1
|
Wang G, Lu W, Shen WB, Karbowski M, Kaushal S, Yang P. Small Molecule Activators of Mitochondrial Fusion Prevent Congenital Heart Defects Induced by Maternal Diabetes. JACC Basic Transl Sci 2024; 9:303-318. [PMID: 38559623 PMCID: PMC10978414 DOI: 10.1016/j.jacbts.2023.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 04/04/2024]
Abstract
Most congenital heart defect (CHD) cases are attributed to nongenetic factors; however, the mechanisms underlying nongenetic factor-induced CHDs are elusive. Maternal diabetes is one of the nongenetic factors, and this study aimed to determine whether impaired mitochondrial fusion contributes to maternal diabetes-induced CHDs and if mitochondrial fusion activators, teriflunomide and echinacoside, could reduce CHD incidence in diabetic pregnancy. We demonstrated maternal diabetes-activated FoxO3a increases miR-140 and miR-195, which in turn represses Mfn1 and Mfn2, leading to mitochondrial fusion defects and CHDs. Two mitochondrial fusion activators are effective in preventing CHDs in diabetic pregnancy.
Collapse
Affiliation(s)
- Guanglei Wang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wenhui Lu
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Wei-Bin Shen
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Mariusz Karbowski
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Sunjay Kaushal
- Division of Cardiac Surgery, Department of Surgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Peixin Yang
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Dong DY, Li PY, Wang YF, Wang P, Wu YH, Gao SG, Li SQ. High glucose-increased miR-200c contributes to cellular senescence and DNA damage in neural stem cells. Birth Defects Res 2023; 115:1770-1779. [PMID: 37776548 DOI: 10.1002/bdr2.2254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/16/2023] [Accepted: 09/19/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Maternal diabetes increases the risk for neural tube defects (NTDs). It is unclear if miRNAs, senescence, and DNA damage are involved in this process. In this study, we used neural stem cells as an in vitro proxy of embryonic neuroepithelium to investigate whether high glucose triggers neural stem cell senescence and DNA damage by upregulating miR-200c, which may be responsible for NTDs. METHODS C17.2 neural stem cells were cultured with normal glucose (5 mM) or high glucose (≥16.7 mM) at different doses and time points for detecting miR-200c levels, markers of senescence and DNA damage. Neural stem cells were exposed to antioxidant SOD1 mimetic Tempol and high glucose for 48 h to test roles of oxidative stress on the miR-200c, senescence, and DNA damage levels. An miR-200c mimic and an inhibitor were transfected into neural stem cells to increase or decrease miR-200c activities. RESULTS High glucose upregulated miR-200c in neural stem cells. A time course study of the effect of high glucose revealed that miR-200c initially increased at 12 h and reached its zenith at 18 h. Tempol reduced miR-200c levels caused by high glucose. High glucose induced markers of senescence and DNA damage in neural stem cells. Tempol abolished high glucose-induced markers of senescence and DNA damage. The miR-200c inhibitor suppressed high glucose-induced markers of senescence and DNA damage. Treatment with miR-200c mimic imitates high glucose-induced markers of senescence and DNA damage. CONCLUSIONS We show that high glucose increases miR-200c, which contributes to cellular senescence and DNA damage in neural stem cells and provides a potential pathway for maternal diabetes-induced neural tube defects.
Collapse
Affiliation(s)
- Dao-Yin Dong
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Pu-Yu Li
- Department of General Medicine, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Ying-Fang Wang
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Ping Wang
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - Yu-Han Wu
- Department of Public Health, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| | - She-Gan Gao
- Henan Key Laboratory of Cancer Epigenetics, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - San-Qiang Li
- Henan Centre for Engineering and Technology Research on Prevention and Treatment of Liver Diseases, School of Basic Medical Sciences, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
3
|
Lee LMY, Leung YC, Shum ASW. Hyperglycemia alters retinoic acid catabolism in embryos exposed to a maternal diabetic milieu. PLoS One 2023; 18:e0287253. [PMID: 37616226 PMCID: PMC10449132 DOI: 10.1371/journal.pone.0287253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/01/2023] [Indexed: 08/26/2023] Open
Abstract
Pregestational diabetes is highly associated with increased risk of birth defects. We previously reported that the expression of Cyp26a1, the major catabolizing enzyme for controlling retinoic acid (RA) homeostasis, is significantly down-regulated in embryos of diabetic mice, thereby increasing the embryo's susceptibility to malformations caused by RA dysregulation. However, the underlying mechanism for the down-regulation of Cyp26a1 remains unclear. This study aimed to investigate whether elevated maternal blood glucose in the diabetic milieu is a critical factor for the altered Cyp26a1 expression. Streptozotozin-induced diabetic pregnant mice were treated with phlorizin (PHZ) to reduce blood glucose concentrations via induction of renal glucosuria. Embryonic Cyp26a1 expression level, RA catabolic activity and susceptibility to various RA-induced abnormalities were examined. To test the dose-dependent effect of glucose on Cyp26a1 level, early head-fold stage rat embryos of normal pregnancy were cultured in vitro with varying concentrations of D-glucose, followed by quantification of Cyp26a1 transcripts. We found that Cyp26a1 expression, which was down-regulated in diabetic pregnancy, could be normalized under reduced maternal blood glucose level, concomitant with an increase in RA catabolic activity in embryonic tissues. Such normalization could successfully reduce the susceptibility to different RA-induced malformations including caudal regression, cleft palate and renal malformations. The expression level of Cyp26a1 in the embryo was inversely correlated with D-glucose concentrations. Diabetic patients suffer from retinopathy, dermopathy, male infertility and increased cancer risk. Coincidentally, RA dysregulation is also associated with these health problems. Our results provided evidence that elevated glucose can down-regulate Cyp26a1 expression level and disturb RA homeostasis, shedding light on the possibility of affecting the health of diabetic patients via a similar mechanism.
Collapse
Affiliation(s)
- Leo Man Yuen Lee
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| | - Yun-chung Leung
- Department of Applied Biology and Chemical Technology, Lo Ka Chung Research Centre for Natural Anti-Cancer Drug Development and State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong, Hong Kong
| | - Alisa Sau Wun Shum
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, Hong Kong
| |
Collapse
|
4
|
Peng S, Wu Y, Zheng Y. High glucose causes developmental abnormalities in neuroepithelial cysts with actin and HK1 distribution changes. Front Cell Dev Biol 2023; 10:1021284. [PMID: 36684439 PMCID: PMC9852901 DOI: 10.3389/fcell.2022.1021284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/20/2022] [Indexed: 01/09/2023] Open
Abstract
It has been reported that the offspring of diabetic pregnant women have an increased risk for neural tube defects. Previous studies in animal models suggested that high glucose induces cell apoptosis and epigenetic changes in the developing neural tube. However, effects on other cellular aspects such as the cell shape changes were not fully investigated. Actin dynamics plays essential roles in cell shape change. Disruption on actin dynamics is known to cause neural tube defects. In the present study, we used a 3D neuroepithelial cyst model and a rosette model, both cultured from human embryonic stem cells, to study the cellular effects caused by high glucose. By using these models, we observed couple of new changes besides increased apoptosis. First, we observed that high glucose disturbed the distribution of pH3 positive cells in the neuroepithelial cysts. Secondly, we found that high glucose exposure caused a relatively smaller actin inner boundary enclosed area, which was unlikely due to osmolarity changes. We further investigated key glucose metabolic enzymes in our models and the results showed that the distribution of hexokinase1 (HK1) was affected by high glucose. We observed that hexokinase1 has an apical-basal polarized distribution and is highest next to actin at the boundaries. hexokinase1 was more diffused and distributed less polarized under high glucose condition. Together, our observations broadened the cellular effects that may be caused by high glucose in the developing neural tube, especially in the secondary neurulation process.
