abstract
KEY MESSAGE Restoration of haploid female and haploid male fertility without colchicine is feasible. Three SNPs and eight gene models for HFF, and one SNP and a gene model for HMF were identified. Doubled haploid (DH) breeding accelerates the development of elite inbred lines and facilitates the incorporation of exotic germplasm, offering a powerful tool for maize improvement. Traditional DH breeding relies on colchicine to induce haploid genome doubling. Colchicine is toxic, and its application is labor-intensive, with most genotypes recording low genome doubling rates (10-30%). This study investigates spontaneous haploid genome doubling (SHGD) as a safer and more efficient alternative to colchicine. We evaluated the effectiveness of SHGD in restoring haploid female fertility (HFF) and haploid male fertility (HMF) without colchicine. Using genome-wide association studies (GWAS), we identified genomic regions influencing HFF and HMF. The plant materials included the BS39-haploid isogenic lines (HILs) and BS39-SHGD-haploid isogenic lines (HILs). Our results revealed significant SNP associations for both traits, with candidate genes involved in cell cycle regulation, cytoskeletal organization, and hormonal signaling. Analysis of variance (ANOVA) revealed significant variation in HFF across haploids and two environments. Similarly, HMF showed substantial differences across haploids and between the two environments. Spearman correlation between HFF and HMF showed no correlation (r = -0.03) between the two traits. HFF showed high heritability (0.8), indicating strong genetic control, whereas HMF displayed moderate heritability (0.5), suggesting additional environmental influences. The findings underscore the potential of SHGD to enhance DH breeding efficiency and support the development of new maize varieties tailored to diverse agricultural needs.
Collapse
Affiliation(s)
- Mercy Fakude
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Ann Murithi
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Paul M Scott
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Ames, IA, 50011, USA
| | | |
Collapse
|
2
|
Qu Y, Fernie AR, Liu J, Yan J. Doubled haploid technology and synthetic apomixis: Recent advances and applications in future crop breeding. MOLECULAR PLANT 2024; 17:1005-1018. [PMID: 38877700 DOI: 10.1016/j.molp.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 05/19/2024] [Accepted: 06/11/2024] [Indexed: 06/16/2024]
Abstract
Doubled haploid (DH) technology and synthetic apomixis approaches can considerably shorten breeding cycles and enhance breeding efficiency. Compared with traditional breeding methods, DH technology offers the advantage of rapidly generating inbred lines, while synthetic apomixis can effectively fix hybrid vigor. In this review, we focus on (i) recent advances in identifying and characterizing genes responsible for haploid induction (HI), (ii) the molecular mechanisms of HI, (iii) spontaneous haploid genome doubling, and (iv) crop synthetic apomixis. We also discuss the challenges and potential solutions for future crop breeding programs utilizing DH technology and synthetic apomixis. Finally, we provide our perspectives about how to integrate DH and synthetic apomixis for precision breeding and de novo domestication.
Collapse
Affiliation(s)
- Yanzhi Qu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max- Planck- Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany; Center of Plant Systems Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Jie Liu
- Yazhouwan National Laboratory, Sanya 572024, China.
| | - Jianbing Yan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China; Yazhouwan National Laboratory, Sanya 572024, China.
| |
Collapse
|
3
|
Foster TL, Kloiber-Maitz M, Gilles L, Frei UK, Pfeffer S, Chen YR, Dutta S, Seetharam AS, Hufford MB, Lübberstedt T. Fine mapping of major QTL qshgd1 for spontaneous haploid genome doubling in maize (Zea mays L.). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:117. [PMID: 38700534 DOI: 10.1007/s00122-024-04615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 04/04/2024] [Indexed: 05/09/2024]
Abstract
KEY MESSAGE A large-effect QTL was fine mapped, which revealed 79 gene models, with 10 promising candidate genes, along with a novel inversion. In commercial maize breeding, doubled haploid (DH) technology is arguably the most efficient resource for rapidly developing novel, completely homozygous lines. However, the DH strategy, using in vivo haploid induction, currently requires the use of mutagenic agents which can be not only hazardous, but laborious. This study focuses on an alternative approach to develop DH lines-spontaneous haploid genome duplication (SHGD) via naturally restored haploid male fertility (HMF). Inbred lines A427 and Wf9, the former with high HMF and the latter with low HMF, were selected to fine-map a large-effect QTL associated with SHGD-qshgd1. SHGD alleles were derived from A427, with novel haploid recombinant groups having varying levels of the A427 chromosomal region recovered. The chromosomal region of interest is composed of 45 megabases (Mb) of genetic information on chromosome 5. Significant differences between haploid recombinant groups for HMF were identified, signaling the possibility of mapping the QTL more closely. Due to suppression of recombination from the proximity of the centromere, and a newly discovered inversion region, the associated QTL was only confined to a 25 Mb region, within which only a single recombinant was observed among ca. 9,000 BC1 individuals. Nevertheless, 79 gene models were identified within this 25 Mb region. Additionally, 10 promising candidate genes, based on RNA-seq data, are described for future evaluation, while the narrowed down genome region is accessible for straightforward introgression into elite germplasm by BC methods.
