1
|
Qian L, Yang L, Liu X, Wang T, Kang L, Chen H, Lu Y, Zhang Y, Yang S, You L, Yao M, Xiang X, Cui K, Guo Y, Yang B, Yan M, Xia S, Meng J, Lin T, Mason AS, Snowdon RJ, Liu Z. Natural variations in TT8 and its neighboring STK confer yellow seed with elevated oil content in Brassica juncea. Proc Natl Acad Sci U S A 2025; 122:e2417264122. [PMID: 39883846 PMCID: PMC11804580 DOI: 10.1073/pnas.2417264122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/18/2024] [Indexed: 02/01/2025] Open
Abstract
Seed color is a critical quality trait in numerous plant species. In oilseed Brassica crops, including rapeseed and mustard, yellow seeds are distinguished by their significantly higher oil content and faster germination rates compared to black or brown counterparts. Despite the agronomic significance of the yellow seeds being a prime breeding target, the mechanisms underlying elevated oil content remain obscure. In this study, we assembled the first telomere-to-telomere (T2T) genome of B. juncea and further investigated the genetic regulation, molecular mechanism, and the evolutionary history of yellow seeds in B. juncea. Through an analysis of allelic variation in the TRANSPARENT TESTA 8 (TT8) genes across 1,002 worldwide B. juncea accessions, we traced the single origin of yellow seeds to approximately 2,300 y ago in Southwestern China. Furthermore, we discovered the MADS-box gene SEEDSTICK (STK) coevolved with TT8, and they coordinately regulated seed size, oil accumulation, and seed coat proportion in B. juncea. These findings open broad avenues for targeted breeding of yellow-seeded Brassica crops with elevated oil content.
Collapse
Affiliation(s)
- Lunwen Qian
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Liu Yang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Xianjun Liu
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
| | - Tianyi Wang
- Smartgenomics Technology Institute, Tianjin301700, China
| | - Lei Kang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Yin Lu
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Yukun Zhang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Shujie Yang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Min Yao
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Xingru Xiang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| | - Kan Cui
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha410128, China
| | - Ying Guo
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha410128, China
| | - Bin Yang
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
| | - Mingli Yan
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
| | - Shitou Xia
- Hunan Provincial Key Laboratory of Phytohormones and Growth Development, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha410128, China
| | - Jinling Meng
- National Key Laboratory of Crop Genetic Improvement, Key Laboratory of Rapeseed Genetic Improvement, Ministry of Agriculture China, Huazhong Agricultural University, Wuhan430072, China
| | - Tao Lin
- College of Horticulture, China Agricultural University, Beijing100193, China
| | | | - Rod J. Snowdon
- Department of Plant Breeding, Justus Liebig University Giessen, Giessen35392, Germany
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha410128, China
- Molecular Rapeseed Breeding Team, Yuelushan Laboratory, Changsha410128, China
| |
Collapse
|
2
|
Li H, Wu M, Chao H, Yin Y, Xia Y, Cheng X, Chen K, Yan S, Wang X, Xiong Y, He J, Fan S, Ding Y, Zhang L, Jia H, Zhang C, Li M. A rare dominant allele DYSOC1 determines seed coat color and improves seed oil content in Brassica napus. SCIENCE ADVANCES 2025; 11:eads7620. [PMID: 39752491 PMCID: PMC11698099 DOI: 10.1126/sciadv.ads7620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/27/2024] [Indexed: 01/06/2025]
Abstract
Yellow seed coat color (SCC) is a valuable trait in Brassica napus, which is significantly correlated to high seed oil content (SOC) and low seed lignocellulose content (SLC). However, no dominant yellow SCC genes were identified in B. napus. In this study, a dominant yellow SCC B. napus N53-2 was verified, and then 58,981 eQTLs and 25 trans-eQTL hotspots were identified in a double haploid population derived from N53-2 and black SCC material Ken-C8. A rare dominant allele DYSOC1 (dominant gene of yellow seed coat color and improved seed oil content 1) was subsequently cloned in a trans-eQTL hotspot that colocated with SCC, SOC, and SLC QTL hotspot on ChrA09 through QTL fine mapping and multi-omics analysis. Transgenic experiments revealed that the expression of DYSOC1 produced yellow SCC seeds with significantly increased SOC and decreased SLC. Our result provides a rare dominant yellow SCC allele in B. napus, which has excellent potential for yellow SCC and high SOC rapeseed breeding.
Collapse
Affiliation(s)
- Huaixin Li
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingli Wu
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongbo Chao
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Yongtai Yin
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, Singapore 117604, Singapore
| | - Yutian Xia
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Cheng
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Kang Chen
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuxiang Yan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China
| | - Yiyi Xiong
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianjie He
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shipeng Fan
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiran Ding
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Libin Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
- Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Haibo Jia
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chunyu Zhang
- National Key Lab of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Maoteng Li
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
3
|
Manikandan A, Muthusamy S, Wang ES, Ivarson E, Manickam S, Sivakami R, Narayanan MB, Zhu LH, Rajasekaran R, Kanagarajan S. Breeding and biotechnology approaches to enhance the nutritional quality of rapeseed byproducts for sustainable alternative protein sources- a critical review. FRONTIERS IN PLANT SCIENCE 2024; 15:1468675. [PMID: 39588088 PMCID: PMC11586226 DOI: 10.3389/fpls.2024.1468675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 09/30/2024] [Indexed: 11/27/2024]
Abstract
Global protein consumption is increasing exponentially, which requires efficient identification of potential, healthy, and simple protein sources to fulfil the demands. The existing sources of animal proteins are high in fat and low in fiber composition, which might cause serious health risks when consumed regularly. Moreover, protein production from animal sources can negatively affect the environment, as it often requires more energy and natural resources and contributes to greenhouse gas emissions. Thus, finding alternative plant-based protein sources becomes indispensable. Rapeseed is an important oilseed crop and the world's third leading oil source. Rapeseed byproducts, such as seed cakes or meals, are considered the best alternative protein source after soybean owing to their promising protein profile (30%-60% crude protein) to supplement dietary requirements. After oil extraction, these rapeseed byproducts can be utilized as food for human consumption and animal feed. However, anti-nutritional factors (ANFs) like glucosinolates, phytic acid, tannins, and sinapines make them unsuitable for direct consumption. Techniques like microbial fermentation, advanced breeding, and genome editing can improve protein quality, reduce ANFs in rapeseed byproducts, and facilitate their usage in the food and feed industry. This review summarizes these approaches and offers the best bio-nutrition breakthroughs to develop nutrient-rich rapeseed byproducts as plant-based protein sources.