Collapse
Affiliation(s)
- Sisi Peng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yu Wu
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Yufang Zheng
- Department of Cellular and Developmental Biology, School of Life Sciences, Fudan University, Shanghai, China,Obstetrics and Gynecology Hospital, The Institute of Obstetrics and Gynecology, Fudan University, Shanghai, China,State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China,*Correspondence: Yufang Zheng,
| |
Collapse
|
5
|
Kappen C, Kruger C, Jones S, Salbaum JM. Nutrient Transporter Gene Expression in the Early Conceptus-Implications From Two Mouse Models of Diabetic Pregnancy. Front Cell Dev Biol 2022; 10:777844. [PMID: 35478964 PMCID: PMC9035823 DOI: 10.3389/fcell.2022.777844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/28/2022] [Indexed: 11/29/2022] Open
Abstract
Maternal diabetes in early pregnancy increases the risk for birth defects in the offspring, particularly heart, and neural tube defects. While elevated glucose levels are characteristic for diabetic pregnancies, these are also accompanied by hyperlipidemia, indicating altered nutrient availability. We therefore investigated whether changes in the expression of nutrient transporters at the conception site or in the early post-implantation embryo could account for increased birth defect incidence at later developmental stages. Focusing on glucose and fatty acid transporters, we measured their expression by RT-PCR in the spontaneously diabetic non-obese mouse strain NOD, and in pregnant FVB/N mouse strain dams with Streptozotocin-induced diabetes. Sites of expression in the deciduum, extra-embryonic, and embryonic tissues were determined by RNAscope in situ hybridization. While maternal diabetes had no apparent effects on levels or cellular profiles of expression, we detected striking cell-type specificity of particular nutrient transporters. For examples, Slc2a2/Glut2 expression was restricted to the endodermal cells of the visceral yolk sac, while Slc2a1/Glut1 expression was limited to the mesodermal compartment; Slc27a4/Fatp4 and Slc27a3/Fatp3 also exhibited reciprocally exclusive expression in the endodermal and mesodermal compartments of the yolk sac, respectively. These findings not only highlight the significance of nutrient transporters in the intrauterine environment, but also raise important implications for the etiology of birth defects in diabetic pregnancies, and for strategies aimed at reducing birth defects risk by nutrient supplementation.
Collapse
Affiliation(s)
- Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - Sydney Jones
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| | - J. Michael Salbaum
- Regulation of Gene Expression, Pennington Biomedical Research Center, Louisiana State University System, Baton Rouge, LA, United States
| |
Collapse
|
6
|
Impact of Oxidative Stress on Embryogenesis and Fetal Development. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:221-241. [PMID: 36472825 DOI: 10.1007/978-3-031-12966-7_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Multiple cellular processes are regulated by oxygen radicals or reactive oxygen species (ROS) where they play crucial roles as primary or secondary messengers, particularly during cell proliferation, differentiation, and apoptosis. Embryogenesis and organogenesis encompass all these processes; therefore, their role during these crucial life events cannot be ignored, more so when there is an imbalance in redox homeostasis. Perturbed redox homeostasis is responsible for damaging the biomolecules such as lipids, proteins, and nucleic acids resulting in leaky membrane, altered protein, enzyme function, and DNA damage which have adverse impact on the embryo and fetal development. In this article, we attempt to summarize the available data in literature for an in-depth understanding of redox regulation during development that may help in optimizing the pregnancy outcome both under natural and assisted conditions.
Collapse
|
7
|
Jung JH, Loeken MR. Diabetic Embryopathy Susceptibility in Mice Is Associated with Differential Dependence on Glucosamine and Modulation of High Glucose-Induced Oxidative Stress. Antioxidants (Basel) 2021; 10:antiox10081156. [PMID: 34439404 PMCID: PMC8388881 DOI: 10.3390/antiox10081156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/18/2021] [Indexed: 11/16/2022] Open
Abstract
The high KM glucose transporter, GLUT2 (SLC2A2), is expressed by embryos and causes high rates of glucose transport during maternal hyperglycemic episodes in diabetic pregnancies and causes congenital malformations (diabetic embryopathy). GLUT2 is also a low KM transporter of the amino sugar, glucosamine (GlcN), which enters the hexosamine biosynthetic pathway (HBP) and provides substrate for glycosylation reactions. Exogenous GlcN also increases activity of the pentose phosphate pathway (PPP), which increases production of NADPH reducing equivalents. GLUT2-transported GlcN is inhibited by high glucose concentrations. Not all mouse strains are susceptible to diabetic embryopathy. The aim of this study was to test the hypothesis that susceptibility to diabetic embryopathy is related to differential dependence on exogenous GlcN for glycosylation or stimulation of the PPP. We tested this using murine embryonic stem cell (ESC) lines that were derived from embryopathy-susceptible FVB/NJ (FVB), and embryopathy-resistant C57Bl/6J (B6), embryos in the presence of low or high glucose, and in the presence or absence of GlcN. There were no significant differences in Glut2 expression, or of glucose or GlcN transport, between FVB and B6 ESC. GlcN effects on growth and incorporation into glycoproteins indicated that FVB ESC are more dependent on exogenous GlcN than are B6 ESC. GlcN stimulated PPP activity in FVB but not in B6 ESC. High glucose induced oxidative stress in FVB ESC but not in B6 ESC. These results indicate that FVB embryos are more dependent on exogenous GlcN for glycosylation, but also for stimulation of the PPP and NADPH production, than are B6 embryos, thereby rendering FVB embryos more susceptible to high glucose to induce oxidative stress.
Collapse
|
8
|
Abstract
PURPOSE OF REVIEW Fetuses of diabetic mothers are at increased risk for congenital malformations. Research in recent decades using animal and embryonic stem cell models has revealed many embryonic developmental processes that are disturbed by maternal diabetes. The aim of this review is to give clinicians a better understanding of the reasons for rigorous glycemic control in early pregnancy, and to provide background to guide future research. RECENT FINDINGS Mouse models of diabetic pregnancy have revealed mechanisms for altered expression of tissue-specific genes that lead to malformations that are more common in diabetic pregnancies, such as neural tube defects (NTDs) and congenital heart defects (CHDs), and how altered gene expression causes apoptosis that leads to malformations. Embryos express the glucose transporter, GLUT2, which confers susceptibility to malformation, due to high rates of glucose uptake during maternal hyperglycemia and subsequent oxidative stress; however, the teleological function of GLUT2 for mammalian embryos may be to transport the amino sugar glucosamine (GlcN) from maternal circulation to be used as substrate for glycosylation reactions and to promote embryo cell growth. Malformations in diabetic pregnancy may be not only due to excess glucose uptake but also due to insufficient GlcN uptake. Avoiding maternal hyperglycemia during early pregnancy should prevent excess glucose uptake via GLUT2 into embryo cells, and also permit sufficient GLUT2-mediated GlcN uptake.
Collapse
Affiliation(s)
- Mary R Loeken
- Section on Islet Cell and Regenerative Biology, Department of Medicine, Joslin Diabetes Center and Harvard Medical School, One Joslin Place, Boston, MA, 02215, USA.
| |
Collapse
|
9
|
Zhao Z, Cao L, Hernández-Ochoa E, Schneider MF, Reece EA. Disturbed intracellular calcium homeostasis in neural tube defects in diabetic embryopathy. Biochem Biophys Res Commun 2019; 514:960-966. [PMID: 31092336 DOI: 10.1016/j.bbrc.2019.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 11/19/2022]
Abstract
Pregnancies complicated by preexisting maternal diabetes mellitus are associated with a higher risk of birth defects in infants, known as diabetic embryopathy. The common defects seen in the central nervous system result from failure of neural tube closure. The formation of neural tube defects (NTDs) is associated with excessive programmed cell death (apoptosis) in the neuroepithelium under hyperglycemia-induced intracellular stress conditions. The early cellular response to hyperglycemia remains to be identified. We hypothesize that hyperglycemia may disturb intracellular calcium (Ca2+) homeostasis, which perturbs organelle function and apoptotic regulation, resulting in increased apoptosis and embryonic NTDs. In an animal model of diabetic embryopathy, we performed Ca2+ imaging and observed significant increases in intracellular Ca2+ ([Ca2+]i) in the embryonic neural epithelium. Blocking T-type Ca2+ channels with mibefradil, but not L-type with verapamil, significantly blunted the increases in [Ca2+]i, implicating an involvement of channel type-dependent Ca2+ influx in hyperglycemia-perturbed Ca2+ homeostasis. Treatment of diabetic pregnant mice with mibefradil during neurulation significantly reduced NTD rates in the embryos. This effect was associated with decreases in apoptosis, alleviation of endoplasmic reticulum stress, and increases of anti-apoptotic factors. Taken together, our data suggest an important role of Ca2+ influx in hyperglycemia-induced NTDs and of T-type Ca2+ channels as a potential target to prevent birth defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Erick Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
10
|
Herion NJ, Kruger C, Staszkiewicz J, Kappen C, Salbaum JM. Embryonic cell migratory capacity is impaired upon exposure to glucose in vivo and in vitro. Birth Defects Res 2018; 111:999-1012. [PMID: 30451383 DOI: 10.1002/bdr2.1398] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/21/2018] [Accepted: 08/23/2018] [Indexed: 12/27/2022]
Abstract
BACKGROUND Impairments in cell migration during vertebrate gastrulation lead to structural birth defects, such as heart defects and neural tube defects. These defects are more frequent in progeny from diabetic pregnancies, and we have recently provided evidence that maternal diabetes leads to impaired migration of embryonic mesodermal cells in a mouse model of diabetic pregnancy. METHODS We here report the isolation of primary cell lines from normal and diabetes-exposed embryos of the nonobese diabetic mouse strain, and characterization of their energy metabolism and expression of nutrient transporter genes by quantitative real-time PCR. RESULTS Expression levels of several genes in the glucose transporter and fatty acid transporter gene families were altered in diabetes-exposed cells. Notably, primary cells from embryos with prior in vivo exposure to maternal diabetes exhibited reduced capacity for cell migration in vitro. CONCLUSIONS Primary cells isolated from diabetes-exposed embryos retained a "memory" of their in vivo exposure, manifesting in cell migration impairment. Thus, we have successfully established an in vitro experimental model for the mesoderm migration defects observed in diabetes-exposed mouse embryos.