Collapse
Affiliation(s)
- Tyler L Foster
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA.
| | | | - Laurine Gilles
- Limagrain Europe SAS, Research Centre, 63720, Chappes, France
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Sarah Pfeffer
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, 50011, USA
| | - Somak Dutta
- Department of Statistics, Iowa State University, Ames, IA, 50011, USA
| | - Arun S Seetharam
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | - Matthew B Hufford
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA
| | | |
Collapse
|
4
|
Bortiri E, Selby R, Egger R, Tolhurst L, Dong S, Beam K, Meier K, Fabish J, Delaney D, Dunn M, Mcnamara D, Setliff K, Castro Miranda Lunny R, Gergen S, Dawe RK, Kelliher T. Cyto-swapping in maize by haploid induction with a cenh3 mutant. NATURE PLANTS 2024; 10:567-571. [PMID: 38499777 DOI: 10.1038/s41477-024-01630-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/24/2024] [Indexed: 03/20/2024]
Abstract
Maize mutants of the centromeric histone H3 (CENP-A/CENH3) gene can form haploids that inherit only chromosomes of the pollinating parent but the cytoplasm from the female parent. We developed CENH3 haploid inducers carrying a dominant anthocyanin colour marker for efficient haploid identification and harbouring cytoplasmic male sterile cytoplasm, a type of cytoplasm that results in male sterility useful for efficient hybrid seed production. The resulting cytoplasmic male sterility cyto-swapping method provides a faster and cheaper way to convert commercial lines to cytoplasmic male sterile compared to conventional trait introgression.
Collapse
Affiliation(s)
| | - Rebecca Selby
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Rachel Egger
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | - Shujie Dong
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Kayla Beam
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Kerry Meier
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Jon Fabish
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | - Mary Dunn
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | - Dawn Mcnamara
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| | | | | | | | - R Kelly Dawe
- Department of Genetics, University of Georgia, Athens, GA, USA
| | - Tim Kelliher
- Syngenta Crop Protection, Research Triangle Park, NC, USA
| |
Collapse
|
5
|
Sanchez DL, Santana AS, Morais PIC, Peterlini E, De La Fuente G, Castellano MJ, Blanco M, Lübberstedt T. Phenotypic and genome-wide association analyses for nitrogen use efficiency related traits in maize ( Zea mays L.) exotic introgression lines. FRONTIERS IN PLANT SCIENCE 2023; 14:1270166. [PMID: 37877090 PMCID: PMC10590880 DOI: 10.3389/fpls.2023.1270166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023]
Abstract
Nitrogen (N) limits crop production, yet more than half of N fertilizer inputs are lost to the environment. Developing maize hybrids with improved N use efficiency can help minimize N losses and in turn reduce adverse ecological, economical, and health consequences. This study aimed to identify single nucleotide polymorphisms (SNPs) associated with agronomic traits (plant height, grain yield, and anthesis to silking interval) under high and low N conditions. A genome-wide association study (GWAS) was conducted using 181 doubled haploid (DH) lines derived from crosses between landraces from the Germplasm Enhancement of Maize (BGEM lines) project and two inbreds, PHB47 and PHZ51. These DH lines were genotyped using 62,077 SNP markers. The same lines from the per se trials were used as parental lines for the testcross field trials. Plant height, anthesis to silking interval, and grain yield were collected from high and low N conditions in three environments for both per se and testcross trials. We used three GWAS models, namely, general linear model (GLM), mixed linear model (MLM), and Fixed and Random model Circulating Probability Unification (FarmCPU) model. We observed significant genetic variation among the DH lines and their derived testcrosses. Interestingly, some testcrosses of exotic introgression lines were superior under high and low N conditions compared to the check hybrid, PHB47/PHZ51. We detected multiple SNPs associated with agronomic traits under high and low N, some of which co-localized with gene models associated with stress response and N metabolism. The BGEM panel is, thus, a promising source of allelic diversity for genes controlling agronomic traits under different N conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michael Blanco