Collapse
Affiliation(s)
- Anandhavalli Manikandan
- Department of Genetics and Plant Breeding, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Saraladevi Muthusamy
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Eu Sheng Wang
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Emelie Ivarson
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Sudha Manickam
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Rajeswari Sivakami
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Manikanda Boopathi Narayanan
- Department of Plant Biotechnology, Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Li-Hua Zhu
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| | - Ravikesavan Rajasekaran
- Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India
| | - Selvaraju Kanagarajan
- Department of Plant Breeding, Swedish University of Agricultural Sciences, Lomma, Sweden
| |
Collapse
|
4
|
Weselake RJ, Fell DA, Wang X, Scofield S, Chen G, Harwood JL. Increasing oil content in Brassica oilseed species. Prog Lipid Res 2024; 96:101306. [PMID: 39566857 DOI: 10.1016/j.plipres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/22/2024]
Abstract
Brassica oilseed species are the third most important in the world, providing approximately 15 % of the total vegetable oils. Three species (Brassica rapa, B. juncea, B. napus) dominate with B. napus being the most common in Canada, China and Europe. Originally, B. napus was a crop producing seed with high erucic acid content, which still persists today, to some extent, and is used for industrial purposes. In contrast, cultivars which produce seed used for food and feed are low erucic acid cultivars which also have reduced glucosinolate content. Because of the limit to agricultural land, recent efforts have been made to increase productivity of oil crops, including Brassica oilseed species. In this article, we have detailed research in this regard. We have covered modern genetic, genomic and metabolic control analysis approaches to identifying potential targets for the manipulation of seed oil content. Details of work on the use of quantitative trait loci, genome-wide association and comparative functional genomics to highlight factors influencing seed oil accumulation are given and functional proteins which can affect this process are discussed. In summary, a wide variety of inputs are proving useful for the improvement of Brassica oilseed species, as major sources of global vegetable oil.
Collapse
Affiliation(s)
- Randall J Weselake
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - David A Fell
- Department of Biological and Molecular Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Xiaoyu Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - Simon Scofield
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta T6H 2P5, Canada
| | - John L Harwood
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK.
| |
Collapse
|
5
|
Zhang W, Higgins EE, Robinson SJ, Clarke WE, Boyle K, Sharpe AG, Fobert PR, Parkin IAP. A systems genomics and genetics approach to identify the genetic regulatory network for lignin content in Brassica napus seeds. FRONTIERS IN PLANT SCIENCE 2024; 15:1393621. [PMID: 38903439 PMCID: PMC11188405 DOI: 10.3389/fpls.2024.1393621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/29/2024] [Indexed: 06/22/2024]
Abstract
Seed quality traits of oilseed rape, Brassica napus (B. napus), exhibit quantitative inheritance determined by its genetic makeup and the environment via the mediation of a complex genetic architecture of hundreds to thousands of genes. Thus, instead of single gene analysis, network-based systems genomics and genetics approaches that combine genotype, phenotype, and molecular phenotypes offer a promising alternative to uncover this complex genetic architecture. In the current study, systems genetics approaches were used to explore the genetic regulation of lignin traits in B. napus seeds. Four QTL (qLignin_A09_1, qLignin_A09_2, qLignin_A09_3, and qLignin_C08) distributed on two chromosomes were identified for lignin content. The qLignin_A09_2 and qLignin_C08 loci were homologous QTL from the A and C subgenomes, respectively. Genome-wide gene regulatory network analysis identified eighty-three subnetworks (or modules); and three modules with 910 genes in total, were associated with lignin content, which was confirmed by network QTL analysis. eQTL (expression quantitative trait loci) analysis revealed four cis-eQTL genes including lignin and flavonoid pathway genes, cinnamoyl-CoA-reductase (CCR1), and TRANSPARENT TESTA genes TT4, TT6, TT8, as causal genes. The findings validated the power of systems genetics to identify causal regulatory networks and genes underlying complex traits. Moreover, this information may enable the research community to explore new breeding strategies, such as network selection or gene engineering, to rewire networks to develop climate resilience crops with better seed quality.
Collapse
Affiliation(s)
- Wentao Zhang
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, Canada
| | - Erin E. Higgins
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Stephen J. Robinson
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Wayne E. Clarke
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| | - Kerry Boyle
- Aquatic and Crop Resource Development, National Research Council of Canada, Saskatoon, SK, Canada
| | - Andrew G. Sharpe
- Global Institute for Food Security (GIFS), University of Saskatchewan, Saskatoon, SK, Canada
| | - Pierre R. Fobert
- Aquatic and Crop Resource Development, National Research Council of Canada, Ottawa, ON, Canada
| | - Isobel A. P. Parkin
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Ding Y, Hou D, Yin Y, Chen K, He J, Yan S, Li H, Xiong Y, Zhou W, Li M. Genetic dissection of Brassica napus seed vigor after aging. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:141. [PMID: 38789698 DOI: 10.1007/s00122-024-04648-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
KEY MESSAGE Stable and novel QTLs that affect seed vigor under different storage durations were discovered, and BnaOLE4, located in the interval of cqSW-C2-3, increased seed vigor after aging. Seed vigor is an important trait in crop breeding; however, the underlying molecular regulatory mechanisms governing this trait in rapeseed remain largely unknown. In the present study, vigor-related traits were analyzed in seeds from a doubled haploid (DH) rapeseed (Brassica napus) population grown in 2 different environments using seeds stored for 7, 5, and 3 years under natural storage conditions. A total of 229 quantitative trait loci (QTLs) were identified and were found to explain 3.78%-17.22% of the phenotypic variance for seed vigor-related traits after aging. We further demonstrated that seed vigor-related traits were positively correlated with oil content (OC) but negatively correlated with unsaturated fatty acids (FAs). Some pleiotropic QTLs that collectively regulate OC, FAs, and seed vigor, such as uq.A8, uq.A3-2, uq.A9-2, and uq.C3-1, were identified. The transcriptomic results from extreme pools of DH lines with distinct seed vigor phenotypes during accelerated aging revealed that various biological pathways and metabolic processes (such as glutathione metabolism and reactive oxygen species) were involved in seed vigor. Through integration of QTL analysis and RNA-Seq, a regulatory network for the control of seed vigor was constructed. Importantly, a candidate (BnaOLE4) from cqSW-C2-3 was selected for functional analysis, and transgenic lines overexpressing BnaOLE4 showed increased seed vigor after artificial aging. Collectively, these results provide novel information on QTL and potential candidate genes for molecular breeding for improved seed storability.
Collapse
Affiliation(s)
- Yiran Ding
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Dalin Hou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yongtai Yin
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Kang Chen
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Jianjie He
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Shuxiang Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Huaixin Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Yiyi Xiong
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Weixian Zhou
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China
| | - Maoteng Li
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Wuhan, 430074, China.