Collapse
Affiliation(s)
- Nils Janis Herion
- University of Heidelberg Medical School, Heidelberg, Germany.,Department of Developmental Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Claudia Kruger
- Department of Developmental Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Jaroslaw Staszkiewicz
- Department of Developmental Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - Claudia Kappen
- Department of Developmental Biology, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| | - J Michael Salbaum
- Department of Regulation of Gene Expression, Pennington Biomedical Research Center, Baton Rouge, Louisiana
| |
Collapse
|
11
|
Kim G, Cao L, Reece EA, Zhao Z. Impact of protein O-GlcNAcylation on neural tube malformation in diabetic embryopathy. Sci Rep 2017; 7:11107. [PMID: 28894244 PMCID: PMC5593976 DOI: 10.1038/s41598-017-11655-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/25/2017] [Indexed: 01/15/2023] Open
Abstract
Diabetes mellitus in early pregnancy can cause neural tube defects (NTDs) in embryos by perturbing protein activity, causing cellular stress, and increasing programmed cell death (apoptosis) in the tissues required for neurulation. Hyperglycemia augments a branch pathway in glycolysis, the hexosamine biosynthetic pathway (HBP), to increase uridine diphosphate-N-acetylglucosamine (UDP-GlcNAc). GlcNAc can be added to proteins by O-GlcNAc transferase (OGT) to regulate protein activity. In the embryos of diabetic mice, OGT is highly activated in association with increases in global protein O-GlcNAcylation. In neural stem cells in vitro, high glucose elevates O-GlcNAcylation and reactive oxygen species, but the elevations can be suppressed by an OGT inhibitor. Inhibition of OGT in diabetic pregnant mice in vivo decreases NTD rate in the embryos. This effect is associated with reduction in global O-GlcNAcylation, alleviation of intracellular stress, and decreases in apoptosis in the embryos. These suggest that OGT plays an important role in diabetic embryopathy via increasing protein O-GlcNAcylation, and that inhibiting OGT could be a candidate approach to prevent birth defects in diabetic pregnancies.
Collapse
Affiliation(s)
- Gyuyoup Kim
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Lixue Cao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - E Albert Reece
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences,University of Maryland School of Medicine, Baltimore, Maryland, USA.
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, USA.
| |
Collapse
|
12
|
García-Sanz P, Mirasierra M, Moratalla R, Vallejo M. Embryonic defence mechanisms against glucose-dependent oxidative stress require enhanced expression of Alx3 to prevent malformations during diabetic pregnancy. Sci Rep 2017; 7:389. [PMID: 28341857 PMCID: PMC5428206 DOI: 10.1038/s41598-017-00334-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 02/20/2017] [Indexed: 12/20/2022] Open
Abstract
Oxidative stress constitutes a major cause for increased risk of congenital malformations associated to severe hyperglycaemia during pregnancy. Mutations in the gene encoding the transcription factor ALX3 cause congenital craniofacial and neural tube defects. Since oxidative stress and lack of ALX3 favour excessive embryonic apoptosis, we investigated whether ALX3-deficiency further increases the risk of embryonic damage during gestational hyperglycaemia in mice. We found that congenital malformations associated to ALX3-deficiency are enhanced in diabetic pregnancies. Increased expression of genes encoding oxidative stress-scavenging enzymes in embryos from diabetic mothers was blunted in the absence of ALX3, leading to increased oxidative stress. Levels of ALX3 increased in response to glucose, but ALX3 did not activate oxidative stress defence genes directly. Instead, ALX3 stimulated the transcription of Foxo1, a master regulator of oxidative stress-scavenging genes, by binding to a newly identified binding site located in the Foxo1 promoter. Our data identify ALX3 as an important component of the defence mechanisms against the occurrence of developmental malformations during diabetic gestations, stimulating the expression of oxidative stress-scavenging genes in a glucose-dependent manner via Foxo1 activation. Thus, ALX3 deficiency provides a novel molecular mechanism for developmental defects arising from maternal hyperglycaemia.
Collapse
Affiliation(s)
- Patricia García-Sanz
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.,Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mercedes Mirasierra
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas (CSIC)/Universidad Autónoma de Madrid, and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
13
|
Zhao J, Hakvoort TBM, Willemsen AM, Jongejan A, Sokolovic M, Bradley EJ, de Boer VCJ, Baas F, van Kampen AHC, Lamers WH. Effect of Hyperglycemia on Gene Expression during Early Organogenesis in Mice. PLoS One 2016; 11:e0158035. [PMID: 27433804 PMCID: PMC4951019 DOI: 10.1371/journal.pone.0158035] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/09/2016] [Indexed: 01/01/2023] Open
Abstract
Background Cardiovascular and neural malformations are common sequels of diabetic pregnancies, but the underlying molecular mechanisms remain unknown. We hypothesized that maternal hyperglycemia would affect the embryos most shortly after the glucose-sensitive time window at embryonic day (ED) 7.5 in mice. Methods Mice were made diabetic with streptozotocin, treated with slow-release insulin implants and mated. Pregnancy aggravated hyperglycemia. Gene expression profiles were determined in ED8.5 and ED9.5 embryos from diabetic and control mice using Serial Analysis of Gene Expression and deep sequencing. Results Maternal hyperglycemia induced differential regulation of 1,024 and 2,148 unique functional genes on ED8.5 and ED9.5, respectively, mostly in downward direction. Pathway analysis showed that ED8.5 embryos suffered mainly from impaired cell proliferation, and ED9.5 embryos from impaired cytoskeletal remodeling and oxidative phosphorylation (all P ≤ E-5). A query of the Mouse Genome Database showed that 20–25% of the differentially expressed genes were caused by cardiovascular and/or neural malformations, if deficient. Despite high glucose levels in embryos with maternal hyperglycemia and a ~150-fold higher rate of ATP production from glycolysis than from oxidative phosphorylation on ED9.5, ATP production from both glycolysis and oxidative phosphorylation was reduced to ~70% of controls, implying a shortage of energy production in hyperglycemic embryos. Conclusion Maternal hyperglycemia suppressed cell proliferation during gastrulation and cytoskeletal remodeling during early organogenesis. 20–25% of the genes that were differentially regulated by hyperglycemia were associated with relevant congenital malformations. Unexpectedly, maternal hyperglycemia also endangered the energy supply of the embryo by suppressing its glycolytic capacity.
Collapse
Affiliation(s)
- Jing Zhao
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Theodorus B. M. Hakvoort
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - A. Marcel Willemsen
- Bioinformatics Laboratory, Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Aldo Jongejan
- Bioinformatics Laboratory, Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Milka Sokolovic
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Edward J. Bradley
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Vincent C. J. de Boer
- Department of Laboratory Genetic Metabolic Diseases, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Frank Baas
- Department of Genome Analysis, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Antoine H. C. van Kampen
- Bioinformatics Laboratory, Department of Bioinformatics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Biosystems Data Analysis Group, University of Amsterdam, Amsterdam, The Netherlands
| | - Wouter H. Lamers
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- * E-mail:
| |
Collapse
|
14
|
Jung JH, Iwabuchi K, Yang Z, Loeken MR. Embryonic Stem Cell Proliferation Stimulated By Altered Anabolic Metabolism From Glucose Transporter 2-Transported Glucosamine. Sci Rep 2016; 6:28452. [PMID: 27311888 PMCID: PMC4911601 DOI: 10.1038/srep28452] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 06/02/2016] [Indexed: 01/19/2023] Open
Abstract
The hexose transporter, GLUT2 (SLC2A2), which is expressed by mouse embryos, is important for survival before embryonic day 10.5, but its function in embryos is unknown. GLUT2 can transport the amino sugar glucosamine (GlcN), which could increase substrate for the hexosamine biosynthetic pathway (HBSP) that produces UDP-N-acetylglucosamine for O-linked N-acetylglucosamine modification (O-GlcNAcylation) of proteins. To understand this, we employed a novel murine embryonic stem cell (ESC) line that, like mouse embryos, expresses functional GLUT2 transporters. GlcN stimulated ESC proliferation in a GLUT2-dependent fashion but did not regulate pluripotency. Stimulation of proliferation was not due to increased O-GlcNAcylation. Instead, GlcN decreased dependence of the HBSP on fructose-6-PO4 and glutamine. Consequently, glycolytic- and glutamine-derived intermediates that are needed for anabolic metabolism were increased. Thus, maternally obtained GlcN may increase substrates for biomass accumulation by embryos, as exogenous GlcN does for GLUT2-expressing ESC, and may explain the need for GLUT2 expression by embryos.
