1
|
Imasawa T, Murayama K, Hirano D, Nozu K. Comprehensive review of mitochondrial nephropathy-a renal phenotype in mitochondrial disease: causative genes, clinical and pathological features, diagnosis, prognosis, and treatment. Clin Exp Nephrol 2025; 29:39-56. [PMID: 39625678 PMCID: PMC11928409 DOI: 10.1007/s10157-024-02554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/19/2024] [Indexed: 02/09/2025]
Abstract
Mitochondrial nephropathy is a genetic renal disease characterized by oxidative phosphorylation abnormalities in the mitochondrial respiratory chain in kidney cells, caused by pathogenic gene variants located on mitochondrial or nuclear DNA. Recent advancements in genetic diagnostic techniques and their widespread adoption have led to the identification of various genes associated with mitochondrial nephropathy. This review investigates the causative genes and clinicopathological features of mitochondrial nephropathy, including the various phenotypes and associated complications, and suggests potential pathogenic mechanisms. Furthermore, the diagnostic methods of the disease are explained with particular emphasis on characteristic pathological findings and genetic analysis. We also analyze the available long-term observational prognostic data. Although there is currently no evidence-based treatment for mitochondrial nephropathy, an overview of the existing treatment options is discussed, including future expectations. The choice of renal replacement therapy in cases with progression to end-stage renal disease has also been discussed. Overall, this review highlights the importance of raising awareness about mitochondrial nephropathy and establishing appropriate diagnostic systems to facilitate rapid and effective treatment.
Collapse
Affiliation(s)
- Toshiyuki Imasawa
- Department of Nephrology, National Hospital Organization Chibahigashi National Hospital, 673 Nitona-cho, Chuoh-ku, Chiba, 206-8712, Japan.
| | - Kei Murayama
- Diagnostics and Therapeutic of Intractable Diseases, Intractable Disease Research Center, Graduate School of Medicine, Juntendo University, 2-1-1, Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Daishi Hirano
- Department of Pediatrics, The Jikei University School of Medicine, 3-25-8 Nishi-Shinbashi, Minato-ku, Tokyo, 105-0003, Japan
| | - Kandai Nozu
- Department of Pediatrics, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| |
Collapse
|
2
|
Khanna S, Smith BT. Neovascular Glaucoma in MELAS syndrome. Am J Ophthalmol Case Rep 2024; 34:102064. [PMID: 38707951 PMCID: PMC11067001 DOI: 10.1016/j.ajoc.2024.102064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024] Open
Abstract
Purpose To describe examination and findings in a case of mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes (MELAS) with particular focus on the ocular sequelae from diabetes. Observations Neovascular glaucoma is not a common manifestation of MELAS. Conclusions and Importance We present a rare case of neovascular glaucoma in a patient with MELAS with a history of diabetes, hearing loss, and macular dystrophy. MELAS should be suspected in patients with this constellation of symptoms.
Collapse
Affiliation(s)
- Saira Khanna
- The Retina Institute, 2201 S. Brentwood Blvd, St. Louis, MO, 63144, USA
| | - Bradley T. Smith
- The Retina Institute, 2201 S. Brentwood Blvd, St. Louis, MO, 63144, USA
| |
Collapse
|
3
|
Hitti-Malin RJ, Panneman DM, Corradi Z, Boonen EGM, Astuti G, Dhaenens CM, Stöhr H, Weber BHF, Sharon D, Banin E, Karali M, Banfi S, Ben-Yosef T, Glavač D, Farrar GJ, Ayuso C, Liskova P, Dudakova L, Vajter M, Ołdak M, Szaflik JP, Matynia A, Gorin MB, Kämpjärvi K, Bauwens M, De Baere E, Hoyng CB, Li CHZ, Klaver CCW, Inglehearn CF, Fujinami K, Rivolta C, Allikmets R, Zernant J, Lee W, Podhajcer OL, Fakin A, Sajovic J, AlTalbishi A, Valeina S, Taurina G, Vincent AL, Roberts L, Ramesar R, Sartor G, Luppi E, Downes SM, van den Born LI, McLaren TL, De Roach JN, Lamey TM, Thompson JA, Chen FK, Tracewska AM, Kamakari S, Sallum JMF, Bolz HJ, Kayserili H, Roosing S, Cremers FPM. Towards Uncovering the Role of Incomplete Penetrance in Maculopathies through Sequencing of 105 Disease-Associated Genes. Biomolecules 2024; 14:367. [PMID: 38540785 PMCID: PMC10967834 DOI: 10.3390/biom14030367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/14/2024] [Accepted: 03/15/2024] [Indexed: 05/02/2024] Open
Abstract
Inherited macular dystrophies (iMDs) are a group of genetic disorders, which affect the central region of the retina. To investigate the genetic basis of iMDs, we used single-molecule Molecular Inversion Probes to sequence 105 maculopathy-associated genes in 1352 patients diagnosed with iMDs. Within this cohort, 39.8% of patients were considered genetically explained by 460 different variants in 49 distinct genes of which 73 were novel variants, with some affecting splicing. The top five most frequent causative genes were ABCA4 (37.2%), PRPH2 (6.7%), CDHR1 (6.1%), PROM1 (4.3%) and RP1L1 (3.1%). Interestingly, variants with incomplete penetrance were revealed in almost one-third of patients considered solved (28.1%), and therefore, a proportion of patients may not be explained solely by the variants reported. This includes eight previously reported variants with incomplete penetrance in addition to CDHR1:c.783G>A and CNGB3:c.1208G>A. Notably, segregation analysis was not routinely performed for variant phasing-a limitation, which may also impact the overall diagnostic yield. The relatively high proportion of probands without any putative causal variant (60.2%) highlights the need to explore variants with incomplete penetrance, the potential modifiers of disease and the genetic overlap between iMDs and age-related macular degeneration. Our results provide valuable insights into the genetic landscape of iMDs and warrant future exploration to determine the involvement of other maculopathy genes.