| |
Collapse
|
7
|
Zhao W, Li X, Wen J, Li Q, Bian S, Ren Y. BrTTG1 regulates seed coat proanthocyanidin formation through a direct interaction with structural gene promoters of flavonoid pathway and glutathione S-transferases in Brassica rapa L. FRONTIERS IN PLANT SCIENCE 2024; 15:1372477. [PMID: 38638349 PMCID: PMC11024264 DOI: 10.3389/fpls.2024.1372477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/20/2024]
Abstract
Introduction Seed coat color is a significant agronomic trait in horticultural crops such as Brassica rapa which is characterized by brown or yellow seed coat coloration. Previous Brassica rapa studies have shown that BrTTG1 is responsible for seed coat proanthocyanidin formation, which is dependent on the MYB-bHLH-WD40 complex, whereas some studies have reported that TRANSPARENT TESTA GLABRA 1 (TTG1) directly interacts with the structural gene promoters of the flavonoid pathway. Methods Herein, the brown-seeded inbred B147 and ttg1 yellow-seeded inbred B80 mutants were used as plant materials for gene expression level analysis, gene promoter clone and transient overexpression. Results The analysis identified eleven structural genes involved in the flavonoid biosynthesis pathway, which are potentially responsible for BrTTG1- dependent seed coat proanthocyanidin formation. The promoters of these genes were cloned and cis-acting elements were identified. Yeast one-hybrid and dual-luciferase assays confirmed that BrTTG1 directly and independently interacted with proCHS-Bra008792, proDFR-Bra027457, proTT12-Bra003361, proTT19-Bra008570, proTT19-Bra023602 and proAHA10-Bra016610. A TTG1-binding motif (RTWWGTRGM) was also identified. Overexpression of TTG1 in the yellow-seed B. rapa inbred induced proanthocyanidin accumulation by increasing the expression levels of related genes. Discussion Our study unveiled, for the first time, the direct interaction between TTG1 and the promoters of the flavonoid biosynthesis pathway structural genes and glutathione S-transferases in Brassica rapa. Additionally, we have identified a novel TTG1-binding motif, providing a basis for further exploration into the function of TTG1 and the accumulation of proanthocyanidins in seed coats.
Collapse
Affiliation(s)
- Wenju Zhao
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Xiaojuan Li
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Junqin Wen
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| | - Quanhui Li
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| | - Shuanling Bian
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
| | - Yanjing Ren
- Qinghai University, Academy of Agriculture and Forestry Sciences of Qinghai Province, Laboratory of Research and Utilization of Germplasm Resources in Qinghai-Tibet Plateau, Qinghai, Xining, China
- Key Laboratory of Germplasm Resources Protection and Genetic Improvement of the Qinghai-Tibet Plateau in Ministry of Agriculture and Rural, Qinghai, Xining, China
| |
Collapse
|
8
|
Huai D, Zhi C, Wu J, Xue X, Hu M, Zhang J, Liu N, Huang L, Yan L, Chen Y, Wang X, Wang Q, Kang Y, Wang Z, Jiang H, Liao B, Lei Y. Unveiling the molecular regulatory mechanisms underlying sucrose accumulation and oil reduction in peanut kernels through genetic mapping and transcriptome analysis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 208:108448. [PMID: 38422578 DOI: 10.1016/j.plaphy.2024.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/04/2024] [Accepted: 02/18/2024] [Indexed: 03/02/2024]
Abstract
Sucrose content is a key factor for the flavor of edible peanut, which determines the sweet taste of fresh peanut and also attribute to pleasant flavor of roasted peanut. To explore the genetic mechanism of the sucrose content in peanut, an F2 population was created by crossing the sweet cultivar Zhonghuatian 1 (ZHT1) with Nanyangbaipi (NYBP). A genomic region spanning 28.26 kb on chromosome A06 was identified for the sucrose content through genetic mapping, elucidating 47.5% phenotypic variance explained. As the sucrose content had a significantly negative correlation with the oil content, this region was also found to be related to the oil content explaining 37.2% of phenotype variation. In this region, Arahy.42CAD1 was characterized as the most likely candidate gene through a comprehensive analysis. The nuclear localization of Arahy.42CAD1 suggests its potential involvement in the regulation of gene expression for sucrose and oil contents in peanut. Transcriptome analysis of the developing seeds in both parents revealed that genes involved in glycolysis and triacylglycerol biosynthesis pathways were not significantly down-regulated in ZHT1, indicating that the sucrose accumulation was not attributed to the suppression of triacylglycerol biosynthesis. Based on the WGCNA analysis, Arahy.42CAD1 was co-expressed with the genes involved in vesicle transport and oil body assembly, suggesting that the sucrose accumulation may be caused by disruptions in TAG transportation or storage mechanisms. These findings offer new insights into the molecular mechanisms governing sucrose accumulation in peanut, and also provide a potential gene target for enhancing peanut flavor.
Collapse
Affiliation(s)
- Dongxin Huai
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Chenyang Zhi
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jie Wu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xiaomeng Xue
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Meiling Hu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Jianan Zhang
- Molbreeding Biotechnology Co., Ltd, Shijiazhuang, China
| | - Nian Liu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Li Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Liying Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yuning Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xin Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Qianqian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Yanping Kang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Zhihui Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Huifang Jiang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Boshou Liao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| | - Yong Lei
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China.
| |
Collapse
|
9
|
Li H, Yu K, Zhang Z, Yu Y, Wan J, He H, Fan C. Targeted mutagenesis of flavonoid biosynthesis pathway genes reveals functional divergence in seed coat colour, oil content and fatty acid composition in Brassica napus L. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:445-459. [PMID: 37856327 PMCID: PMC10826991 DOI: 10.1111/pbi.14197] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/08/2023] [Accepted: 09/23/2023] [Indexed: 10/21/2023]
Abstract
Yellow-seed is widely accepted as a good-quality trait in Brassica crops. Previous studies have shown that the flavonoid biosynthesis pathway is essential for the development of seed colour, but its function in Brassica napus, an important oil crop, is poorly understood. To systematically explore the gene functions of the flavonoid biosynthesis pathway in rapeseed, several representative TRANSPARENT TESTA (TT) genes, including three structural genes (BnaTT7, BnaTT18, BnaTT10), two regulatory genes (BnaTT1, BnaTT2) and a transporter (BnaTT12), were selected for targeted mutation by CRISPR/Cas9 in the present study. Seed coat colour, lignin content, seed quality and yield-related traits were investigated in these Bnatt mutants together with Bnatt8 generated previously. These Bnatt mutants produced seeds with an elevated seed oil content and decreased pigment and lignin accumulation in the seed coat without any serious defects in the yield-related traits. In addition, the fatty acid (FA) composition was also altered to different degrees, i.e., decreased oleic acid and increased linoleic acid and α-linolenic acid, in all Bnatt mutants except Bnatt18. Furthermore, gene expression analysis revealed that most of BnaTT mutations resulted in the down-regulation of key genes related to flavonoid and lignin synthesis, and the up-regulation of key genes related to lipid synthesis and oil body formation, which may contribute to the phenotype. Collectively, our study generated valuable resources for breeding programs, and more importantly demonstrated the functional divergence and overlap of flavonoid biosynthesis pathway genes in seed coat colour, oil content and FA composition of rapeseed.