Collapse
Affiliation(s)
- Jin Hyuk Jung
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kumiko Iwabuchi
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Zhihong Yang
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center, Boston, MA 02215, USA.,Section on Vascular Cell Biology Harvard Medical School, Boston, MA 02115, USA
| | - Mary R Loeken
- Section on Islet Cell and Regenerative Biology Joslin Diabetes Center, Boston, MA 02215, USA.,Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
15
|
Abstract
Diabetic embryopathy is a theoretical enigma and a clinical challenge. Both type 1 and type 2 diabetic pregnancy carry a significant risk for fetal maldevelopment, and the precise reasons for the diabetes-induced teratogenicity are not clearly identified. The experimental work in this field has revealed a partial, however complex, answer to the teratological question, and we will review some of the latest suggestions.
Collapse
Affiliation(s)
- Ulf J. Eriksson
- CONTACT Ulf J. Eriksson Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-751 23 Uppsala, Sweden
| | | |
Collapse
|
16
|
Ruggiero JE, Northrup H, Au KS. Association of facilitated glucose transporter 2 gene variants with the myelomeningocele phenotype. ACTA ACUST UNITED AC 2015; 103:479-87. [PMID: 25776730 DOI: 10.1002/bdra.23358] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Neural tube defects (NTDs) remain the second most common cause of congenital malformations. Myelomeningocele (MM), the most common NTD compatible with survival, results from genetic and environmental factors. Epidemiologic studies and murine models support the hypotheses that obesity, diabetes and hyperglycemia confer increased risk of NTDs. Presence of wild-type facilitated glucose transporter, Glut2, in mouse embryos has been shown to increase risk for NTDs in hyperglycemic pregnancy. METHODS The GLUT2 gene of 96 MM patients was amplified, sequenced and compared with the reference sequence (NM_000340). Variants previously unreported in the single nucleotide polymorphisms (SNP) database were considered novel. Allele frequencies of reported SNPs were compared with reference populations using Fisher's exact test. RESULTS Analysis revealed three novel variants: a substitution in the core promoter region (c.-331c>t), a substitution (c.-182g>a) in the 5'-untranslated region, and a single base pair deletion (c.1441delT) in the coding sequences. Polymorphic alleles for 10 SNPs were also identified. Seven SNPs are significantly associated with MM in the Mexican American patients tested (p < 0.05) and two of the seven remained significant after Bonferroni correction. CONCLUSION We identified three novel variants and seven SNPs associated with MM. The novel variants in the core promoter and in the 5'-untranslated region could affect GLUT2 mRNA transcription and stability and translation efficiency. The c.1441delT variant is predicted to alter the reading frame and prematurely terminate translation of the GLUT2 protein at the C-terminus, affecting GLUT2 protein function. Presence of GLUT2 variants may disrupt GLUT2 activity and influence MM susceptibility.
Collapse
Affiliation(s)
- Jaclyn E Ruggiero
- Division of Neonatal-Perinatal Medicine, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| | - Hope Northrup
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas.,Shriners Hospitals for Children, Houston, Texas
| | - Kit Sing Au
- Division of Medical Genetics, Department of Pediatrics, The University of Texas Medical School at Houston, Houston, Texas
| |
Collapse
|
17
|
Sanders K, Jung JH, Loeken MR. Use of a murine embryonic stem cell line that is sensitive to high glucose environment to model neural tube development in diabetic pregnancy. ACTA ACUST UNITED AC 2014; 100:584-91. [PMID: 25124397 DOI: 10.1002/bdra.23281] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 06/09/2014] [Accepted: 06/18/2014] [Indexed: 11/09/2022]
Abstract
BACKGROUND Neural tube defects (NTDs) are significantly increased by maternal diabetes. Embryonic stem cells (ESC) that can differentiate into neuroepithelium and can sense supraphysiological glucose concentrations would be very valuable to simulate the effects of maternal diabetes on molecular and cellular processes during neural tube formation. METHODS LG-ESC, a recently established ESC line that expresses the glucose transporter, Scl2a2, and is sensitive to elevated glucose concentrations, were grown for up to 8 days in a three-dimensional culture to form neural cysts. We tested whether high glucose media inhibits expression of Pax3, a gene that is required for neural tube closure and whose expression is inhibited in embryos of diabetic mice, and inhibits formation of neural cysts. RESULTS Pax3 expression was detected after 4 days of culture and increased with time. Pax3 expression was inhibited by high glucose media, but not if cells had been cultured in low glucose media for the first 4 days of culture. Pax7, which is also expressed in dorsal neural tube, was not detected. Pax6, which is expressed in the ventral neural tube, was detected only after 8 days of culture, but was not inhibited by high glucose. High glucose media did not inhibit formation of neural cysts. CONCLUSION LG-ESC can be used as a model of embryonic exposure to a diabetic environment during neural tube development. While high glucose exposure inhibits expression of a gene required for neural tube closure, it may not inhibit all of the processes involved in formation of a neural tube-like structure.
Collapse
Affiliation(s)
- Kaitlyn Sanders
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Boston, Massachusetts
| | | | | |
Collapse
|
18
|
Noninvasive in vivo monitoring of tissue-specific global gene expression in humans. Proc Natl Acad Sci U S A 2014; 111:7361-6. [PMID: 24799715 DOI: 10.1073/pnas.1405528111] [Citation(s) in RCA: 239] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Circulating cell-free RNA in the blood provides a potential window into the health, phenotype, and developmental programs of a variety of human organs. We used high-throughput methods of RNA analysis such as microarrays and next-generation sequencing to characterize the global landscape circulating RNA in a cohort of human subjects. By focusing on genes whose expression is highly specific to certain tissues, we were able to identify the relative contributions of these tissues to circulating RNA and to monitor changes in tissue development and health. As one application of this approach, we performed a longitudinal study on pregnant women and analyzed their combined cell-free RNA transcriptomes across all three trimesters of pregnancy and after delivery. In addition to the analysis of mRNA, we observed and characterized noncoding species such as long noncoding RNA and circular RNA transcripts whose presence had not been previously observed in human plasma. We demonstrate that it is possible to track specific longitudinal phenotypic changes in both the mother and the fetus and that it is possible to directly measure transcripts from a variety of fetal tissues in the maternal blood sample. We also studied the role of neuron-specific transcripts in the blood of healthy adults and those suffering from the neurodegenerative disorder Alzheimer's disease and showed that disease specific neural transcripts are present at increased levels in the blood of affected individuals. Characterization of the cell-free transcriptome in its entirety may thus provide broad insights into human health and development without the need for invasive tissue sampling.
Collapse
|
19
|
Loeken MR. Intersection of complex genetic traits affecting maternal metabolism, fetal metabolism, and neural tube defect risk: looking for needles in multiple haystacks. Mol Genet Metab 2014; 111:415-7. [PMID: 24503137 PMCID: PMC3982189 DOI: 10.1016/j.ymgme.2014.01.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 01/18/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Mary R Loeken
- Section on Islet and Regenerative Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA.
| |
Collapse
|
20
|
Lupo PJ, Mitchell LE, Canfield MA, Shaw GM, Olshan AF, Finnell RH, Zhu H. Maternal-fetal metabolic gene-gene interactions and risk of neural tube defects. Mol Genet Metab 2014; 111:46-51. [PMID: 24332798 PMCID: PMC4394735 DOI: 10.1016/j.ymgme.2013.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/07/2013] [Accepted: 11/07/2013] [Indexed: 11/17/2022]
Abstract
Single-gene analyses indicate that maternal genes associated with metabolic conditions (e.g., obesity) may influence the risk of neural tube defects (NTDs). However, to our knowledge, there have been no assessments of maternal-fetal metabolic gene-gene interactions and NTDs. We investigated 23 single nucleotide polymorphisms among 7 maternal metabolic genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, and TCF7L2) and 2 fetal metabolic genes (SLC2A2 and UCP2). Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study for birth years 1999-2007. We used a 2-step approach to evaluate maternal-fetal gene-gene interactions. First, a case-only approach was applied to screen all potential maternal and fetal interactions (n = 76), as this design provides greater power in the assessment of gene-gene interactions compared to other approaches. Specifically, ordinal logistic regression was used to calculate the odds ratio (OR) and 95% confidence interval (CI) for each maternal-fetal gene-gene interaction, assuming a log-additive model of inheritance. Due to the number of comparisons, we calculated a corrected p-value (q-value) using the false discovery rate. Second, we confirmed all statistically significant interactions (q < 0.05) using a log-linear approach among case-parent triads. In step 1, there were 5 maternal-fetal gene-gene interactions with q < 0.05. The "top hit" was an interaction between maternal ENPP1 rs1044498 and fetal SLC2A2 rs6785233 (interaction OR = 3.65, 95% CI: 2.32-5.74, p = 2.09×10(-8), q=0.001), which was confirmed in step 2 (p = 0.00004). Our findings suggest that maternal metabolic genes associated with hyperglycemia and insulin resistance and fetal metabolic genes involved in glucose homeostasis may interact to increase the risk of NTDs.
