1
|
Singh S, Singh TG. Unlocking the mechanistic potential of Thuja occidentalis for managing diabetic neuropathy and nephropathy. J Tradit Complement Med 2024; 14:581-597. [PMID: 39850604 PMCID: PMC11752125 DOI: 10.1016/j.jtcme.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 01/25/2025] Open
Abstract
Diabetes mellitus and its debilitating microvascular complications, including diabetic neuropathy and nephropathy, represent a growing global health burden. Despite advances in conventional therapies, their suboptimal efficacy and adverse effects necessitate exploring complementary and alternative medicine approaches. Thuja occidentalis, a coniferous tree species native to eastern North America, has gained significant attention for its potential therapeutic applications in various disorders, attributed to its rich phytochemical composition. The present comprehensive review evaluates the therapeutic potential of Thuja occidentalis in managing diabetic neuropathy and nephropathy, with a particular emphasis on elucidating the underlying cellular and molecular mechanisms. The review delves into the active constituents of Thuja occidentalis, such as essential oils, flavonoids, tannins, and proanthocyanidin compounds, which have demonstrated antioxidant, anti-inflammatory, and other beneficial properties in preclinical studies. Importantly, the review provides an in-depth analysis of the intricate signaling pathways modulated by Thuja occidentalis, including NF-κB, PI3K-Akt, JAK-STAT, JNK, MAPK/ERK, and Nrf2 cascades. These pathways are intricately linked to oxidative stress, inflammation, and apoptosis processes, which play pivotal roles in the pathogenesis of diabetic neuropathy and nephropathy. Furthermore, the review critically evaluates the evidence-based toxicological data of Thuja occidentalis as a more effective and comprehensive therapeutic strategy in diabetes complications. Therefore, the current review aims to provide a comprehensive understanding of the therapeutic potential of Thuja occidentalis as an adjunctive treatment strategy for diabetic neuropathy and nephropathy while highlighting the need for further research to optimize its clinical translation.
Collapse
Affiliation(s)
- Shareen Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Bakery HH, Hussein HAA, Ahmed OM, Abuelsaad ASA, Khalil RG. The potential therapeutic role of IL-35 in pathophysiological processes in type 1 diabetes mellitus. Cytokine 2024; 182:156732. [PMID: 39126765 DOI: 10.1016/j.cyto.2024.156732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/01/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
A chronic autoimmune condition known as type 1 diabetes mellitus (T1DM) has characteristics marked by a gradual immune-mediated deterioration of the β-cells that produce insulin and causes overt hyperglycemia. it affects more than 1.2 million kids and teenagers (0-19 years old). In both, the initiation and elimination phases of T1DM, cytokine-mediated immunity is crucial in controlling inflammation. T regulatory (Treg) cells, a crucial anti-inflammatory CD4+ T cell subset, secretes interleukin-35 (IL-35). The IL-35 has immunomodulatory properties by inhibiting pro-inflammatory cells and cytokines, increasing the secretion of interleukin-10 (IL-10) as well as transforming Growth Factor- β (TGF-β), along with stimulating the Treg and B regulatory (Breg) cells. IL-35, it is a possible target for cutting-edge therapies for cancers, inflammatory, infectious, and autoimmune diseases, including TIDM. Unanswered questions surround IL-35's function in T1DM. Increasing data suggests Treg cells play a crucial role in avoiding autoimmune T1DM. Throughout this review, we will explain the biological impacts of IL-35 and highlight the most recently progresses in the roles of IL-35 in treatment of T1DM; the knowledge gathered from these findings might lead to the development of new T1DM treatments. This review demonstrates the potential of IL-35 as an effective autoimmune diabetes inhibitor and points to its potential therapeutic value in T1DM clinical trials.