Collapse
Affiliation(s)
- Huailin Li
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Zilu Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Yalun Yu
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Jiakai Wan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Hanzi He
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubeiChina
- Hubei Hongshan LaboratoryWuhanHubeiChina
| |
Collapse
|
10
|
Wang Y, Lu H, Liu X, Liu L, Zhang W, Huang Z, Li K, Xu A. Identification of Yellow Seed Color Genes Using Bulked Segregant RNA Sequencing in Brassica juncea L. Int J Mol Sci 2024; 25:1573. [PMID: 38338852 PMCID: PMC10855766 DOI: 10.3390/ijms25031573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
Yellow seed breeding is an effective method to improve oil yield and quality in rapeseed (Brassica napus L.). However, naturally occurring yellow-seeded genotypes have not been identified in B. napus. Mustard (Brassica juncea L.) has some natural, yellow-seeded germplasms, yet the molecular mechanism underlying this trait remains unclear. In this study, a BC9 population derived from the cross of yellow seed mustard "Wuqi" and brown seed mustard "Wugong" was used to analyze the candidate genes controlling the yellow seed color of B. juncea. Subsequently, yellow-seeded (BY) and brown-seeded (BB) bulks were constructed in the BC9 population and subjected to bulked segregant RNA sequencing (BSR-Seq). A total of 511 differentially expressed genes (DEGs) were identified between the brown and yellow seed bulks. Enrichment analysis revealed that these DEGs were involved in the phenylpropanoid biosynthetic process and flavonoid biosynthetic process, including key genes such as 4CL, C4H, LDOX/TT18, PAL1, PAL2, PAL4, TT10, TT12, TT4, TT8, BAN, DFR/TT3, F3H/TT6, TT19, and CHI/TT5. In addition, 111,540 credible single-nucleotide polymorphisms (SNPs) and 86,319 INDELs were obtained and used for quantitative trait locus (QTL) identification. Subsequently, two significant QTLs on chromosome A09, namely, qSCA09-3 and qSCA09-7, were identified by G' analysis, and five DEGs (BjuA09PAL2, BjuA09TT5, BjuA09TT6, BjuA09TT4, BjuA09TT3) involved in the flavonoid pathway were identified as hub genes based on the protein-to-protein network. Among these five genes, only BjuA09PAL2 and BjuA09F3H had SNPs between BY and BB bulks. Interestingly, the majority of SNPs in BjuA09PAL2 were consistent with the SNPs identified between the high-quality assembled B. juncea reference genome "T84-66" (brown-seed) and "AU213" (yellow-seed). Therefore, BjuA09PAL2, which encodes phenylalanine lyase, was considered as the candidate gene associated with yellow seed color of B. juncea. The identification of a novel gene associated with the yellow seed coloration of B. juncea through this study may play a significant role in enhancing yellow seed breeding in rapeseed.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Keqi Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| | - Aixia Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
11
|
Zhang L, Liu L, Li H, He J, Chao H, Yan S, Yin Y, Zhao W, Li M. 3D genome structural variations play important roles in regulating seed oil content of Brassica napus. PLANT COMMUNICATIONS 2024; 5:100666. [PMID: 37496273 PMCID: PMC10811347 DOI: 10.1016/j.xplc.2023.100666] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/01/2023] [Accepted: 07/25/2023] [Indexed: 07/28/2023]
Abstract
Dissecting the complex regulatory mechanism of seed oil content (SOC) is one of the main research goals in Brassica napus. Increasing evidence suggests that genome architecture is linked to multiple biological functions. However, the effect of genome architecture on SOC regulation remains unclear. Here, we used high-throughput chromatin conformation capture to characterize differences in the three-dimensional (3D) landscape of genome architecture of seeds from two B. napus lines, N53-2 (with high SOC) and Ken-C8 (with low SOC). Bioinformatics analysis demonstrated that differentially accessible regions and differentially expressed genes between N53-2 and Ken-C8 were preferentially enriched in regions with quantitative trait loci (QTLs)/associated genomic regions (AGRs) for SOC. A multi-omics analysis demonstrated that expression of SOC-related genes was tightly correlated with genome structural variations in QTLs/AGRs of B. napus. The candidate gene BnaA09g48250D, which showed structural variation in a QTL/AGR on chrA09, was identified by fine-mapping of a KN double-haploid population derived from hybridization of N53-2 and Ken-C8. Overexpression and knockout of BnaA09g48250D led to significant increases and decreases in SOC, respectively, in the transgenic lines. Taken together, our results reveal the 3D genome architecture of B. napus seeds and the roles of genome structural variations in SOC regulation, enriching our understanding of the molecular mechanisms of SOC regulation from the perspective of spatial chromatin structure.
Collapse
Affiliation(s)
- Libin Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Lin Liu
- Wuhan Frasergen Bioinformatics Co., Ltd., Wuhan 430075, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Hongbo Chao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuxiang Yan
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Yontai Yin
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Weiguo Zhao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Bioinformatics and Molecular Imaging Key Laboratory, Wuhan 430074, China.
| |
Collapse
|
12
|
Cheng H, Cai S, Hao M, Cai Y, Wen Y, Huang W, Mei D, Hu Q. Targeted mutagenesis of BnTTG1 homologues generated yellow-seeded rapeseed with increased oil content and seed germination under abiotic stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108302. [PMID: 38171134 DOI: 10.1016/j.plaphy.2023.108302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/24/2023] [Accepted: 12/21/2023] [Indexed: 01/05/2024]
Abstract
Yellow seed is one desirable trait with great potential to improve seed oil quality and yield. The present study surveys the redundant role of BnTTG1 genes in the proanthocyanidins (PA) biosynthesis, oil content and abiotic stress resistance. Stable yellow seed mutants were generated after mutating BnTTG1 by CRISPR/Cas9 genome editing system. Yellow seed phenotype could be obtained only when both functional homologues of BnTTG1 were simultaneously knocked out. Homozygous mutants of BnTTG1 homologues showed decreased thickness and PA accumulation in seed coat. Transcriptome and qRT-PCR analysis indicated that BnTTG1 mutation inhibited the expression of genes involved in phenylpropanoid and flavonoid biosynthetic pathways. Increased seed oil content and alteration of fatty acid (FA) composition were observed in homozygous mutants of BnTTG1 with enriched expression of genes involved in FA biosynthesis pathway. In addition, target mutation of BnTTG1 accelerated seed germination rate under salt and cold stresses. Enhanced seed germination capacity in BnTTG1 mutants was correlated with the change of expression level of ABA responsive genes. Overall, this study elucidated the redundant role of BnTTG1 in regulating seed coat color and established an efficient approach for generating yellow-seeded oilseed rape genetic resources with increase oil content, modified FA composition and resistance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Hongtao Cheng
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Shengli Cai
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Mengyu Hao
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Yating Cai
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Yunfei Wen
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Wei Huang
- Crop Research Institute, Hunan Academy of Agricultural Sciences, Changsha, 410125, China.
| | - Desheng Mei
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| | - Qiong Hu
- Oil Crops Research Institute of Chinese Academy of Agricultural Sciences/Key Laboratory for Biological Sciences and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China; Hubei Hongshan Laboratory, Wuhan, China.
| |
Collapse
|
13
|
Li X, Yell V, Li X. Two Arabidopsis promoters drive seed-coat specific gene expression in pennycress and camelina. PLANT METHODS 2023; 19:140. [PMID: 38053155 DOI: 10.1186/s13007-023-01114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 11/20/2023] [Indexed: 12/07/2023]
Abstract
BACKGROUND Pennycress and camelina are two important novel biofuel oilseed crop species. Their seeds contain high content of oil that can be easily converted into biodiesel or jet fuel, while the left-over materials are usually made into press cake meals for feeding livestock. Therefore, the ability to manipulate the seed coat encapsulating the oil- and protein-rich embryos is critical for improving seed oil production and press cake quality. RESULTS Here, we tested the promoter activity of two Arabidopsis seed coat genes, AtTT10 and AtDP1, in pennycress and camelina by using eGFP and GUS reporters. Overall, both promoters show high levels of activities in the seed coat in these two biofuel crops, with very low or no expression in other tissues. Importantly, AtTT10 promoter activity in camelina shows differences from that in Arabidopsis, which highlights that the behavior of an exogenous promoter in closely related species cannot be assumed the same and still requires experimental determination. CONCLUSION Our work demonstrates that AtTT10 and AtDP1 promoters are suitable for driving gene expression in the outer integument of the seed coat in pennycress and camelina.