Collapse
Affiliation(s)
- Philip J Lupo
- Department of Pediatrics, Section of Hematology-Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Laura E Mitchell
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, University of Texas School of Public Health, Houston, TX, USA
| | | | - Gary M Shaw
- Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew F Olshan
- Department of Epidemiology, University of North Carolina, Chapel Hill, NC, USA
| | - Richard H Finnell
- Dell Pediatric Research Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA
| | - Huiping Zhu
- Dell Pediatric Research Institute, Department of Nutritional Sciences, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
21
|
Kappen C. Modeling anterior development in mice: diet as modulator of risk for neural tube defects. AMERICAN JOURNAL OF MEDICAL GENETICS. PART C, SEMINARS IN MEDICAL GENETICS 2013; 163C:333-56. [PMID: 24124024 PMCID: PMC4149464 DOI: 10.1002/ajmg.c.31380] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Head morphogenesis is a complex process that is controlled by multiple signaling centers. The most common defects of cranial development are craniofacial defects, such as cleft lip and cleft palate, and neural tube defects, such as anencephaly and encephalocoele in humans. More than 400 genes that contribute to proper neural tube closure have been identified in experimental animals, but only very few causative gene mutations have been identified in humans, supporting the notion that environmental influences are critical. The intrauterine environment is influenced by maternal nutrition, and hence, maternal diet can modulate the risk for cranial and neural tube defects. This article reviews recent progress toward a better understanding of nutrients during pregnancy, with particular focus on mouse models for defective neural tube closure. At least four major patterns of nutrient responses are apparent, suggesting that multiple pathways are involved in the response, and likely in the underlying pathogenesis of the defects. Folic acid has been the most widely studied nutrient, and the diverse responses of the mouse models to folic acid supplementation indicate that folic acid is not universally beneficial, but that the effect is dependent on genetic configuration. If this is the case for other nutrients as well, efforts to prevent neural tube defects with nutritional supplementation may need to become more specifically targeted than previously appreciated. Mouse models are indispensable for a better understanding of nutrient-gene interactions in normal pregnancies, as well as in those affected by metabolic diseases, such as diabetes and obesity.
Collapse
|
22
|
Jung JH, Wang XD, Loeken MR. Mouse embryonic stem cells established in physiological-glucose media express the high KM Glut2 glucose transporter expressed by normal embryos. Stem Cells Transl Med 2013; 2:929-34. [PMID: 24167319 DOI: 10.5966/sctm.2013-0093] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Glut2 is one of the facilitative glucose transporters expressed by preimplantation and early postimplantation embryos. Glut2 is important for survival before embryonic day 10.5. The Glut2 KM (∼16 mmol/liter) is significantly higher than physiologic glucose concentrations (∼5.5 mmol/liter), suggesting that Glut2 normally performs some essential function other than glucose transport. Nevertheless, Glut2 efficiently transports glucose when extracellular glucose concentrations are above the Glut2 KM. Media containing 25 mmol/liter glucose are widely used to establish and propagate embryonic stem cells (ESCs). Glut2-mediated glucose uptake by embryos induces oxidative stress and can cause embryo cell death. Here we tested the hypothesis that low-glucose embryonic stem cells (LG-ESCs) isolated in physiological-glucose (5.5 mmol/liter) media express a functional Glut2 glucose transporter. LG-ESCs were compared with conventional D3 ESCs that had been cultured only in high-glucose media. LG-ESCs expressed Glut2 mRNA and protein at much higher levels than D3 ESCs, and 2-deoxyglucose transport by LG-ESCs, but not D3 ESCs, exhibited high Michaelis-Menten kinetics. Glucose at 25 mmol/liter induced oxidative stress in LG-ESCs and inhibited expression of Pax3, an embryo gene that is inhibited by hyperglycemia, in neuronal precursors derived from LG-ESCs. These effects were not observed in D3 ESCs. These findings demonstrate that ESCs isolated in physiological-glucose media retain a functional Glut2 transporter that is expressed by embryos. These cells are better suited to the study of metabolic regulation characteristic of the early embryo and may be advantageous for therapeutic applications.
Collapse
Affiliation(s)
- Jin Hyuk Jung
- Section on Islet Cell and Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | |
Collapse
|
23
|
Abstract
Diabetes mellitus is responsible for nearly 10% of fetal anomalies in diabetic pregnancies. Although aggressive perinatal care and glycemic control are available in developed countries, the birth defect rate in diabetic pregnancies remains higher than that in the general population. Major cellular activities (ie, proliferation and apoptosis) and intracellular metabolic conditions (ie, nitrosative, oxidative, and endoplasmic reticulum stress) have been shown to be associated with diabetic embryopathy using animal models. Translating advances made in animal studies into clinical applications in humans requires collaborative efforts across the basic research, preclinical, and clinical communities.
Collapse
Affiliation(s)
- Zhiyong Zhao
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| | | |
Collapse
|
24
|
Lupo PJ, Canfield MA, Chapa C, Lu W, Agopian AJ, Mitchell LE, Shaw GM, Waller DK, Olshan AF, Finnell RH, Zhu H. Diabetes and obesity-related genes and the risk of neural tube defects in the national birth defects prevention study. Am J Epidemiol 2012; 176:1101-9. [PMID: 23132673 DOI: 10.1093/aje/kws190] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Few studies have evaluated genetic susceptibility related to diabetes and obesity as a risk factor for neural tube defects (NTDs). The authors investigated 23 single nucleotide polymorphisms among 9 genes (ADRB3, ENPP1, FTO, LEP, PPARG, PPARGC1A, SLC2A2, TCF7L2, and UCP2) associated with type 2 diabetes or obesity. Samples were obtained from 737 NTD case-parent triads included in the National Birth Defects Prevention Study during 1999-2007. Log-linear models were used to evaluate maternal and offspring genetic effects. After application of the false discovery rate, there were 5 significant maternal genetic effects. The less common alleles at the 4 FTO single nucleotide polymorphisms showed a reduction of NTD risk (for rs1421085, relative risk (RR) = 0.73 (95% confidence interval (CI): 0.62, 0.87); for rs8050136, RR = 0.79 (95% CI: 0.67, 0.93); for rs9939609, RR = 0.79 (95% CI: 0.67, 0.94); and for rs17187449, RR = 0.80 (95% CI: 0.68, 0.95)). Additionally, maternal LEP rs2071045 (RR = 1.31, 95% CI: 1.08, 1.60) and offspring UCP2 rs660339 (RR = 1.32, 95% CI: 1.06, 1.64) were associated with NTD risk. Furthermore, the maternal genotype for TCF7L2 rs3814573 suggested an increased NTD risk among obese women. These findings indicate that maternal genetic variants associated with glucose homeostasis may modify the risk of having an NTD-affected pregnancy.
Collapse
Affiliation(s)
- Philip J Lupo
- Human Genetics Center, Division of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas, Houston, TX, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zohn IE. Mouse as a model for multifactorial inheritance of neural tube defects. ACTA ACUST UNITED AC 2012; 96:193-205. [PMID: 22692891 DOI: 10.1002/bdrc.21011] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Neural tube defects (NTDs) such as spina bifida and anencephaly are some of the most common structural birth defects found in humans. These defects occur due to failures of neurulation, a process where the flat neural plate rolls into a tube. In spite of their prevalence, the causes of NTDs are poorly understood. The multifactorial threshold model best describes the pattern of inheritance of NTDs where multiple undefined gene variants interact with environmental factors to cause an NTD. To date, mouse models have implicated a multitude of genes as required for neurulation, providing a mechanistic understanding of the cellular and molecular pathways that control neurulation. However, the majority of these mouse models exhibit NTDs with a Mendelian pattern of inheritance. Still, many examples of multifactorial inheritance have been demonstrated in mouse models of NTDs. These include null and hypomorphic alleles of neurulation genes that interact in a complex fashion with other genetic mutations or environmental factors to cause NTDs. These models have implicated several genes and pathways for testing as candidates for the genetic basis of NTDs in humans, resulting in identification of putative pathogenic mutations in some patients. Mouse models also provide an experimental paradigm to gain a mechanistic understanding of the environmental factors that influence NTD occurrence, such as folic acid and maternal diabetes, and have led to the discovery of additional preventative nutritional supplements such as inositol. This review provides examples of how multifactorial inheritance of NTDs can be modeled in the mouse.