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Agriculture, Agricultural Research Service (USDA-ARS), Ames, IA, United States
| | | |
Collapse
|
6
|
Trentin HU, Krause MD, Zunjare RU, Almeida VC, Peterlini E, Rotarenco V, Frei UK, Beavis WD, Lübberstedt T. Genetic basis of maize maternal haploid induction beyond MATRILINEAL and ZmDMP. FRONTIERS IN PLANT SCIENCE 2023; 14:1218042. [PMID: 37860246 PMCID: PMC10582762 DOI: 10.3389/fpls.2023.1218042] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/05/2023] [Indexed: 10/21/2023]
Abstract
In maize, doubled haploid (DH) lines are created in vivo through crosses with maternal haploid inducers. Their induction ability, usually expressed as haploid induction rate (HIR), is known to be under polygenic control. Although two major genes (MTL and ZmDMP) affecting this trait were recently described, many others remain unknown. To identify them, we designed and performed a SNP based (~9007) genome-wide association study using a large and diverse panel of 159 maternal haploid inducers. Our analyses identified a major gene near MTL, which is present in all inducers and necessary to disrupt haploid induction. We also found a significant quantitative trait loci (QTL) on chromosome 10 using a case-control mapping approach, in which 793 noninducers were used as controls. This QTL harbors a kokopelli ortholog, whose role in maternal haploid induction was recently described in Arabidopsis. QTL with smaller effects were identified on six of the ten maize chromosomes, confirming the polygenic nature of this trait. These QTL could be incorporated into inducer breeding programs through marker-assisted selection approaches. Further improving HIR is important to reduce the cost of DH line production.
Collapse
Affiliation(s)
- Henrique Uliana Trentin
- Bayer Crop Science, Coxilha, RS, Brazil
- Department of Agronomy, Iowa State University, Ames, IA, United States
| | | | - Rajkumar Uttamrao Zunjare
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Vinícius Costa Almeida
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Federal University of Viçosa, Viçosa, MG, Brazil
| | - Edicarlos Peterlini
- Department of Agronomy, Iowa State University, Ames, IA, United States
- Department of Agronomy, State University of Maringá, Maringá, PR, Brazil
| | | | | | | | | |
Collapse
|
7
|
Santos IGD, Verzegnazzi AL, Edwards J, Frei UK, Boerman N, Tonello Zuffo L, Pires LPM, de La Fuente G, Lübberstedt T. Usefulness of temperate-adapted maize lines developed by doubled haploid and single-seed descent methods. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:1829-1841. [PMID: 35305125 DOI: 10.1007/s00122-022-04075-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Spontaneous haploid genome doubling is not associated with undesirable linkage drag effects. The presence of spontaneous doubling genes allows maximum exploitation of variability from the temperate-adapted BS39 population Tropical non-elite maize (Zea mays L.) germplasm, such as BS39, provides a unique opportunity for broadening the genetic base of U.S. Corn Belt germplasm. In vivo doubled haploid (DH) technology has been used to efficiently exploit non-elite germplasm. It can help to purge deleterious recessive alleles. The objectives of this study were to determine the usefulness of BS39-derived inbred lines using both SSD and DH methods, to determine the impact of spontaneous as compared with artificial haploid genome doubling on genetic variance among BS39-derived DH lines, and to identify SNP markers associated with agronomic traits among BS39 inbreds monitored at testcross level. We developed two sets of inbred lines directly from BS39 by DH and SSD methods, named BS39_DH and BS39_SSD. Additionally, two sets were derived from a cross between BS39 and A427 (SHGD donor) by DH and SSD methods, named BS39 × A427_DH and BS39 × A427_SSD, respectively. Grain yield, moisture, plant height, ear height, stalk lodging, and root lodging were measured to estimate genetic parameters. For genome-wide association analysis, inbred lines were genotyped using genotype-by-sequencing and Diversity Array Technology Sequencing (DArTSeq). Some BS39-derived inbred lines performed better than elite germplasm inbreds and all sets showed significant genetic variance. The presence of spontaneous haploid genome doubling genes did not affect performance of inbred lines. Five SNPs were significant and three of them located within genes related to plant development or abiotic stresses. These results demonstrate the potential of BS39 to add novel alleles to temperate elite germplasm.