Collapse
Affiliation(s)
- Xin Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Victoria Yell
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA
| | - Xu Li
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
- Plants for Human Health Institute, North Carolina State University, Kannapolis, NC, 28081, USA.
| |
Collapse
|
14
|
Zhao Q, Wu J, Lan L, Shahid M, Qasim MU, Yu K, Zhang C, Fan C, Zhou Y. Fine mapping and candidate gene analysis of a major QTL for oil content in the seed of Brassica napus. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:256. [PMID: 38010528 DOI: 10.1007/s00122-023-04501-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/03/2023] [Indexed: 11/29/2023]
Abstract
KEY MESSAGE By integrating QTL fine mapping and transcriptomics, a candidate gene responsible for oil content in rapeseed was identified. The gene is anticipated to primarily function in photosynthesis and photosystem metabolism pathways. Brassica napus is one of the most important oil crops in the world, and enhancing seed oil content is an important goal in its genetic improvement. However, the underlying genetic basis for the important trait remains poorly understood in this crop. We previously identified a major locus, OILA5 responsible for seed oil content on chromosome A5 through genome-wide association study. To better understand the genetics of the QTL, we performed fine mapping of OILA5 with a double haploid population and a BC3F2 segregation population consisting of 6227 individuals. We narrowed down the QTL to an approximate 43 kb region with twelve annotated genes, flanked by markers ZDM389 and ZDM337. To unveil the potential candidate gene responsible for OILA5, we integrated fine mapping data with transcriptome profiling using high and low oil content near-isogenic lines. Among the candidate genes, BnaA05G0439400ZS was identified with high expression levels in both seed and silique tissues. This gene exhibited homology with AT3G09840 in Arabidopsis that was annotated as cell division cycle 48. We designed a site-specific marker based on resequencing data and confirmed its effectiveness in both natural and segregating populations. Our comprehensive results provide valuable genetic information not only enhancing our understanding of the genetic control of seed oil content but also novel germplasm for advancing high seed oil content breeding in B. napus and other oil crops.
Collapse
Affiliation(s)
- Qing Zhao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, China.
| | - Lei Lan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Shahid
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Muhammad Uzair Qasim
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Kaidi Yu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chunyu Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Chuchuan Fan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Yongming Zhou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
15
|
Ahmad N, Ibrahim S, Kuang L, Ze T, Wang X, Wang H, Dun X. Integrating genome-wide association study with transcriptomic data to predict candidate genes influencing Brassica napus root and biomass-related traits under low phosphorus conditions. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:149. [PMID: 37789456 PMCID: PMC10548562 DOI: 10.1186/s13068-023-02403-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 09/21/2023] [Indexed: 10/05/2023]
Abstract
BACKGROUND Rapeseed (Brassica napus L.) is an essential source of edible oil and livestock feed, as well as a promising source of biofuel. Breeding crops with an ideal root system architecture (RSA) for high phosphorus use efficiency (PUE) is an effective way to reduce the use of phosphate fertilizers. However, the genetic mechanisms that underpin PUE in rapeseed remain elusive. To address this, we conducted a genome-wide association study (GWAS) in 327 rapeseed accessions to elucidate the genetic variability of 13 root and biomass traits under low phosphorus (LP; 0.01 mM P +). Furthermore, RNA-sequencing was performed in root among high/low phosphorus efficient groups (HP1/LP1) and high/low phosphorus stress tolerance groups (HP2/LP2) at two-time points under control and P-stress conditions. RESULTS Significant variations were observed in all measured traits, with heritabilities ranging from 0.47 to 0.72, and significant correlations were found between most of the traits. There were 39 significant trait-SNP associations and 31 suggestive associations, which integrated into 11 valid quantitative trait loci (QTL) clusters, explaining 4.24-24.43% of the phenotypic variance observed. In total, RNA-seq identified 692, 1076, 648, and 934 differentially expressed genes (DEGs) specific to HP1/LP1 and HP2/LP2 under P-stress and control conditions, respectively, while 761 and 860 DEGs common for HP1/LP1 and HP2/LP2 under both conditions. An integrated approach of GWAS, weighted co-expression network, and differential expression analysis identified 12 genes associated with root growth and development under LP stress. In this study, six genes (BnaA04g23490D, BnaA09g08440D, BnaA09g04320D, BnaA09g04350D, BnaA09g04930D, BnaA09g09290D) that showed differential expression were identified as promising candidate genes for the target traits. CONCLUSION 11 QTL clusters and 12 candidate genes associated with root and development under LP stress were identified in this study. Our study's phenotypic and genetic information may be exploited for genetic improvement of root traits to increase PUE in rapeseed.
Collapse
Affiliation(s)
- Nazir Ahmad
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Sani Ibrahim
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Department of Plant Biology, Faculty of Life Sciences, College of Physical and Pharmaceutical Sciences, Bayero University, P.M.B. 3011, Kano, 700006, Nigeria
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Tian Ze
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China
- Hubei Hongshan Laboratory, Wuhan, 430062, China
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
- Hubei Hongshan Laboratory, Wuhan, 430062, China.
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Wuhan, 430062, China.
| |
Collapse
|
16
|
Banerjee S, Mukherjee A, Kundu A. The current scenario and future perspectives of transgenic oilseed mustard by CRISPR-Cas9. Mol Biol Rep 2023; 50:7705-7728. [PMID: 37432544 DOI: 10.1007/s11033-023-08660-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 06/30/2023] [Indexed: 07/12/2023]
Abstract
PURPOSE Production of a designer crop having added attributes is the primary goal of all plant biotechnologists. Specifically, development of a crop with a simple biotechnological approach and at a rapid pace is most desirable. Genetic engineering enables us to displace genes among species. The newly incorporated foreign gene(s) in the host genome can create a new trait(s) by regulating the genotypes and/or phenotypes. The advent of the CRISPR-Cas9 tools has enabled the modification of a plant genome easily by introducing mutation or replacing genomic fragment. Oilseed mustard varieties (e.g., Brassica juncea, Brassica nigra, Brassica napus, and Brassica carinata) are one such plants, which have been transformed with different genes isolated from the wide range of species. Current reports proved that the yield and value of oilseed mustard has been tremendously improved by the introduction of stably inherited new traits such as insect and herbicide resistance. However, the genetic transformation of oilseed mustard remains incompetent due to lack of potential plant transformation systems. To solve numerous complications involved in genetically modified oilseed mustard crop varieties regeneration procedures, scientific research is being conducted to rectify the unwanted complications. Thus, this study provides a broader overview of the present status of new traits introduced in each mentioned varieties of oilseed mustard plant by different genetical engineering tools, especially CRISPR-Cas9, which will be useful to improve the transformation system of oilseed mustard crop plants. METHODS This review presents recent improvements made in oilseed mustard genetic engineering methodologies by using CRISPR-Cas9 tools, present status of new traits introduced in oilseed mustard plant varieties. RESULTS The review highlighted that the transgenic oilseed mustard production is a challenging process and the transgenic varieties of oilseed mustard provide a powerful tool for enhanced mustard yield. Over expression studies and silencing of desired genes provide functional importance of genes involved in mustard growth and development under different biotic and abiotic stress conditions. Thus, it can be expected that in near future CRISPR can contribute enormously in improving the mustard plant's architecture and develop stress resilient oilseed mustard plant species.