Collapse
Affiliation(s)
- Irene E Zohn
- Center for Neuroscience Research, Children's Research Institute, Children's National Medical Center, Washington, DC 20010, USA.
| |
Collapse
|
26
|
Nordquist N, Luthman H, Pettersson U, Eriksson UJ. Linkage study of embryopathy-polygenic inheritance of diabetes-induced skeletal malformations in the rat. Reprod Toxicol 2012; 33:297-307. [PMID: 22227068 DOI: 10.1016/j.reprotox.2011.12.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2011] [Revised: 12/13/2011] [Accepted: 12/16/2011] [Indexed: 12/16/2022]
Abstract
We developed an inbred rat model of diabetic embryopathy, in which the offspring displays skeletal malformations (agnathia or micrognathia) when the mother is diabetic, and no malformations when she is not diabetic. Our aim was to find genes controlling the embryonic maldevelopment in a diabetic environment. We contrasted the fetal outcome in inbred Sprague-Dawley L rats (20% skeletal malformations in diabetic pregnancy) with that of inbred Wistar Furth rats (denotedW, no skeletal malformations in diabetic pregnancy). We used offspring from the backcross F(1)×L to probe for the genetic basis for malformation of the mandible in diabetic pregnancy. A set of 186 fetuses (93 affected, 93 unaffected) was subjected to a whole genome scan with 160 micro satellites. Analysis of genotype distribution indicated 7 loci on chromosome 4, 10 (3 loci), 14, 18, and 19 in the teratogenic process (and 14 other loci on 12 chromosomes with less strong association to the malformations), several of which contained genes implicated in other experimental studies of diabetic embryopathy. These candidate genes will be scrutinized in further experimentation. We conclude that the genetic involvement in rodent diabetic embryopathy is polygenic and predisposing for congenital malformations.
Collapse
|
27
|
Abstract
Diabetic embryopathy reflects a scientific enigma--how does a seemingly rich intrauterine environment manage to disturb the development of the embryo? Which compounds in that environment may be teratogenic--and how shall we find them? How can we investigate a putative dose-response nature of the teratogen, i.e., how can we monitor the effects of varied severity of the diabetic state (which can be varied in a number of metabolic ways) on the embryonic development? Here, the whole embryo culture (WEC) technique provides an excellent tool for such studies. WEC is thus currently used to investigate the effect of graded levels of diabetes (e.g., hyperglycemia, hyperketonemia, increased branched chain amino acid (BCAA) levels), and putative antiteratogenic agents (antioxidants, folic acid, arachidonic acid, inositol), as well as the effect of different embryonic genotypes on diabetes-induced (mal)development. WEC is the only method, which is able to couple specific embryonic maldevelopment to precise changes in substrate levels or the (epi)genotype of the embryo. Using this method, we have been able to demonstrate that a diabetic environment--culture of embryos in serum from diabetic animals or in serum with increased levels of glucose, β-hydroxybutyrate or α-ketoisocaproic acid (KIC)--causes increased embryonic maldevelopment, and that this dysmorphogenesis is blocked by the addition of ROS scavenging agents to the culture medium. Genetically, others and we have demonstrated that Pax-3 downregulation predisposes for diabetes-induced dysmorphogenesis.
Collapse
|
28
|
Wlodarczyk BJ, Palacios AM, Chapa CJ, Zhu H, George TM, Finnell RH. Genetic basis of susceptibility to teratogen induced birth defects. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:215-26. [PMID: 21766441 DOI: 10.1002/ajmg.c.30314] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Birth defects remain the leading cause of infant death in US. The field of teratology has been focused on the causes and underlying mechanisms of birth defects for decades, yet our understanding of these critical issues remain unacceptably vague. Conclusions from years of animal and human studies made it clear that the vast majority of birth defects have multifactorial origins, with contributions from environmental and genetic factors. The environment comprises not only of the physical, biological, and chemical external environment surrounding the pregnant woman, but it also includes the internal environment of the woman's body that interact with the developing embryo in a complex fashion. The importance of maternal and embryonic genetic factors consisting of countless genetic variants/mutations that exist within every individual contribute to birth defect susceptibility is only now being more fully appreciated. This great complexity of the genome and its diversity within individuals and populations seems to be the principal reason why the same teratogenic exposure can induce severe malformation in one embryo, while fail to do so to other exposed embryos. As the interaction between genetic and environmental factors has long been recognized as the first "Principle of Teratology" by Wilson and Warkany [1965. Teratology: Principles and techniques. Chicago: University of Chicago Press], it is only recently that the appropriate investigative tools have been developed with which to fully investigate this fundamental principle. The introduction of high throughput technologies like whole genome sequencing or genome-wide association studies are promising to deliver an enormous amount of new data that will shed light on the genomic factors that contribute susceptibility to environmental teratogens. In this review, we attempt to summarize the epidemiological and experimental literature concerning birth defects whose phenotypic expression can be clearly related to the interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. © 2011 Wiley-Liss, Inc.
Collapse
Affiliation(s)
- Bogdan J Wlodarczyk
- Dell Pediatric Research Institute, 1400 Barbara Jordan Blvd., Austin, TX 78723, USA.
| | | | | | | | | | | |
Collapse
|
29
|
Chang AK, Sopher AB, Gallagher MP, Khandji AG, Oberfield SE. Congenital pituitary gland abnormalities--a possible association with maternal hyperglycemia: two case reports. Clin Pediatr (Phila) 2011; 50:662-5. [PMID: 21339251 PMCID: PMC4426826 DOI: 10.1177/0009922811398392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
30
|
Ahmed RG. Evolutionary interactions between diabetes and development. Diabetes Res Clin Pract 2011; 92:153-67. [PMID: 21111504 DOI: 10.1016/j.diabres.2010.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 10/12/2010] [Accepted: 10/19/2010] [Indexed: 12/19/2022]
Abstract
Because of the complications of diabetes affecting the mothers and their fetus/newborns are less known, this review examined the epidemiologic and mechanistic issues involved in the developmental programming of diabetic mothers. This overview showed that sperm, egg, zygote or blastocyst derived from diabetic parents may develop into offspring with high risk of any type of diabetes, even if placed in a normal uterus, producing developmental delay, embryopathy, geno- and cyto-toxicity, teratogenic changes, free radicals and apoptosis. These early insults may then lead to an increased rate of miscarriage and congenital anomalies depending on free radicals signaling and cell-death pathways involved by the diabetogenic agents. Furthermore, sperm, egg, zygote or blastocyst from normal parents will have an increased risk of diabetes if placed in a diabetic uterus. Interestingly, diabetes has deleterious effect on male/female reproductive functions and on the development of the blastocysts/embryos. Indeed, this review hypothesized that the long-term effects of diabetes during the pregnancy (gestational diabetes) may influence, generally, on the health of the embryos, newborns (perinatal life) and adulthood. However, there are obvious species differences between pregnant women and animal models. Thus, maintaining normoglycaemia during pregnancy may play an important role in a healthy life for the newborns.
Collapse
Affiliation(s)
- R G Ahmed
- Department of Zoology, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
| |
Collapse
|
31
|
Ejdesjö A, Wentzel P, Eriksson UJ. Genetic and environmental influence on diabetic rat embryopathy. Am J Physiol Endocrinol Metab 2011; 300:E454-67. [PMID: 21119026 DOI: 10.1152/ajpendo.00543.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We assessed genetic and environmental influence on fetal outcome in diabetic rat pregnancy. Crossing normal (N) and manifestly diabetic (MD) Wistar Furth (W) and Sprague-Dawley (L) females with W or L males yielded four different fetal genotypes (WW, LL, WL, and LW) in N or MD rat pregnancies for studies. We also evaluated fetal outcome in litters with enhanced or diminished severity of maternal MD state, denoted MD(+)WL and MD(-)LW. The MDWW litters had less malformations and resorptions (0 and 19%) than the MDLL litters (17 and 30%). The MDWL litters (0 and 8%) were less maldeveloped than the MDLW litters (9 and 22%), whereas the MD(+)WL (3 and 23%) and MD(-)LW (1 and 17%) litters showed increased and decreased dysmorphogenesis (compared with MDWL and MDLW litters). The pregnant MDW rats had lower serum levels of glucose, fructosamine, and branched-chain amino acids than the pregnant MDL rats, whereas the pregnant MD(+)W and MD(-)L rats had levels comparable with those of the MDL and MDW rats, respectively. The 8-iso-PGF2α levels of the malformed MDLW offspring were increased compared with the nonmalformed MDLW offspring. Diabetes decreased fetal heart Ret and increased Bmp-4 gene expression in the MDLW offspring and caused decreased GDNF and Shh expression in the malformed fetal mandible of the MDLW offspring. We conclude that the fetal genome controls the embryonic dysmorphogenesis in diabetic pregnancy by instigating a threshold level for the teratological insult and that the maternal genome controls the teratogenic insult by (dys)regulating the maternal metabolism.