Collapse
Affiliation(s)
- Heba H Bakery
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt
| | - Heba A A Hussein
- Faculty of Medicine, Egyptian Fellowship of Radiology, Beni-Suef University, Egypt
| | - Osama M Ahmed
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Egypt
| | | | - Rehab G Khalil
- Immunology Division, Faculty of Science, Beni-Suef University, Egypt.
| |
Collapse
|
3
|
Bai X, Xiao K, Yang Z, Zhang Z, Li J, Yan Z, Cao K, Zhang W, Zhang X. Stem cells from human exfoliated deciduous teeth relieve pain via downregulation of c-Jun in a rat model of trigeminal neuralgia. J Oral Rehabil 2021; 49:219-227. [PMID: 34386989 DOI: 10.1111/joor.13243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/10/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stem cells from human exfoliated deciduous teeth (SHED) have excellent immunomodulatory and neuroprotective abilities. It is possible that systemic SHED transplantation could ameliorate trigeminal neuralgia. The phosphorylation of c-Jun contributes to the development of hyperalgesia and allodynia. OBJECTIVE The present study aimed to evaluate whether systemic SHED transplantation could lead to analgesic effects by regulating peripheral c-Jun in the trigeminal ganglia (TG) in a rat model of trigeminal neuralgia. METHODS Chronic constriction injury of the infraorbital nerve (CCI-ION) was performed to establish a rat pain model. SHED were obtained from discarded exfoliated deciduous teeth from children and transplanted by a single infusion through the tail vein. SHED were labelled with the PKH26 red fluorescent cell linker mini kit for tract distribution. The mechanical threshold was determined using von Frey filaments. The mRNA levels of c-Jun in the ipsilateral TG were quantified. The phosphorylation of c-Jun in the ipsilateral TG was assessed by immunohistochemistry and Western blotting. RESULTS PKH26-labelled SHED were distributed to both sides of TG, lung, liver and spleen. Systemic SHED transplantation significantly elevated the mechanical thresholds in CCI-ION rats and blocked the upregulation of c-Jun mRNA levels in the TG caused by nerve ligation. The activation of c-Jun in the TG was blocked by SHED transplantation. CONCLUSIONS These findings demonstrate that systemic SHED administration reverts trigeminal neuralgia via downregulation of c-Jun in the TG.
Collapse
Affiliation(s)
- Xiaofeng Bai
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ke Xiao
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| | - Zhijie Yang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziqi Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Jing Li
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Ziyi Yan
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Keda Cao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Weiqian Zhang
- Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xia Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,Painless Dental Treatment Center, Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
4
|
Redondo A, Riego G, Pol O. The Antinociceptive, Antioxidant and Anti-Inflammatory Effects of 5-Fluoro-2-Oxindole during Inflammatory Pain. Antioxidants (Basel) 2020; 9:antiox9121249. [PMID: 33316895 PMCID: PMC7763029 DOI: 10.3390/antiox9121249] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 11/24/2020] [Accepted: 12/07/2020] [Indexed: 01/14/2023] Open
Abstract
Recent studies demonstrate that 5-fluoro-2-oxindole inhibits neuropathic pain but the antinociceptive actions of this drug and its effects on the plasticity, oxidative and inflammatory changes induced by peripheral inflammation as well as on the effects and expression of µ-opioid receptors (MOR) have not been evaluated. In C57BL/6 male mice with inflammatory pain provoked by the subplantar administration of complete Freund’s adjuvant (CFA), we evaluated: (1) the antinociceptive actions of 5-fluoro-2-oxindole and its reversion with the HO-1 inhibitor, tin protoporphyrin IX (SnPP); (2) the effects of 5-fluoro-2-oxindole in the protein levels of mitogen-activated protein kinase (MAPK), Nrf2, NADPH quinone oxidoreductase1 (NQO1), heme oxygenase 1 (HO-1), oxidative stress marker (4-hydroxy-2-nonenal; 4-HNE), inducible nitric oxide synthase (NOS2), microglial markers (CD11b/c and IBA-1), and MOR in the spinal cord and/or paw of animals with inflammatory pain; (3) the antinociceptive effects of morphine in 5-fluoro-2-oxindole pre-treated animals. Treatment with 5 and 10 mg/kg of 5-fluoro-2-oxindole inhibited the allodynia and hyperalgesia induced by CFA in a different, time-dependent manner. These effects were reversed by SnPP. Treatment with 5-fluoro-2-oxindole increased the expression of NQO1, HO-1 and MOR and inhibited the CFA-induced upregulation of phosphorylated MAPK, 4-HNE, NOS2, CD11b/c and IBA-1 in spinal cords and/or paws. The local effects of morphine were improved with 5-fluoro-2-oxindole. This work reveals that 5-fluoro-2-oxindole inhibits the plasticity, oxidative and inflammatory responses provoked by peripheral inflammation and potentiates the antinociceptive effects of morphine. Thus, treatment with 5-fluoro-2-oxindole alone and/or combined with morphine are two remarkable new procedures for chronic inflammatory pain management.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d’Investigació Biomèdica Sant Pau, Hospital de la Santa Creu i Sant Pau, 08041 Barcelona, Spain; (A.R.); (G.R.)