Collapse
Affiliation(s)
- Sangeeta Banerjee
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India
| | - Ananya Mukherjee
- Division of Plant Biology, Bose Institute, EN 80, Sector V, Bidhan Nagar, Kolkata, WB, 700091, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, EM-4, Sector-V, Saltlake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
17
|
Qu C, Zhu M, Hu R, Niu Y, Chen S, Zhao H, Li C, Wang Z, Yin N, Sun F, Chen Z, Shen S, Shang G, Zhou Y, Yan X, Wei L, Liu L, Yi B, Lian J, Li J, Tang Z, Liang Y, Xu X, Wang R, Yin J, Wan H, Du H, Qian W, Chai Y, Zhou Q, He Y, Zhong S, Qiu X, Yu H, Lam HM, Lu K, Fu F, Li J. Comparative genomic analyses reveal the genetic basis of the yellow-seed trait in Brassica napus. Nat Commun 2023; 14:5194. [PMID: 37626056 PMCID: PMC10457299 DOI: 10.1038/s41467-023-40838-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/12/2023] [Indexed: 08/27/2023] Open
Abstract
Yellow-seed trait is a desirable breeding characteristic of rapeseed (Brassica napus) that could greatly improve seed oil yield and quality. However, the underlying mechanisms controlling this phenotype in B. napus plants are difficult to discern because of their complexity. Here, we assemble high-quality genomes of yellow-seeded (GH06) and black-seeded (ZY821). Combining in-depth fine mapping of a quantitative trait locus (QTL) for seed color with other omics data reveal BnA09MYB47a, encoding an R2R3-MYB-type transcription factor, as the causal gene of a major QTL controlling the yellow-seed trait. Functional studies show that sequence variation of BnA09MYB47a underlies the functional divergence between the yellow- and black-seeded B. napus. The black-seed allele BnA09MYB47aZY821, but not the yellow-seed allele BnA09MYB47aGH06, promotes flavonoid biosynthesis by directly activating the expression of BnTT18. Our discovery suggests a possible approach to breeding B. napus for improved commercial value and facilitates flavonoid biosynthesis studies in Brassica crops.
Collapse
Affiliation(s)
- Cunmin Qu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Meichen Zhu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ran Hu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yongchao Niu
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Si Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huiyan Zhao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Chengxiang Li
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
| | - Zhen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Nengwen Yin
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Fujun Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Zhiyou Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Shulin Shen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Guoxia Shang
- National Key Laboratory Breeding Base for Innovation and Utilization of Plateau Crop Germplasm, Academy of Agricultural and Forestry Sciences, Qinghai University, Xining, Qinghai, China
| | - Yan Zhou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xingying Yan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Lijuan Wei
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Liezhao Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Bin Yi
- National Key Laboratory of Crop Genetic Improvement, National Center of Rapeseed Improvement in Wuhan, Huazhong Agricultural University, Wuhan, China
| | | | - Jiang Li
- Biozeron Shenzhen, Inc, Shenzhen, China
| | - Zhanglin Tang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Ying Liang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Xinfu Xu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Rui Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Jiaming Yin
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Huafang Wan
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Hai Du
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Wei Qian
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yourong Chai
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Qingyuan Zhou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Yajun He
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
| | - Silin Zhong
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Canada
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore, Singapore
| | - Hon-Ming Lam
- The State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Kun Lu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| | - Fuyou Fu
- Agriculture and Agri-Food Canada, Saskatoon Research Centre, 107 Science Place, Saskatoon, Canada.
| | - Jiana Li
- Engineering Research Center of South Upland Agriculture, Ministry of Education, College of Agronomy and Biotechnology, Southwest University, Chongqing, China.
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, Chongqing, China.
- Academy of Agricultural Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
18
|
Liu F, Chen H, Yang L, You L, Ju J, Yang S, Wang X, Liu Z. QTL Mapping and Transcriptome Analysis Reveal Candidate Genes Regulating Seed Color in Brassica napus. Int J Mol Sci 2023; 24:ijms24119262. [PMID: 37298213 DOI: 10.3390/ijms24119262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Yellow seeds are desirable in rapeseed breeding because of their higher oil content and better nutritional quality than black seeds. However, the underlying genes and formation mechanism of yellow seeds remain unclear. Here, a novel yellow-seeded rapeseed line (Huangaizao, HAZ) was crossed with a black-seeded rapeseed line (Zhongshuang11, ZS11) to construct a mapping population of 196 F2 individuals, based on which, a high-density genetic linkage map was constructed. This map, comprising 4174 bin markers, was 1618.33 cM in length and had an average distance of 0.39 cM between its adjacent markers. To assess the seed color of the F2 population, three methods (imaging, spectrophotometry, and visual scoring) were used and a common major quantitative trait locus (QTL) on chromosome A09, explaining 10.91-21.83% of the phenotypic variance, was detected. Another minor QTL, accounting for 6.19-6.69% of the phenotypic variance, was detected on chromosome C03, only by means of imaging and spectrophotometry. Furthermore, a dynamic analysis of the differential expressions between the parental lines showed that flavonoid biosynthesis-related genes were down-regulated in the yellow seed coats at 25 and 35 days after flowering. A coexpression network between the differentially expressed genes identified 17 candidate genes for the QTL intervals, including a flavonoid structure gene, novel4557 (BnaC03.TT4), and two transcription factor genes, namely, BnaA09G0616800ZS (BnaA09.NFYA8) and BnaC03G0060200ZS (BnaC03.NAC083), that may regulate flavonoid biosynthesis. Our study lays a foundation for further identifying the genes responsible for and understanding the regulatory mechanism of yellow seed formation in Brassica napus.
Collapse
Affiliation(s)
- Fangying Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Hao Chen
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liu Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Liang You
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Jianye Ju
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Shujie Yang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Xiaolin Wang
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| | - Zhongsong Liu
- College of Agronomy, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
19
|
Starosta E, Szwarc J, Niemann J, Szewczyk K, Weigt D. Brassica napus Haploid and Double Haploid Production and Its Latest Applications. Curr Issues Mol Biol 2023; 45:4431-4450. [PMID: 37232751 DOI: 10.3390/cimb45050282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/05/2023] [Accepted: 05/16/2023] [Indexed: 05/27/2023] Open
Abstract
Rapeseed is one of the most important oil crops in the world. Increasing demand for oil and limited agronomic capabilities of present-day rapeseed result in the need for rapid development of new, superior cultivars. Double haploid (DH) technology is a fast and convenient approach in plant breeding as well as genetic research. Brassica napus is considered a model species for DH production based on microspore embryogenesis; however, the molecular mechanisms underlying microspore reprogramming are still vague. It is known that morphological changes are accompanied by gene and protein expression patterns, alongside carbohydrate and lipid metabolism. Novel, more efficient methods for DH rapeseed production have been reported. This review covers new findings and advances in Brassica napus DH production as well as the latest reports related to agronomically important traits in molecular studies employing the double haploid rapeseed lines.