Collapse
Affiliation(s)
- A Ejdesjö
- Dept. of Medical Cell Biology, Biomedical Centre, Uppsala, Sweden.
| | | | | |
Collapse
|
32
|
Zabihi S, Loeken MR. Understanding diabetic teratogenesis: where are we now and where are we going? BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:779-90. [PMID: 20706996 PMCID: PMC5070114 DOI: 10.1002/bdra.20704] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Maternal pregestational diabetes (type 1 or type 2) poses an increased risk for a broad spectrum of birth defects. To our knowledge, this problem first came to the attention of the Teratology Society at the 14th Annual Meeting in Vancouver, B.C. in 1974, with a presentation by Lewis Holmes, "Etiologic heterogeneity of neural tube defects". Although advances in the control of diabetes in the decades since the discovery of insulin in the 1920's have reduced the risk for birth defects during diabetic pregnancy, the increasing incidence of diabetes among women of childbearing years indicates that this cause of birth defects is a growing public health concern. Major advances in understanding how a disease of maternal fuel metabolism can interfere with embryogenesis of multiple organ systems have been made in recent years. In this review, we trace the history of the study of diabetic teratogenesis and discuss a model in which tissue-specific developmental control genes are regulated at specific times in embryonic development by glucose metabolism. The major function of such genes is to suppress apoptosis, perhaps to preserve proliferative capability, and inhibit premature senescence.
Collapse
Affiliation(s)
- Sheller Zabihi
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215
| |
Collapse
|
33
|
Kim YH, Ryu JM, Lee YJ, Han HJ. Fibronectin synthesis by high glucose level mediated proliferation of mouse embryonic stem cells: Involvement of ANG II and TGF-beta1. J Cell Physiol 2010; 223:397-407. [PMID: 20112290 DOI: 10.1002/jcp.22048] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The role of individual supplements necessary for the long-term self-renewal of embryonic stem (ES) cells is poorly characterized in feeder/serum-free culture systems. This study sought to characterize the relationship between the effects of glucose on ES cell proliferation and fibronectin (FN) synthesis, and to assess the mechanisms responsible for these cellular effects of glucose. Treatment of the two ES cells (ES-E14TG2a and ES-R1) with 25 mM glucose (high glucose) increased the expression levels of FN mRNA and protein. In addition, high glucose and ANG II synergistically increased FN expression level, which coincident with data showing that high glucose increased the mRNA expression of angiotensin II (ANG II) type 1 receptor (AT(1)R), angiotensinogen, and FN, but not ANG II type 2 receptor. High glucose also increased the intracellular calcium (Ca(2+)) concentration and pan-protein kinase C (PKC) phosphorylation. Inhibition of the Ca(2+)/PKC pathway blocked high glucose-induced FN expression. High glucose or ANG II also synergistically increased transforming growth factor-beta1 (TGF-beta(1)) expression, while pretreatment with losartan abolished the high glucose-induced increase in TGF-beta(1) production. Moreover, TGF-beta(1)-specific small interfering RNA inhibited high glucose-induced FN expression and c-Jun N-terminal kinase (JNK) activation. The JNK inhibitor SP600125 blocked high glucose-induced FN expression and inhibited cell cycle regulatory protein expression induced by high glucose or TGF-beta(1). In this study, inhibition of AT(1)R, Ca(2+)/PKC, TGF-beta(1), JNK, FN receptor blocked the high glucose-induced DNA synthesis, increased the cell population in S phase, and the number of cells. It is concluded that high glucose increases FN synthesis through the ANG II or TGF-beta1 pathways, which in part mediates proliferation of mouse ES cells.
Collapse
Affiliation(s)
- Yun Hee Kim
- Department of Veterinary Physiology, Biotherapy Human Resources Center (BK 21), College of Veterinary Medicine, Chonnam National University, Gwangju 500-757, Korea
| | | | | | | |
Collapse
|
34
|
Abstract
Birth defects resulting from diabetic pregnancy are associated with apoptosis of a critical mass of progenitor cells early during the formation of the affected organ(s). Insufficient expression of genes that regulate viability of the progenitor cells is responsible for the apoptosis. In particular, maternal diabetes inhibits expression of a gene, Pax3, that encodes a transcription factor which is expressed in neural crest and neuroepithelial cells. As a result of insufficient Pax3, cardiac neural crest and neuroepithelial cells undergo apoptosis by a process dependent on the p53 tumor suppressor protein. This, then provides a cellular explanation for the cardiac outflow tract and neural tube and defects induced by diabetic pregnancy.
Collapse
Affiliation(s)
- James H. Chappell
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Xiao Dan Wang
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| | - Mary R. Loeken
- Section on Developmental and Stem Cell Biology, Joslin Diabetes Center, One Joslin Place, Boston, MA 02215, USA
| |
Collapse
|
35
|
Zhu H, Kartiko S, Finnell RH. Importance of gene-environment interactions in the etiology of selected birth defects. Clin Genet 2009; 75:409-23. [PMID: 19459879 DOI: 10.1111/j.1399-0004.2009.01174.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
It is generally understood that both genetic and environmental factors contribute to the highly complex etiology of structural birth defects, including neural tube defects, oral clefts and congenital heart defects, by disrupting highly regulated embryonic developmental processes. The intrauterine environment of the developing embryo/fetus is determined by maternal factors such as health/disease status, lifestyle, medication, exposure to environmental teratogens, as well as the maternal genotype. Certain genetic characteristics of the embryo/fetus also predispose it to developmental abnormalities. Epidemiologic and animal studies conducted over the last few decades have suggested that the interplay between genes and environmental factors underlies the etiological heterogeneity of these defects. It is now widely believed that the study of gene-environment interactions will lead to better understanding of the biological mechanisms and pathological processes that contribute to the development of complex birth defects. It is only through such an understanding that more efficient measures will be developed to prevent these severe, costly and often deadly defects. In this review, we attempt to summarize the complex clinical and experimental literature on current hypotheses of interactions between several select environmental factors and those genetic pathways in which they are most likely to have significant modifying effects. These include maternal folate nutritional status, maternal diabetes/obesity-related conditions, and maternal exposure to selected medications and environmental contaminants. Our goal is to highlight the potential gene-environment interactions affecting early embryogenesis that deserve comprehensive study.
Collapse
Affiliation(s)
- H Zhu
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M Health Science Center, Houston, TX 77030, USA.
| | | | | |
Collapse
|
36
|
Hill DS, Wlodarczyk BJ, Mitchell LE, Finnell RH. Arsenate-induced maternal glucose intolerance and neural tube defects in a mouse model. Toxicol Appl Pharmacol 2009; 239:29-36. [PMID: 19446573 PMCID: PMC3998373 DOI: 10.1016/j.taap.2009.05.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 05/08/2009] [Accepted: 05/08/2009] [Indexed: 01/02/2023]
Abstract
BACKGROUND Epidemiological studies have linked environmental arsenic (As) exposure to increased type 2 diabetes risk. Periconceptional hyperglycemia is a significant risk factor for neural tube defects (NTDs), the second most common structural birth defect. A suspected teratogen, arsenic (As) induces NTDs in laboratory animals. OBJECTIVES We investigated whether maternal glucose homeostasis disruption was responsible for arsenate-induced NTDs in a well-established dosing regimen used in studies of arsenic's teratogenicity in early neurodevelopment. METHODS We evaluated maternal intraperitoneal (IP) exposure to As 9.6 mg/kg (as sodium arsenate) in LM/Bc/Fnn mice for teratogenicity and disruption of maternal plasma glucose and insulin levels. Selected compounds (insulin pellet, sodium selenate (SS), N-acetyl cysteine (NAC), l-methionine (L-Met), N-tert-Butyl-alpha-phenylnitrone (PBN)) were investigated for their potential to mitigate arsenate's effects. RESULTS Arsenate caused significant glucose elevation during an IP glucose tolerance test (IPGTT). Insulin levels were not different between arsenate and control dams before (arsenate, 0.55 ng/dl; control, 0.48 ng/dl) or after glucose challenge (arsenate, 1.09 ng/dl; control, 0.81 ng/dl). HOMA-IR index was higher for arsenate (3.9) vs control (2.5) dams (p=0.0260). Arsenate caused NTDs (100%, p<0.0001). Insulin pellet and NAC were the most successful rescue agents, reducing NTD rates to 45% and 35%. CONCLUSIONS IPGTT, insulin assay, and HOMA-IR results suggest a modest failure of glucose stimulated insulin secretion and insulin resistance characteristic of glucose intolerance. Insulin's success in preventing arsenate-induced NTDs provides evidence that these arsenate-induced NTDs are secondary to elevated maternal glucose. The NAC rescue, which did not restore maternal glucose or insulin levels, suggests oxidative disruption plays a role.