Collapse
Affiliation(s)
- Rebekkah J. Hitti-Malin
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Daan M. Panneman
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Zelia Corradi
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Erica G. M. Boonen
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Galuh Astuti
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Claire-Marie Dhaenens
- Univ. Lille, Inserm, CHU Lille, U1172-LilNCog-Lille Neuroscience & Cognition, F-59000 Lille, France
| | - Heidi Stöhr
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, 93053 Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Marianthi Karali
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy
| | - Sandro Banfi
- Department of Precision Medicine, University of Campania ‘Luigi Vanvitelli’, 80138 Naples, Italy
- Eye Clinic, Multidisciplinary Department of Medical, Surgical and Dental Sciences, University of Campania ‘Luigi Vanvitelli’, 80131 Naples, Italy
- Telethon Institute of Genetics and Medicine (TIGEM), 80078 Pozzuoli, Italy
| | - Tamar Ben-Yosef
- Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa 31096, Israel
| | - Damjan Glavač
- Department of Molecular Genetics, Institute of Pathology, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Center for Human Genetics and Pharmacogenomics, Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
| | - G. Jane Farrar
- The School of Genetics and Microbiology, The University of Dublin Trinity College, D02 VF25 Dublin, Ireland
| | - Carmen Ayuso
- Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Petra Liskova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Lubica Dudakova
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Marie Vajter
- Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
- Department of Ophthalmology, First Faculty of Medicine, Charles University and General University Hospital in Prague, 128 08 Prague, Czech Republic
| | - Monika Ołdak
- Department of Histology and Embryology, Medical University of Warsaw, 02-004 Warsaw, Poland
| | - Jacek P. Szaflik
- Department of Ophthalmology, Medical University of Warsaw, SPKSO Ophthalmic University Hospital, 03-709 Warsaw, Poland
| | - Anna Matynia
- College of Optometry, University of Houston, Houston, TX 77004, USA
- Jules Stein Eye Institute, Los Angeles, CA 90095, USA
- Ophthalmology, University of California Los Angeles David Geffen School of Medicine, Los Angeles, CA 90095, USA
| | | | | | - Miriam Bauwens
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Elfride De Baere
- Department of Biomolecular Medicine, Ghent University, 9000 Ghent, Belgium
- Center for Medical Genetics, Ghent University Hospital, 9000 Ghent, Belgium
| | - Carel B. Hoyng
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Catherina H. Z. Li
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Caroline C. W. Klaver
- Department of Ophthalmology, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Chris F. Inglehearn
- Division of Molecular Medicine, Leeds Institute of Medical Research, St. James’s University Hospital, University of Leeds, Leeds LS9 7TF, UK
| | - Kaoru Fujinami
- Department of Ophthalmology, The Jikei University School of Medicine, Tokyo 105-8461, Japan
| | - Carlo Rivolta
- Institute of Molecular and Clinical Ophthalmology Basel, 4031 Basel, Switzerland
| | - Rando Allikmets
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
- Department of Pathology & Cell Biology, Columbia University, New York, NY 10027, USA
| | - Jana Zernant
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Winston Lee
- Department of Ophthalmology, Columbia University, New York, NY 10027, USA
| | - Osvaldo L. Podhajcer
- Laboratorio de Terapia Molecular y Celular (Genocan), Fundación Instituto Leloir, CONICET, Buenos Aires 1405, Argentina
| | - Ana Fakin
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Jana Sajovic
- Eye Hospital, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Alaa AlTalbishi
- St John of Jerusalem Eye Hospital Group, East Jerusalem 91198, Palestine
| | - Sandra Valeina
- Department of Ophthalmology, Riga Stradins University, LV-1007 Riga, Latvia
- Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| | - Gita Taurina