Collapse
Affiliation(s)
- Ewa Starosta
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Justyna Szwarc
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Janetta Niemann
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Katarzyna Szewczyk
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| | - Dorota Weigt
- Department of Genetics and Plant Breeding, Poznań University of Life Sciences, Dojazd 11, 60-632 Poznań, Poland
| |
Collapse
|
20
|
Guan M, Shi X, Chen S, Wan Y, Tang Y, Zhao T, Gao L, Sun F, Yin N, Zhao H, Lu K, Li J, Qu C. Comparative transcriptome analysis identifies candidate genes related to seed coat color in rapeseed. FRONTIERS IN PLANT SCIENCE 2023; 14:1154208. [PMID: 36993847 PMCID: PMC10042178 DOI: 10.3389/fpls.2023.1154208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/17/2023] [Indexed: 06/19/2023]
Abstract
Yellow seed coat in rapeseed (Brassica napus) is a desirable trait that can be targeted to improve the quality of this oilseed crop. To better understand the inheritance mechanism of the yellow-seeded trait, we performed transcriptome profiling of developing seeds in yellow- and black-seeded rapeseed with different backgrounds. The differentially expressed genes (DEGs) during seed development showed significant characteristics, these genes were mainly enriched for the Gene Ontology (GO) terms carbohydrate metabolic process, lipid metabolic process, photosynthesis, and embryo development. Moreover, 1206 and 276 DEGs, which represent candidates to be involved in seed coat color, were identified between yellow- and black-seeded rapeseed during the middle and late stages of seed development, respectively. Based on gene annotation, GO enrichment analysis, and protein-protein interaction network analysis, the downregulated DEGs were primarily enriched for the phenylpropanoid and flavonoid biosynthesis pathways. Notably, 25 transcription factors (TFs) involved in regulating flavonoid biosynthesis pathway, including known (e.g., KNAT7, NAC2, TTG2 and STK) and predicted TFs (e.g., C2H2-like, bZIP44, SHP1, and GBF6), were identified using integrated gene regulatory network (iGRN) and weight gene co-expression networks analysis (WGCNA). These candidate TF genes had differential expression profiles between yellow- and black-seeded rapeseed, suggesting they might function in seed color formation by regulating genes in the flavonoid biosynthesis pathway. Thus, our results provide in-depth insights that facilitate the exploration of candidate gene function in seed development. In addition, our data lay the foundation for revealing the roles of genes involved in the yellow-seeded trait in rapeseed.
Collapse
Affiliation(s)
- Mingwei Guan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Xiangtian Shi
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Si Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yuanyuan Wan
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Tian Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Lei Gao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Kun Lu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City and Southwest University, College of Agronomy and Biotechnology and Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Academy of Agricultural Sciences, Southwest University, Chongqing, China
- Affiliation Engineering Research Center of South Upland Agriculture, Ministry of Education, Chongqing, China
| |
Collapse
|
21
|
Zhang Y, Qin Y, Li D, Wang W, Gao X, Hao C, Feng H, Wang Y, Li T. Fine mapping and cloning of a novel BrSCC1 gene for seed coat color in Brassica rapa L. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:11. [PMID: 36658295 DOI: 10.1007/s00122-023-04287-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A novel BrSCC1 gene for seed coat color was fine mapped within a 41.1-kb interval on chromosome A03 in Brassica rapa and functionally validated by ectopic expression analysis. Yellow seed is a valuable breeding trait that can be potentiality applied for improving seed quality and oil productivity in oilseed Brassica crops. However, only few genes for yellow seed have been identified in B. rapa. We previously identified a minor quantitative trait locus (QTL), qSC3.1, for seed coat color on chromosome A03 in B. rapa. In order to isolate the seed coat color gene, a brown-seeded chromosome segment substitution line, CSSL-38, harboring the qSC3.1, was selected and crossed with the yellow-seeded recurrent parent, a rapid cycling inbred line of B. rapa (RcBr), to construct the secondary F2 population. Metabolite identification suggested that seed coat coloration in CSSL-38 was independent of proanthocyanidins (PAs) accumulation. Genetic analysis revealed that yellow seed was controlled by a single recessive gene, Seed Coat Color 1 (BrSCC1). Utilizing bulked segregant analysis (BSA)-seq and secondary F2 and F2:3 recombinants analysis, BrSCC1 was fine mapped within a 41.1-kb interval. By integrating gene expression profiling, genome sequence comparison, metabolite analysis, and functional validation through ectopic expression in Arabidopsis, the BraA03g040800.3C gene was confirmed to be BrSCC1, which positively correlated with the seed coat coloration. Our study provides a novel gene resource for the genetic improvement of yellow seeds in oilseed B. rapa.
Collapse
Affiliation(s)
- Yinghuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yao Qin
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Dongxiao Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Wei Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Xu Gao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Chunming Hao
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
| | - Yugang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China.
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Key Laboratory of Protected Horticulture, Ministry of Education, Shenyang Agricultural University, Shenyang, 110866, People's Republic of China
- Hainan Yazhou Bay Seed Laboratory, Sanya, 572025, People's Republic of China
| |
Collapse
|
22
|
Chen YY, Lu HQ, Jiang KX, Wang YR, Wang YP, Jiang JJ. The Flavonoid Biosynthesis and Regulation in Brassica napus: A Review. Int J Mol Sci 2022; 24:ijms24010357. [PMID: 36613800 PMCID: PMC9820570 DOI: 10.3390/ijms24010357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
Brassica napus is an important crop for edible oil, vegetables, biofuel, and animal food. It is also an ornamental crop for its various petal colors. Flavonoids are a group of secondary metabolites with antioxidant activities and medicinal values, and are important to plant pigmentation, disease resistance, and abiotic stress responses. The yellow seed coat, purple leaf and inflorescence, and colorful petals of B. napus have been bred for improved nutritional value, tourism and city ornamentation. The putative loci and genes regulating flavonoid biosynthesis in B. napus have been identified using germplasms with various seed, petal, leaf, and stem colors, or different flavonoid contents under stress conditions. This review introduces the advances of flavonoid profiling, biosynthesis, and regulation during development and stress responses of B. napus, and hopes to help with the breeding of B. napus with better quality, ornamental value, and stress resistances.