Collapse
Affiliation(s)
| | | | - Jode Edwards
- USDA-ARS, Corn Insects and Crop Genetics Research Unit, Ames, IA, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Nicholas Boerman
- USDA-ARS, Southern Plains Range Research Station, Woodward, OK, USA
| | - Leandro Tonello Zuffo
- Department of Plant Sciences, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
8
|
Aboobucker SI, Jubery TZ, Frei UK, Chen YR, Foster T, Ganapathysubramanian B, Lübberstedt T. Protocols for In Vivo Doubled Haploid (DH) Technology in Maize Breeding: From Haploid Inducer Development to Haploid Genome Doubling. Methods Mol Biol 2022; 2484:213-235. [PMID: 35461455 DOI: 10.1007/978-1-0716-2253-7_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Doubled haploid (DH) technology reduces the time required to obtain homozygous genotypes and accelerates plant breeding among other advantages. It is established in major crop species such as wheat, barley, maize, and canola. DH lines can be produced by both in vitro and in vivo methods and the latter is focused here. The major steps involved in in vivo DH technology are haploid induction, haploid selection/identification, and haploid genome doubling. Herein, we elaborate on the various steps of DH technology in maize breeding from haploid induction to haploid genome doubling to produce DH lines. Detailed protocols on the following topics are discussed: in vivo haploid inducer line development, haploid selection using seed and root color markers and automated seed sorting based on embryo oil content using QSorter, artificial genome doubling, and the identification of genotypes with spontaneous haploid genome doubling (SHGD) ability.
Collapse
Affiliation(s)
| | - Talukder Z Jubery
- Department of Mechanical Engineering, Iowa State University, Ames, IA, USA
| | - Ursula K Frei
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Yu-Ru Chen
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | - Tyler Foster
- Department of Agronomy, Iowa State University, Ames, IA, USA
| | | | | |
Collapse
|
9
|
Underwood CJ, Vijverberg K, Rigola D, Okamoto S, Oplaat C, Camp RHMOD, Radoeva T, Schauer SE, Fierens J, Jansen K, Mansveld S, Busscher M, Xiong W, Datema E, Nijbroek K, Blom EJ, Bicknell R, Catanach A, Erasmuson S, Winefield C, van Tunen AJ, Prins M, Schranz ME, van Dijk PJ. A PARTHENOGENESIS allele from apomictic dandelion can induce egg cell division without fertilization in lettuce. Nat Genet 2022; 54:84-93. [PMID: 34992267 DOI: 10.1038/s41588-021-00984-y] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 11/03/2021] [Indexed: 01/21/2023]
Abstract
Apomixis, the clonal formation of seeds, is a rare yet widely distributed trait in flowering plants. We have isolated the PARTHENOGENESIS (PAR) gene from apomictic dandelion that triggers embryo development in unfertilized egg cells. PAR encodes a K2-2 zinc finger, EAR-domain protein. Unlike the recessive sexual alleles, the dominant PAR allele is expressed in egg cells and has a miniature inverted-repeat transposable element (MITE) transposon insertion in the promoter. The MITE-containing promoter can invoke a homologous gene from sexual lettuce to complement dandelion LOSS OF PARTHENOGENESIS mutants. A similar MITE is also present in the promoter of the PAR gene in apomictic forms of hawkweed, suggesting a case of parallel evolution. Heterologous expression of dandelion PAR in lettuce egg cells induced haploid embryo-like structures in the absence of fertilization. Sexual PAR alleles are expressed in pollen, suggesting that the gene product releases a block on embryogenesis after fertilization in sexual species while in apomictic species PAR expression triggers embryogenesis in the absence of fertilization.