- Children’s Clinical University Hospital, LV-1004 Riga, Latvia
| | - Andrea L. Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, Faculty of Medical and Health Sciences, The University of Auckland, Grafton, Auckland 1023, New Zealand
- Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland 1142, New Zealand
| | - Lisa Roberts
- University of Cape Town/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Raj Ramesar
- University of Cape Town/MRC Precision and Genomic Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Giovanna Sartor
- Department of Pharmacy and Biotechnology, University of Bologna, 40127 Bologna, Italy
| | - Elena Luppi
- Department of Medical and Surgical Sciences, University of Bologna, 40127 Bologna, Italy
- Unit of Medical Genetics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Nuffield Department of Clinical Neurosciences, Oxford University, Oxford OX3 9DU, UK
- Oxford Eye Hospital, Oxford University NHS Foundation Trust, Oxford OX3 9DU, UK
| | | | - Terri L. McLaren
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - John N. De Roach
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Tina M. Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Jennifer A. Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Nedlands, WA 6009, Australia
| | - Fred K. Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Nedlands, WA 6009, Australia
| | | | - Smaragda Kamakari
- Ophthalmic Genetics Unit, OMMA Ophthalmological Institute of Athens, 115 25 Athens, Greece
| | - Juliana Maria Ferraz Sallum
- Department of Ophthalmology and Visual Sciences, Universidade Federal de São Paulo, São Paulo 04023-062, SP, Brazil
- Instituto de Genética Ocular, São Paulo 04552-050, SP, Brazil
| | - Hanno J. Bolz
- Institute of Human Genetics, University Hospital of Cologne, 50937 Cologne, Germany
| | - Hülya Kayserili
- Department of Medical Genetics, Koc University School of Medicine (KUSOM), 34450 Istanbul, Turkey
| | - Susanne Roosing
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| | - Frans P. M. Cremers
- Department of Human Genetics, Radboud University Medical Center, 6500 HB Nijmegen, The Netherlands
| |
Collapse
|
4
|
Chwiejczak K, Byles D, Gerry P, Von Lany H, Tasiopoulou A, Hattersley A. Multimodal analysis in symptomatic MIDD-associated retinopathy. A case report and literature review. GMS OPHTHALMOLOGY CASES 2023; 13:Doc23. [PMID: 38111473 PMCID: PMC10726563 DOI: 10.3205/oc000231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Purpose To present results of contemporary multimodal ophthalmic imaging in a case of maternally inherited diabetes and deafness (MIDD) and a literature review of MIDD. Methods A case of a 47-year-old female with diabetes mellitus, severe insulin resistance, familial lipodystrohy, deafness and increasing problems with vision is reported. A full ophthalmic examination was done, including best corrected visual acuity (BCVA, LogMAR), funduscopy, and imaging studies: optical coherence tomography (OCT), OCT angiography (OCT-A), fundus autofloresence (FAF), visual fields (HVF) 10-2 , electrophysiology (EP) and genetic testing were performed. Literature available on the topic was reviewed. Results BCVA was 0.06 LogMAR in the right eye and 0.1 LogMAR in the left. Funduscopy revealed atrophy (AT) and pigmentary changes but no diabetic retinopathy. HVF confirmed corresponding defects. The imaging and diagnostic tests showed the following abnormalities: FAF: hypoautofluoresence in areas of AT and mottled appearance in the macular and peripapillary area; OCT: attenuation of outer retinal layers and retinal pigment epithelium (RPE) in the AT; OCT-A: thinning of the deep capillary plexus and choriocapillaris; EP: abnormalities on full field electroretinogram (ERG), 30 Hz flicker and single cone flash response; multifocal ERG: reduced responses; genetic testing: A-to-G transition mutation at position 3243 of the mitochondrial genome, typical for MIDD. After one year OCT ganglion cell analysis showed loss of thickness. Conclusions Genetic testing should be considered in diabetic patients with pigmentary retinopathy. Imaging studies and diagnostic testing showed structural and functional retinal changes, confined to the macula and progressive in nature.