- Grup de Neurofarmacologia Molecular, Institut de Neurociències, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
- Correspondence: ; Tel.: +34-619-757-054
| |
Collapse
|
5
|
Jiang Y, Wang J, Li H, Xia L. IL-35 alleviates inflammation progression in a rat model of diabetic neuropathic pain via inhibition of JNK signaling. JOURNAL OF INFLAMMATION-LONDON 2019; 16:19. [PMID: 31367192 PMCID: PMC6651949 DOI: 10.1186/s12950-019-0217-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 05/28/2019] [Indexed: 12/26/2022]
Abstract
Background Emerging evidence has demonstrated that inflammation is involved in the occurrence and development of diabetic neuropathic pain (DNP). The anti-inflammatory property of interleukin (IL)-35 makes it a promising candidate to block the pain perception. The present study was undertaken to investigate whether IL-35 could attenuate DNP in streptozotocin (STZ)-induced rat model and its potential mechanism. Methods The rat model of DNP was established by a single STZ injection followed by measurements of fasting blood glucose and insulin. Fourteen days after STZ injection, DNP rats were intrathecally injected with IL-35, c-Jun N-terminal kinase (JNK) inhibitor or activator or dimethylsulfoxide (DMSO) as vehicle control, respectively. The mechanical allodynia was assayed to evaluate the therapeutic effect of IL-35. In mechanism study, the serum and protein levels of inflammatory cytokines using ELISA and western blotting and the activation of JNK signaling were further evaluated by quantitative reverse transcription PCR (qRT-PCR). Histopathologic changes were evaluated by Nissl staining. Apoptosis was examined using TUNEL staining. Results DNP rats exhibited increased fasting blood glucose and insulin levels and reduced insulin sensitivity index (ISI). Intrathecal injection of IL-35 reduced accumulation of pro-inflammatory cytokines in the spinal cord of DNP rats. Furthermore, IL-35 displayed anti-inflammatory and anti-apoptotic effects via inhibition of JNK pathway. Conclusion IL-35 treatment mitigated DNP via downregulating JNK signaling pathway.