Collapse
Affiliation(s)
- Charles J Underwood
- Keygene N.V., Wageningen, the Netherlands
- Department of Chromosome Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Kitty Vijverberg
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
- Naturalis Biodiversity Center, Radboud University, Nijmegen, the Netherlands
| | | | - Shunsuke Okamoto
- Keygene N.V., Wageningen, the Netherlands
- Takii & Co. Ltd, Plant Breeding and Experiment Station, Konan Shiga, Japan
| | - Carla Oplaat
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
- National Reference Centre of Plant Health, National Plant Protection Organization, Wageningen, the Netherlands
| | | | | | | | | | - Kim Jansen
- Keygene N.V., Wageningen, the Netherlands
| | | | - Marco Busscher
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | - Wei Xiong
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands
| | | | | | | | - Ross Bicknell
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Andrew Catanach
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | - Sylvia Erasmuson
- New Zealand Institute for Plant & Food Research, Lincoln, New Zealand
| | | | | | | | - M Eric Schranz
- Biosystematics Group, Wageningen University, Wageningen, the Netherlands.
| | | |
Collapse
|
10
|
Francisco FR, Aono AH, da Silva CC, Gonçalves PS, Scaloppi Junior EJ, Le Guen V, Fritsche-Neto R, Souza LM, de Souza AP. Unravelling Rubber Tree Growth by Integrating GWAS and Biological Network-Based Approaches. FRONTIERS IN PLANT SCIENCE 2021; 12:768589. [PMID: 34992619 PMCID: PMC8724537 DOI: 10.3389/fpls.2021.768589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/02/2021] [Indexed: 06/08/2023]
Abstract
Hevea brasiliensis (rubber tree) is a large tree species of the Euphorbiaceae family with inestimable economic importance. Rubber tree breeding programs currently aim to improve growth and production, and the use of early genotype selection technologies can accelerate such processes, mainly with the incorporation of genomic tools, such as marker-assisted selection (MAS). However, few quantitative trait loci (QTLs) have been used successfully in MAS for complex characteristics. Recent research shows the efficiency of genome-wide association studies (GWAS) for locating QTL regions in different populations. In this way, the integration of GWAS, RNA-sequencing (RNA-Seq) methodologies, coexpression networks and enzyme networks can provide a better understanding of the molecular relationships involved in the definition of the phenotypes of interest, supplying research support for the development of appropriate genomic based strategies for breeding. In this context, this work presents the potential of using combined multiomics to decipher the mechanisms of genotype and phenotype associations involved in the growth of rubber trees. Using GWAS from a genotyping-by-sequencing (GBS) Hevea population, we were able to identify molecular markers in QTL regions with a main effect on rubber tree plant growth under constant water stress. The underlying genes were evaluated and incorporated into a gene coexpression network modelled with an assembled RNA-Seq-based transcriptome of the species, where novel gene relationships were estimated and evaluated through in silico methodologies, including an estimated enzymatic network. From all these analyses, we were able to estimate not only the main genes involved in defining the phenotype but also the interactions between a core of genes related to rubber tree growth at the transcriptional and translational levels. This work was the first to integrate multiomics analysis into the in-depth investigation of rubber tree plant growth, producing useful data for future genetic studies in the species and enhancing the efficiency of the species improvement programs.
Collapse
Affiliation(s)
- Felipe Roberto Francisco
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Alexandre Hild Aono
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Carla Cristina da Silva
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
| | - Paulo S. Gonçalves
- Center of Rubber Tree and Agroforestry Systems, Agronomic Institute (IAC), Votuporanga, Brazil
| | | | - Vincent Le Guen
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), UMR AGAP, Montpellier, France
- AGAP, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| | - Roberto Fritsche-Neto
- Department of Genetics, Luiz de Queiroz College of Agriculture (ESALQ), University of São Paulo (USP), Piracicaba, Brazil
| | - Livia Moura Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- São Francisco University (USF), Itatiba, Brazil
| | - Anete Pereira de Souza
- Molecular Biology and Genetic Engineering Center (CBMEG), University of Campinas (UNICAMP), Campinas, Brazil
- Department of Plant Biology, Biology Institute, University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|