Collapse
Affiliation(s)
- Denise S. Hill
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Bogdan J. Wlodarczyk
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
| | - Laura E. Mitchell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- Center for Environmental and Rural Health Texas A&M University, College Station, TX 77843, USA
| | - Richard H. Finnell
- Center for Environmental and Genetic Medicine, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, Houston, TX 77030, USA
- Interdisciplinary Faculty of Toxicology, Texas A&M University, College Station, TX 77843, USA
- Center for Environmental and Rural Health Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
37
|
Abstract
Congenital malformations are more common in infants of diabetic women than in children of non-diabetic women. The mechanisms behind diabetes-induced congenital anomalies are not known. Disturbed micronutrient metabolism, in concert with oxidative stress, has been suggested as a cause of diabetes-induced malformations by several studies. In experimental work, administration of inositol, arachidonic acid and several antioxidative compounds, as well as folic acid, to the embryo, has proven to attenuate the teratogenic effects of a diabetic environment. Future therapeutic efforts may include supplementation with antioxidants or micronutrients, such as folic acid, to the pregnant diabetic woman, although exact compounds and doses need to be determined.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Biomedical Center, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
38
|
Pavlinkova G, Salbaum JM, Kappen C. Maternal diabetes alters transcriptional programs in the developing embryo. BMC Genomics 2009; 10:274. [PMID: 19538749 PMCID: PMC2715936 DOI: 10.1186/1471-2164-10-274] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Accepted: 06/18/2009] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Maternal diabetes is a well-known risk factor for birth defects, such as heart defects and neural tube defects. The causative molecular mechanisms in the developing embryo are currently unknown, and the pathogenesis of developmental abnormalities during diabetic pregnancy is not well understood. We hypothesized that the developmental defects are due to alterations in critical developmental pathways, possibly as a result of altered gene expression. We here report results from gene expression profiling of exposed embryos from a mouse diabetes model. RESULTS In comparison to normal embryos at mid-gestation, we find significantly altered gene expression levels in diabetes-exposed embryos. Independent validation of altered expression was obtained by quantitative Real Time Polymerase Chain Reaction. Sequence motifs in the promoters of diabetes-affected genes suggest potential binding of transcription factors that are involved in responses to oxidative stress and/or to hypoxia, two conditions known to be associated with diabetic pregnancies. Functional annotation shows that a sixth of the de-regulated genes have known developmental phenotypes in mouse mutants. Over 30% of the genes we have identified encode transcription factors and chromatin modifying proteins or components of signaling pathways that impinge on transcription. CONCLUSION Exposure to maternal diabetes during pregnancy alters transcriptional profiles in the developing embryo. The enrichment, within the set of de-regulated genes, of those encoding transcriptional regulatory molecules provides support for the hypothesis that maternal diabetes affects specific developmental programs.
Collapse
Affiliation(s)
- Gabriela Pavlinkova
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology of the Academy of Sciences of the Czech Republic, Videnska 1083, Prague 4, CZ-14220, Czech Republic
| | - J Michael Salbaum
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Department of Regulation of Gene Expression, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| | - Claudia Kappen
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE 68198-5455, USA
- Department of Maternal Biology, Pennington Biomedical Research Center, 6400 Perkins Road, Baton Rouge, LA 70808, USA
| |
Collapse
|
39
|
Abstract
Congenital malformations are more common in infants of diabetic women than in children of non-diabetic women. The etiology, pathogenesis and prevention of the diabetes-induced malformations have spurred considerable clinical and basic research efforts. The ultimate aim of these studies has been to obtain an understanding of the teratogenic process, which may enable precise preventive therapeutic measures in diabetic pregnancies. The results of the clinical and basic studies support the view of an early gestational induction of the malformations in diabetic pregnancy by a teratogenic process of multifactorial etiology. There may be possible targets for new therapeutic efforts revealed by the research work. Thus, future additions to the therapeutic efforts may include supplementation with antioxidants and/or folic acid, although more research is needed to delineate the dosages and compounds to be used. As the research into genetic predisposition for the teratogenic induction of malformations by maternal diabetes starts to reveal new genes and gene products involved in the etiology of the malformations, a set of new targets for intervention may arise.
Collapse
Affiliation(s)
- Ulf J Eriksson
- Department of Medical Cell Biology, Uppsala University, Biomedical Center, PO Box 571, SE-75123 Uppsala, Sweden.
| |
Collapse
|
40
|
Abstract
Neural tube defects (NTDs) are among the most common structural birth defects observed in humans. Mouse models provide an excellent experimental system to study the underlying causes of NTDs. These models not only allow for identification of the genes required for neurulation, they provide tractable systems for uncovering the developmental, pathological and molecular mechanisms underlying NTDs. In addition, mouse models are essential for elucidating the mechanisms of gene-environment and gene-gene interactions that contribute to the multifactorial inheritance of NTDs. In some cases these studies have led to development of approaches to prevent NTDs and provide an understanding of the underlying molecular mechanism of these therapies prevent NTDs.
Collapse
Affiliation(s)
- Irene E Zohn
- Children's Research Institute, Children's National Medical Center, Washington, DC, USA
| | | |
Collapse
|
41
|
Wentzel P, Gäreskog M, Eriksson UJ. Decreased cardiac glutathione peroxidase levels and enhanced mandibular apoptosis in malformed embryos of diabetic rats. Diabetes 2008; 57:3344-52. [PMID: 18728230 PMCID: PMC2584142 DOI: 10.2337/db08-0830] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Accepted: 08/14/2008] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To characterize normal and malformed embryos within the same litters from control and diabetic rats for expression of genes related to metabolism of reactive oxygen species (ROS) or glucose as well as developmental genes. RESEARCH DESIGN AND METHODS Embryos from nondiabetic and streptozotocin-induced diabetic rats were collected on gestational day 11 and evaluated for gene expression (PCR) and distribution of activated caspase-3 and glutathione peroxidase (Gpx)-1 by immunohistochemistry. RESULTS Maternal diabetes (MD group) caused growth retardation and an increased malformation rate in the embryos of MD group rats compared with those of controls (N group). We found decreased gene expression of Gpx-1 and increased expression of vascular endothelial growth factor-A (Vegf-A) in malformed embryos of diabetic rats (MDm group) compared with nonmalformed littermates (MDn group). Alterations of messenger RNA levels of other genes were similar in MDm and MDn embryos. Thus, expression of copper zinc superoxide dismutase (CuZnSOD), manganese superoxide dismutase (MnSOD), and sonic hedgehog homolog (Shh) were decreased, and bone morphogenetic protein-4 (Bmp-4) was increased, in the MD embryos compared with the N embryos. In MDm embryos, we detected increased activated caspase-3 immunostaining in the first visceral arch and cardiac area and decreased Gpx-1 immunostaining in the cardiac tissue; both findings differed from the caspase/Gpx-1 immunostaining of the MDn and N embryos. CONCLUSIONS Maternal diabetes causes growth retardation, congenital malformations, and decreased general antioxidative gene expression in the embryo. In particular, enhanced apoptosis of the first visceral arch and heart, together with decreased cardiac Gpx-1 levels, may compromise the mandible and heart and thus cause an increased risk of developing congenital malformation.
Collapse
Affiliation(s)
- Parri Wentzel
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden.
| | | | | |
Collapse
|
42
|
Torchinsky A, Toder V. TNFalpha in the pathogenesis of diabetes-induced embryopathies: functions and targets. Rev Diabet Stud 2008; 4:200-9. [PMID: 18338073 DOI: 10.1900/rds.2007.4.200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Hyperglycemia-induced increase in the production of reactive oxygen species (ROS) is proposed to be an initial step in the pathogenesis of diabetes-induced spontaneous abortions and structural inborn anomalies. However, the subsequent steps in this process are incompletely understood. One of the key molecules involved is tumor necrosis factor-alpha (TNFalpha): its expression is regulated by ROS and it regulates ROS production in turn. This cytokine has been the focus of many studies addressing the mechanisms of different forms of diabetes-induced embryopathies, such as early pregnancy loss, inborn anomalies, fetal growth retardation as well as some pathologies appearing during adult life. In this review, we analyze the results of these studies and discuss how TNFalpha may regulate the response of pre- and post-implantation stage embryos to diabetes-induced detrimental stimuli. The data presented in this review suggest that TNFalpha may play a dual role in the pathogenesis of diabetes-induced embryopathies. It may act both as a mediator of diabetes-induced embryotoxic stimuli leading to the death of peri-implantation stage embryos and, possibly, as a suppressor of diabetes-induced apoptosis in post-implantation stage embryos. It also appears that TNFalpha fulfills these functions via interaction with leukemia inhibitory factor (LIF) and the transcription factor NF-kappaB. These molecules are presently considered as attractive targets for the treatment of diabetes-induced complications. Therefore, further studies addressing their role in the mechanisms underlying diabetes-induced embryopathies are needed to evaluate the safety of such therapies for diabetic women of childbearing age.
Collapse
Affiliation(s)
- Arkady Torchinsky
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|