1
|
Vardanega I, Maika JE, Demesa-Arevalo E, Lan T, Kirschner GK, Imani J, Acosta IF, Makowska K, Hensel G, Ranaweera T, Shiu SH, Schnurbusch T, von Korff M, Simon R. CLAVATA signalling shapes barley inflorescence by controlling activity and determinacy of shoot meristem and rachilla. Nat Commun 2025; 16:3937. [PMID: 40287461 PMCID: PMC12033307 DOI: 10.1038/s41467-025-59330-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 04/15/2025] [Indexed: 04/29/2025] Open
Abstract
The large variety of inflorescence architectures evolved in grasses depends on shape, longevity and determinacy of meristems directing growth of the main and lateral axes. The CLAVATA pathway is known to regulate meristem size and inflorescence architecture in grasses. However, how individual meristem activities are determined and integrated to generate specific inflorescences is not yet understood. We found that activity of distinct meristems in the barley inflorescence is controlled by a signalling pathway comprising the receptor-like kinase Hordeum vulgare CLAVATA1 (HvCLV1) and the secreted CLAVATA3/EMBRYO-SURROUNDING REGION RELATED (CLE)-family peptide FON2-LIKE CLE PROTEIN1 (HvFCP1). HvFCP1 and HvCLV1 interact to promote spikelet formation, but restrict inflorescence meristem and rachilla proliferation. Hvfcp1 or Hvclv1 mutants generate additional rows of spikelets and supernumerary florets from extended rachilla activity. HvFCP1/HvCLV1 signalling coordinates meristem activity through regulation of trehalose-6-phosphate levels. Our discoveries outline a path to engineer inflorescence architecture via specific regulation of distinct meristem activities.
Collapse
Affiliation(s)
- Isaia Vardanega
- Institute of Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Jan Eric Maika
- Institute of Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Edgar Demesa-Arevalo
- Institute of Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
- CEPLAS, Center of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| | - Tianyu Lan
- Institute of Plant Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Gwendolyn K Kirschner
- Institute of Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany
- CEPLAS, Center of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
| | - Jafargholi Imani
- Institute of Phytopathology, Justus Liebig University, Giessen, Germany
| | - Ivan F Acosta
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | - Katarzyna Makowska
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Götz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine University, Düsseldorf, Germany
| | - Thilanka Ranaweera
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - Shin-Han Shiu
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
- DOE-Great Lake Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Computational Mathematics, Science, and Engineering, Michigan State University, East Lansing, MI, USA
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
- Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Maria von Korff
- CEPLAS, Center of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany
- Institute of Plant Genetics, Heinrich-Heine University, Düsseldorf, Germany
| | - Rüdiger Simon
- Institute of Developmental Genetics, Heinrich-Heine University, Düsseldorf, Germany.
- CEPLAS, Center of Excellence in Plant Sciences, Heinrich-Heine University, Düsseldorf, Germany.
| |
Collapse
|
2
|
Khaksefidi RE, Chen W, Shen C, Langridge P, Tucker MR, Zhang D. The role of Ancestral MicroRNAs in grass inflorescence development. JOURNAL OF PLANT PHYSIOLOGY 2025; 304:154417. [PMID: 39754787 DOI: 10.1016/j.jplph.2024.154417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/06/2025]
Abstract
Plant inflorescences are complex, highly diverse structures whose morphology is determined in meristems that form during reproductive development. Inflorescence structure influences flower formation, and consequently grain number, and yield in crops. Correct inflorescence and flower development require tight control of gene expression via complex interplay between regulatory networks. MicroRNAs (miRNAs) have emerged as fundamental modulators of gene expression at the transcriptional and/or post-transcriptional level in plant inflorescence development. First discovered more than three decades ago, miRNAs have proved to be revolutionary in advancing our mechanistic understanding of gene expression. This review highlights current knowledge of downstream target genes and pathways of some highly conserved miRNAs that regulate the maintenance, identity, and activity of inflorescence and floral meristems in economically and agriculturally important grass species, including rice (Oryza sativa), maize (Zea mays), barley (Hordeum vulgare), and wheat (Triticum aestivum). Furthermore, we summarize emerging regulatory networks of miRNAs and their targets to suggest new avenues and strategies for application of miRNAs as a tool to enhance crop yield and performance.