Collapse
Affiliation(s)
- Yinghai Jiang
- Pain Department, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Jing Wang
- Pain Department, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Haiqin Li
- Pain Department, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Lingjie Xia
- Pain Department, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003 Henan China
| |
Collapse
|
6
|
Ogata Y, Nemoto W, Yamagata R, Nakagawasai O, Shimoyama S, Furukawa T, Ueno S, Tan‐No K. Anti‐hypersensitive effect of angiotensin (1‐7) on streptozotocin‐induced diabetic neuropathic pain in mice. Eur J Pain 2018; 23:739-749. [DOI: 10.1002/ejp.1341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Revised: 11/04/2018] [Accepted: 11/05/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Yoshiki Ogata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Wataru Nemoto
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Ryota Yamagata
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Osamu Nakagawasai
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| | - Shuji Shimoyama
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Tomonori Furukawa
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Shinya Ueno
- Department of Neurophysiology Hirosaki University Graduate School of Medicine Hirosaki Japan
| | - Koichi Tan‐No
- Department of Pharmacology, Faculty of Pharmaceutical Sciences Tohoku Medical and Pharmaceutical University Aoba‐ku, Sendai Japan
| |
Collapse
|
7
|
Redondo A, Chamorro PAF, Riego G, Leánez S, Pol O. Treatment with Sulforaphane Produces Antinociception and Improves Morphine Effects during Inflammatory Pain in Mice. J Pharmacol Exp Ther 2017; 363:293-302. [PMID: 28947488 DOI: 10.1124/jpet.117.244376] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 09/19/2017] [Indexed: 03/08/2025] Open
Abstract
The activation of nuclear factor erythroid 2-related factor 2 (Nrf2) exerts potent antioxidative and anti-inflammatory effects; however, its participation in the modulation of chronic inflammatory pain and on the antinociceptive effects of μ-opioid receptor (MOR) agonists has not been evaluated. We investigated whether the induction of Nrf2 could alleviate chronic inflammatory pain and augment the analgesic effects of morphine and mechanisms implicated. In male C57BL/6 mice with inflammatory pain induced by complete Freund's adjuvant (CFA) subplantarly administered, we assessed: 1) antinociceptive actions of the administration of 5 and 10 mg/kg of a Nrf2 activator, sulforaphane (SFN); and 2) effects of SFN on the antinociceptive actions of morphine and on protein levels of Nrf2, heme oxygenase 1 (HO-1), and NAD(P)H: quinone oxidoreductase 1 (NQO1) enzymes, microglial activation and inducible nitric oxide synthase (NOS2) overexpression, as well as on mitogen-activated protein kinase (MAPK) and MOR expression in the spinal cord and paw of animals with inflammatory pain. Results showed that treatment with SFN inhibited allodynia and hyperalgesia induced by CFA and increased the local antinociceptive actions of morphine. This treatment also augmented the expression of Nrf2, HO-1, NQO1, and MOR, and inhibited NOS2 and CD11b/c overexpression and MAPK phosphorylation induced by inflammation. Thus, this study shows that the induction of Nrf2 might inhibit inflammatory pain and enhance the analgesic effects of morphine by inhibiting oxidative stress and inflammatory responses induced by peripheral inflammation. This study suggests the administration of SFN alone and in combination with morphine are potential new ways of treating chronic inflammatory pain.
Collapse
Affiliation(s)
- Alejandro Redondo
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Pablo Aníbal Ferreira Chamorro
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gabriela Riego
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Sergi Leánez
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olga Pol
- Grup de Neurofarmacologia Molecular, Institut d'Investigació Biomèdica Sant Pau & Institut de Neurociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
8
|
Stavniichuk R, Shevalye H, Hirooka H, Nadler JL, Obrosova IG. Interplay of sorbitol pathway of glucose metabolism, 12/15-lipoxygenase, and mitogen-activated protein kinases in the pathogenesis of diabetic peripheral neuropathy. Biochem Pharmacol 2012; 83:932-40. [PMID: 22285226 DOI: 10.1016/j.bcp.2012.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 01/15/2023]
Abstract
The interactions among multiple pathogenetic mechanisms of diabetic peripheral neuropathy largely remain unexplored. Increased activity of aldose reductase, the first enzyme of the sorbitol pathway, leads to accumulation of cytosolic Ca²⁺, essentially required for 12/15-lipoxygenase activation. The latter, in turn, causes oxidative-nitrosative stress, an important trigger of mitogen activated protein kinase (MAPK) phosphorylation. This study therefore evaluated the interplay of aldose reductase, 12/15-lipoxygenase, and MAPKs in diabetic peripheral neuropathy. In experiment 1, male control and streptozotocin-diabetic mice were maintained with or without the aldose reductase inhibitor fidarestat, 16 mg kg⁻¹ d⁻¹, for 12 weeks. In experiment 2, male control and streptozotocin-diabetic wild-type (C57Bl6/J) and 12/15-lipoxygenase-deficient mice were used. Fidarestat treatment did not affect diabetes-induced increase in glucose concentrations, but normalized sorbitol and fructose concentrations (enzymatic spectrofluorometric assays) as well as 12(S)-hydroxyeicosatetraenoic concentration (ELISA), a measure of 12/15-lipoxygenase activity, in the sciatic nerve and spinal cord. 12/15-lipoxygenase expression in these two tissues (Western blot analysis) as well as dorsal root ganglia (immunohistochemistry) was similarly elevated in untreated and fidarestat-treated diabetic mice. 12/15-Lipoxygenase gene deficiency prevented diabetes-associated p38 MAPK and ERK, but not SAPK/JNK, activation in the sciatic nerve (Western blot analysis) and all three MAPK activation in the dorsal root ganglia (immunohistochemistry). In contrast, spinal cord p38 MAPK, ERK, and SAPK/JNK were similarly activated in diabetic wild-type and 12/15-lipoxygenase⁻/⁻ mice. These findings identify the nature and tissue specificity of interactions among three major mechanisms of diabetic peripheral neuropathy, and suggest that combination treatments, rather than monotherapies, can sometimes be an optimal choice for its management.