Collapse
Affiliation(s)
- Yuan-Yuan Chen
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Hai-Qin Lu
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Kai-Xuan Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Yi-Ran Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - You-Ping Wang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| | - Jin-Jin Jiang
- Jiangsu Provincial Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
- Correspondence:
| |
Collapse
|
23
|
Cheng X, Liu X, He J, Tang M, Li H, Li M. The genome wide analysis of Tryptophan Aminotransferase Related gene family, and their relationship with related agronomic traits in Brassica napus. FRONTIERS IN PLANT SCIENCE 2022; 13:1098820. [PMID: 36618649 PMCID: PMC9811149 DOI: 10.3389/fpls.2022.1098820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Tryptophan Aminotransferase of Arabidopsis1/Tryptophan Aminotransferase-Related (TAA1/TAR) proteins are the enzymes that involved in auxin biosynthesis pathway. The TAA1/TAR gene family has been systematically characterized in several plants but has not been well reported in Brassica napus. In the present study, a total of 102 BnTAR genes with different number of introns were identified. It was revealed that these genes are distributed unevenly and occurred as clusters on different chromosomes except for A4, A5, A10 and C4 in B. napus. Most of the these BnTAR genes are conserved despite of existing of gene loss and gene gain. In addition, the segmental replication and whole-genome replication events were both play an important role in the BnTAR gene family formation. Expression profiles analysis indicated that the expression of BnTAR gene showed two patterns, part of them were mainly expressed in roots, stems and leaves of vegetative organs, and the others were mainly expressed in flowers and seeds of reproductive organs. Further analysis showed that many of BnTAR genes were located in QTL intervals of oil content or seed weight, for example BnAMI10 was located in cqOC-C5-4 and cqSW-A2-2, it indicated that some of the BnTAR genes might have relationship with these two characteristics. This study provides a multidimensional analysis of the TAA1/TAR gene family and a new insight into its biological function in B. napus.
Collapse
Affiliation(s)
- Xin Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xinmin Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Jianjie He
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Mi Tang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Huaixin Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Maoteng Li
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Key Laboratory of Molecular Biophysics, the Ministry of Education of China, Wuhan, China
| |
Collapse
|
24
|
Patel MK, Chaudhary R, Taak Y, Pardeshi P, Nanjundan J, Vinod KK, Saini N, Vasudev S, Yadava DK. Seed coat colour of Indian mustard [ Brassica juncea (L.) Czern. and Coss.] is associated with Bju.TT8 homologs identifiable by targeted functional markers. FRONTIERS IN PLANT SCIENCE 2022; 13:1012368. [PMID: 36275533 PMCID: PMC9581272 DOI: 10.3389/fpls.2022.1012368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Seed coat colour is an important trait in Indian mustard. Breeding for seed coat colour needs precise knowledge of mode of inheritance and markers linked to it. The present study was focussed on genetics and development of functional markers for seed coat colour. F1s (direct and reciprocal) and F2 populations were developed by crossing two contrasting parents for seed coat colour (DRMRIJ-31, brown seeded and RLC-3, yellow seeded). Phenotypic results have shown that the seed coat colour trait was under the influence of maternal effect and controlled by digenic-duplicate gene action. Further, Bju.TT8 homologs of both parents (DRMRIJ-31 and RLC-3) were cloned and sequenced. Sequencing results of Bju.TT8 homologs revealed that in RLC-3, gene Bju.ATT8 had an insertion of 1279bp in the 7th exon; whereas, gene Bju.BTT8 had an SNP (C→T) in the 7th exon. These two mutations were found to be associated with yellow seed coat colour. Using sequence information, functional markers were developed for both Bju.TT8 homologs, validated on F2 population and were found highly reliable with no recombination between the markers and the phenotype. Further, these markers were subjected to a germplasm assembly of Indian mustard, and their allelic combination for the seed coat colour genes has been elucidated. The comparative genomics of TT8 genes revealed high degree of similarity between and across the Brassica species, and the respective diploid progenitors in tetraploid Brassica species are the possible donors of TT8 homologs. This study will help in the marker-assisted breeding for seed coat colour, and aid in understanding seed coat colour genetics more precisely.
Collapse
Affiliation(s)
- Manoj Kumar Patel
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Rajat Chaudhary
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Yashpal Taak
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Priya Pardeshi
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Joghee Nanjundan
- Indian Council of Agricultural Research (ICAR)- Indian Agricultural Research Institute, Regional Research Station, Wellington, India
| | - K. K. Vinod
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Navinder Saini
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Sujata Vasudev
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - D. K. Yadava
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
25
|
Chen R, Yang C, Gao H, Shi C, Zhang Z, Lu G, Shen X, Tang Y, Li F, Lu Y, Ouyang B. Induced mutation in ELONGATED HYPOCOTYL5 abolishes anthocyanin accumulation in the hypocotyl of pepper. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3455-3468. [PMID: 35963933 DOI: 10.1007/s00122-022-04192-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 07/31/2022] [Indexed: 06/15/2023]
Abstract
The causal gene, CaHY5 of a chemical induced green-hypocotyl mutant was identified by molecular mapping. CaHY5 regulates anthocyanin accumulation by directly binding to the promoter of genes in anthocyanin pathway. Morphological markers at seedling stage are useful indicators for F1 hybrid seeds screening. Pepper is a worldwide vegetable with diverse uses, and F1 hybrids are popular in the pepper industry. Hypocotyl color is a useful marker to identify F1 hybrid seeds. However, most pepper accessions have purple hypocotyl caused by anthocyanin accumulation, while green hypocotyl pepper accessions are rare. In this study, we identified a green hypocotyl mutant (e1898) from a pepper ethylmethanesulfonate (EMS) mutant library. By combining bulked segregant RNA-seq (BSR), genome resequencing and recombinant analysis, it was found that CaHY5 is the causal gene of this mutant. Virus-induced gene silencing (VIGS) of CaHY5 resulted in the decrease of anthocyanin accumulation in pepper hypocotyls. RNA-seq data showed that many genes related to anthocyanin biosynthesis and transport decreased significantly in the mutant. Yeast one-hybrid (Y1H) assays showed that CaHY5 can bind to the promoter of CaF3H, CaF3'5'H, CaDFR, CaANS and CaGST, which are important genes in anthocyanin biosynthesis or transport. Our results indicate that CaHY5 directly regulates anthocyanin biosynthesis and transport, thus governing anthocyanin accumulation in pepper hypocotyl. The mutant and gene identified in this work shall be valuable in the purity control of hybrid pepper seeds.
Collapse
Affiliation(s)
- Rong Chen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Can Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hu Gao
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunmei Shi
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Zhiying Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Guangyu Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xinyan Shen
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yaping Tang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Feng Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yongen Lu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
26
|
Brassica Genus Seeds: A Review on Phytochemical Screening and Pharmacological Properties. Molecules 2022; 27:molecules27186008. [PMID: 36144744 PMCID: PMC9500762 DOI: 10.3390/molecules27186008] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/11/2022] [Accepted: 09/12/2022] [Indexed: 11/23/2022] Open
Abstract
Traditionally, Brassica species are widely used in traditional medicine, human food, and animal feed. Recently, special attention has been dedicated to Brassica seeds as source of health-promoting phytochemicals. This review provides a summary of recent research on the Brassica seed phytochemistry, bioactivity, dietary importance, and toxicity by screening the major online scientific database sources and papers published in recent decades by Elsevier, Springer, and John Wiley. The search was conducted covering the period from January 1964 to July 2022. Phytochemically, polyphenols, glucosinolates, and their degradation products were the predominant secondary metabolites in seeds. Different extracts and their purified constituents from seeds of Brassica species have been found to possess a wide range of biological properties including antioxidant, anticancer, antimicrobial, anti-inflammatory, antidiabetic, and neuroprotective activities. These valuable functional properties of Brassica seeds are related to their richness in active compounds responsible for the prevention and treatment of various chronic diseases such as obesity, diabetes, cancer, and COVID-19. Currently, the potential properties of Brassica seeds and their components are the main focus of research, but their toxicity and health risks must also be accounted for.
Collapse
|