Collapse
Affiliation(s)
- Reyhaneh Ebrahimi Khaksefidi
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Weiwei Chen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia
| | - Chaoqun Shen
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peter Langridge
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Wheat Initiative, Julius Kühn Institute, 14195, Berlin, Germany
| | - Matthew R Tucker
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Dabing Zhang
- Waite Research Institute, School of Agriculture, Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia; Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
4
|
Jiang G, Koppolu R, Rutten T, Hensel G, Lundqvist U, Tandron Moya YA, Huang Y, Rajaraman J, Poursarebani N, von Wirén N, Kumlehn J, Mascher M, Schnurbusch T. Non-cell-autonomous signaling associated with barley ALOG1 specifies spikelet meristem determinacy. Curr Biol 2024; 34:2344-2358.e5. [PMID: 38781954 DOI: 10.1016/j.cub.2024.04.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/18/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Inflorescence architecture and crop productivity are often tightly coupled in our major cereal crops. However, the underlying genetic mechanisms controlling cereal inflorescence development remain poorly understood. Here, we identified recessive alleles of barley (Hordeum vulgare L.) HvALOG1 (Arabidopsis thaliana LSH1 and Oryza G1) that produce non-canonical extra spikelets and fused glumes abaxially to the central spikelet from the upper-mid portion until the tip of the inflorescence. Notably, we found that HvALOG1 exhibits a boundary-specific expression pattern that specifically excludes reproductive meristems, implying the involvement of previously proposed localized signaling centers for branch regulation. Importantly, during early spikelet formation, non-cell-autonomous signals associated with HvALOG1 expression may specify spikelet meristem determinacy, while boundary formation of floret organs appears to be coordinated in a cell-autonomous manner. Moreover, barley ALOG family members synergistically modulate inflorescence morphology, with HvALOG1 predominantly governing meristem maintenance and floral organ development. We further propose that spatiotemporal redundancies of expressed HvALOG members specifically in the basal inflorescence may be accountable for proper patterning of spikelet formation in mutant plants. Our research offers new perspectives on regulatory signaling roles of ALOG transcription factors during the development of reproductive meristems in cereal inflorescences.
Collapse
Affiliation(s)
- Guojing Jiang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Ravi Koppolu
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Twan Rutten
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Goetz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | | | - Yudelsy Antonia Tandron Moya
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jeyaraman Rajaraman
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Naser Poursarebani
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Nicolaus von Wirén
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Jochen Kumlehn
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, Corrensstr. 3, 06466 Seeland, Germany; Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany.
| |
Collapse
|
5
|
Zhang Y, Shen C, Shi J, Shi J, Zhang D. Boosting Triticeae crop grain yield by manipulating molecular modules to regulate inflorescence architecture: insights and knowledge from other cereal crops. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:17-35. [PMID: 37935244 DOI: 10.1093/jxb/erad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
One of the challenges for global food security is to reliably and sustainably improve the grain yield of cereal crops. One solution is to modify the architecture of the grain-bearing inflorescence to optimize for grain number and size. Cereal inflorescences are complex structures, with determinacy, branching patterns, and spikelet/floret growth patterns that vary by species. Recent decades have witnessed rapid advancements in our understanding of the genetic regulation of inflorescence architecture in rice, maize, wheat, and barley. Here, we summarize current knowledge on key genetic factors underlying the different inflorescence morphologies of these crops and model plants (Arabidopsis and tomato), focusing particularly on the regulation of inflorescence meristem determinacy and spikelet meristem identity and determinacy. We also discuss strategies to identify and utilize these superior alleles to optimize inflorescence architecture and, ultimately, improve crop grain yield.
Collapse
Affiliation(s)
- Yueya Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Chaoqun Shen
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai 200240, China
- Yazhou Bay Institute of Deepsea Sci-Tech, Shanghai Jiao Tong University, Sanya 572025, China
- School of Agriculture, Food, and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| |
Collapse
|
6
|
Huang Y, Schnurbusch T. Femaleness for improving grain yield potential and hybrid production in barley. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4896-4898. [PMID: 37702015 PMCID: PMC10498018 DOI: 10.1093/jxb/erad257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
This article comments on:
Selva C, Yang X, Shirley NJ, Whitford R, Baumann U, Tucker MR. 2023. HvSL1 and HvMADS16 promote stamen identity to restrict multiple ovary formation in barley. Journal of Experimental Botany 74, 5039–5057.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, D-06466 Seeland, Germany
- Martin Luther University Halle-Wittenberg, Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, D-06120 Halle, Germany
| |
Collapse
|
7
|
Qin DD, Liu R, Xu F, Dong G, Xu Q, Peng Y, Xu L, Cheng H, Guo G, Dong J, Li C. Characterization of a barley ( Hordeum vulgare L.) mutant with multiple stem nodes and spikes and dwarf ( msnsd) and fine-mapping of its causal gene. FRONTIERS IN PLANT SCIENCE 2023; 14:1189743. [PMID: 37484471 PMCID: PMC10359901 DOI: 10.3389/fpls.2023.1189743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/13/2023] [Indexed: 07/25/2023]
Abstract
Introduction Multiple nodes and dwarf mutants in barley are a valuable resource for identifying genes that control shoot branching, vegetative growth and development. Methods In this study, physiological, microscopic and genetic analysis were conducted to characterize and fine-map the underling gene of a barley mutant with Multiple Stem Nodes and Spikes and Dwarf (msnsd), which was selected from EMS- and 60Co-treated barley cv. Edamai 934. Results and discussion The msnsd mutant had more stem nodes, lower plant height and a shorter plastochron than Edamai 934. Moreover, the mutant had two or more spikes on each tiller. Microscopic analysis showed that the dwarf phenotype of msnsd resulted from reduced cell lengths and cell numbers in the stem. Further physiological analysis showed that msnsd was GA3-deficient, with its plant height increasing after external GA3 application. Genetic analysis revealed that a single recessive nuclear gene, namely, HvMSNSD, controlled the msnsd phenotype. Using a segregating population derived from Harrington and the msnsd mutant, HvMSNSD was fine-mapped on chromosome 5H in a 200 kb interval using bulked segregant analysis (BSA) coupled with RNA-sequencing (BSR-seq), with a C-T substitution in the exon of HvTCP25 co-segregating with the msnsd phenotype. RNA-seq analysis showed that a gene encoding gibberellin 2-oxidase 8, a negative regulator of GA biosynthesis, was upregulated in the msnsd mutant. Several known genes related to inflorescence development that were also upregulated and enriched in the msnsd mutant. Collectively, we propose that HvMSNSD regulates the plastochron and morphology of reproductive organs, likely by coordinating GA homeostasis and changed expression of floral development related genes in barley. This study offers valuable insights into the molecular regulation of barley plant architecture and inflorescence development.