Collapse
Affiliation(s)
- Roman Stavniichuk
- Pennington Biomedical Research Center, Louisiana State University System, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | | | | | | | | |
Collapse
|
9
|
Identification of differentially expressed proteins in the spinal cord of neuropathic pain models with PKCgamma silence by proteomic analysis. Brain Res 2012; 1440:34-46. [PMID: 22284620 DOI: 10.1016/j.brainres.2011.12.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 12/21/2011] [Accepted: 12/22/2011] [Indexed: 12/29/2022]
Abstract
In order to elucidate the mechanisms that PKCγ regulates neuropathic pain (NP), and detect proteins that are associated with the function of PKCγ in NP, we exploited a chronic constriction injury (CCI)-induced neuropathic pain rat (CCI-NP rat) model in which PKCγ knockdown in the spinal cord was successfully carried out with stable RNA interference (RNAi). The spinal cords (L4-L5) were surgically obtained from CCI-NP rats with and without PKCγ knockdown, for comparative proteomic analysis. The total proteins from the spinal cords (L4-L5) were extracted and were separated with two-dimensional gel electrophoresis (2DGE). 2D gel images were analyzed with PDQuest software. Nineteen differential gel-spots were identified with spot-volume increased and 17 spots with spot-volume decreased. Among them, eighteen differentially expressed proteins (DEPs) were identified with matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) between CCI-NP rats with and without PKCγ knockout. Those DEPs are involved in transmission and modulation of noxious information; cellular homeostasis and metabolism; antioxidant proteins, heat shock proteins and chaperones; membrane receptor trafficking; and cytoskeleton. Three DEPs (SNAP-25, TERA and AR) were validated with Western blot analysis, and confirmed the DEP data. Further study showed that AR-selective inhibitor epalrestat totally turned over the upregulated expression of AR in CCI-NP rats. Those DEP data are extensively associated with the function of PKCγ that regulates NP, and would contribute to the clarification of the mechanisms of PKCγ in NP.
Collapse
|
10
|
Cavaletti G, Miloso M, Nicolini G, Scuteri A, Tredici G. Emerging role of mitogen-activated protein kinases in peripheral neuropathies. J Peripher Nerv Syst 2007; 12:175-194. [PMID: 17868245 DOI: 10.1111/j.1529-8027.2007.00138.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Among the different families of intracellular molecules that can be modulated during cell damage and repair, mitogen-activated protein kinases (MAPKs) are particularly interesting because they are involved in several intracellular pathways activated by injury and regeneration signals. Despite most of the studies have been performed in non-neurological models, recently a causal role for MAPKs has been postulated in central nervous system disorders. However, also in some peripheral neuropathies, MAPK changes can occur and these modifications might be relevant in the pathogenesis of the damage as well as during regeneration and repair. In this review, the current knowledge on the role of MAPKs in peripheral neuropathies will be discussed.
Collapse
Affiliation(s)
- Guido Cavaletti
- Department of Neurosciences and Biomedical Technologies, University of Milano Bicocca, Monza, Italy.
| | | | | | | | | |
Collapse
|