Collapse
Affiliation(s)
- Dandan D. Qin
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Rui Liu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Fuchao Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Guoqing Dong
- School of Life Science and Technology, Wuhan Polytechnic University, Hubei, Wuhan, China
| | - Qing Xu
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Yanchun Peng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Le Xu
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Hongna Cheng
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Ministry of Agriculture and Rural Affairs (MARA) Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River (Co-construction by Ministry and Province), College of Agriculture, Yangtze University, Hubei, Jingzhou, China
| | - Ganggang Guo
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jing Dong
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Hubei, Wuhan, China
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Hubei, Wuhan, China
- Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Hubei, Wuhan, China
| | - Chengdao Li
- Western Crop Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| |
Collapse
|
8
|
Sakuma S, Koppolu R. Form follows function in Triticeae inflorescences. BREEDING SCIENCE 2023; 73:46-56. [PMID: 37168815 PMCID: PMC10165339 DOI: 10.1270/jsbbs.22085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 12/21/2022] [Indexed: 05/13/2023]
Abstract
Grass inflorescences produce grains, which are directly connected to our food. In grass crops, yields are mainly affected by grain number and weight; thus, understanding inflorescence shape is crucially important for cereal crop breeding. In the last two decades, several key genes controlling inflorescence shape have been elucidated, thanks to the availability of rich genetic resources and powerful genomics tools. In this review, we focus on the inflorescence architecture of Triticeae species, including the major cereal crops wheat and barley. We summarize recent advances in our understanding of the genetic basis of spike branching, and spikelet and floret development in the Triticeae. Considering our changing climate and its impacts on cereal crop yields, we also discuss the future orientation of research.
Collapse
Affiliation(s)
- Shun Sakuma
- Faculty of Agriculture, Tottori University, Tottori 680-8553, Japan
- Corresponding authors (e-mail: and )
| | - Ravi Koppolu
- Research Group Plant Architecture, Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Corrensstr. 3, OT Gatersleben, 06466 Seeland, Germany
- Corresponding authors (e-mail: and )
| |
Collapse
|
9
|
Liu T, Liu X, He J, Dong K, Pan W, Zhang L, Ren R, Zhang Z, Yang T. Identification and fine-mapping of a major QTL ( PH1.1) conferring plant height in broomcorn millet ( Panicum miliaceum). FRONTIERS IN PLANT SCIENCE 2022; 13:1010057. [PMID: 36304390 PMCID: PMC9593001 DOI: 10.3389/fpls.2022.1010057] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
The plant height of broomcorn millet (Panicum miliaceum) is a significant agronomic trait that is closely related to its plant architecture, lodging resistance, and final yield. However, the genes underlying the regulation of plant height in broomcorn millet are rarely reported. Here, an F2 population derived from a cross between a normal variety, "Longmi12," and a dwarf mutant, "Zhang778," was constructed. Genetic analysis for the F2 and F2:3 populations revealed that the plant height was controlled by more than one locus. A major quantitative trait locus (QTL), PH1.1, was preliminarily identified in chromosome 1 using bulked segregant analysis sequencing (BSA-seq). PH1.1 was fine-mapped to a 109-kb genomic region with 15 genes using a high-density map. Among them, longmi011482 and longmi011489, containing nonsynonymous variations in their coding regions, and longmi011496, covering multiple insertion/deletion sequences in the promoter regions, may be possible candidate genes for PH1.1. Three diagnostic markers closely linked to PH1.1 were developed to validate the PH1.1 region in broomcorn millet germplasm. These findings laid the foundation for further understanding of the molecular mechanism of plant height regulation in broomcorn millet and are also beneficial to the breeding program for developing new varieties with optimal height.
Collapse
Affiliation(s)
- Tianpeng Liu
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Xueying Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Jihong He
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Kongjun Dong
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wanxiang Pan
- College of Life Science and Technology, Gansu Agricultural University, Lanzhou, China
| | - Lei Zhang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Ruiyu Ren
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Zhengsheng Zhang
- College of Agronomy and Biotechnology, Southwest University, Chongqing, China
| | - Tianyu Yang
- Crop Research Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|