Collapse
Affiliation(s)
- Katarzyna Chwiejczak
- Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
- The University of Sydney, Australia
| | - Daniel Byles
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Paul Gerry
- Neurophysiology Department, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Hirut Von Lany
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
| | - Anastasia Tasiopoulou
- West of England Eye Unit, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- Athens Eye Center, Athens, Greece
| | - Andrew Hattersley
- The MacLeod Diabetes and Endocrine Centre, Royal Devon University Healthcare NHS Foundation Trust, Exeter, United Kingdom
- College of Medicine and Health, University of Exeter, United Kingdom
| |
Collapse
|
5
|
Bakis H, Trimouille A, Vermorel A, Goizet C, Belaroussi Y, Schutz S, Solé G, Combe C, Martin-Negrier ML, Rigothier C. Renal involvement is frequent in adults with primary mitochondrial disorders: an observational study. Clin Kidney J 2022; 16:100-110. [PMID: 36726431 PMCID: PMC9871853 DOI: 10.1093/ckj/sfac195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Indexed: 02/04/2023] Open
Abstract
Background Mitochondrial functions are controlled by genes of both mitochondrial and nuclear DNA. Pathogenic variants affecting any of these are responsible for primary mitochondrial disorders (MIDs), which can be diagnosed during adulthood. Kidney functions are highly dependent on mitochondrial respiration. However, the prevalence of MID-associated nephropathies (MIDANs) is unknown in the adult population. We aimed to address this point and to provide a full characterization of MIDANs in this population. Methods We retrospectively included for observational study adults (≥16 years of age) with genetically diagnosed MID between 2000 and 2020 in our tertiary care academic centre when they had a chronic kidney disease (CKD) evaluation. MIDANs were ascertained by CKD occurring in MIDs. The phenotypic, biological, histopathological and genotypic characteristics were recorded from the medical charts. Results We included 80 MID-affected adults and ascertained MIDANs in 28/80 (35%). Kidney diseases under the care of a nephrologist occurred in only 14/28 (50%) of the adults with MIDAN. MIDANs were tubulointerstitial nephropathy in 14/28 patients (50%) and glomerular diseases in 9/28 (32.1%). In adults with MID, MIDAN was negatively associated with higher albumin levels {odds ratio [OR] 0.79 [95% confidence interval (CI) 0.67-0.95]} and vision abnormalities [OR 0.17 (95% CI 0.03-0.94)] and positively associated with hypertension [OR 4.23 (95% CI 1.04-17.17)]. Conclusion MIDANs are frequent among adult MIDs. They are mostly represented by tubulointerstitial nephropathy or glomerular disease. Vision abnormalities, hypertension and albumin levels were independently associated with MIDANs. Our results pave the way for prospective studies investigating the prevalence of MIDANs among undetermined kidney disease populations.
Collapse
Affiliation(s)
| | - Aurélien Trimouille
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Agathe Vermorel
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Service de Pathologie, Bordeaux, France
| | - Cyril Goizet
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, INSERM U1211, Bordeaux, France
| | - Yaniss Belaroussi
- Université de Bordeaux, INSERM, Bordeaux Population Health Center, ISPED, Bordeaux, France,CHU de Bordeaux, Bordeaux, France,Institut Bergonié, INSERM CIC1401, Clinical and Epidemiological Research Unit, Bordeaux, France
| | - Sacha Schutz
- CHU de Brest, Laboratoire de Génétique Moléculaire, Brest, France,Université de Brest, INSERM, EFS, UMR1078, GGB, Brest, France
| | - Guilhem Solé
- CHU de Bordeaux, Département de Neurologie, Unité Nerf-Muscle, Bordeaux, France,CHU de Bordeaux, AOC National Reference Center for Neuromuscular Disorders, Bordeaux, France
| | - Christian Combe
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| | - Marie-Laure Martin-Negrier
- CHU de Bordeaux, Service de Génétique Médicale, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France,CNRS, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Claire Rigothier
- CHU de Bordeaux, Service de Néphrologie, Transplantation, Dialyse et Aphérèses, Bordeaux, France,CHU de Bordeaux, Centre de Référence pour les Maladies Mitochondriales de l’Enfant à l’Adulte (CARAMMEL), Bordeaux, France,Tissue Bioengineering, U1026, INSERM, Bordeaux, France
| |
Collapse
|
6
|
Ng YS, Lim AZ, Panagiotou G, Turnbull DM, Walker M. Endocrine Manifestations and New Developments in Mitochondrial Disease. Endocr Rev 2022; 43:583-609. [PMID: 35552684 PMCID: PMC9113134 DOI: 10.1210/endrev/bnab036] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Indexed: 11/19/2022]
Abstract
Mitochondrial diseases are a group of common inherited diseases causing disruption of oxidative phosphorylation. Some patients with mitochondrial disease have endocrine manifestations, with diabetes mellitus being predominant but also include hypogonadism, hypoadrenalism, and hypoparathyroidism. There have been major developments in mitochondrial disease over the past decade that have major implications for all patients. The collection of large cohorts of patients has better defined the phenotype of mitochondrial diseases and the majority of patients with endocrine abnormalities have involvement of several other systems. This means that patients with mitochondrial disease and endocrine manifestations need specialist follow-up because some of the other manifestations, such as stroke-like episodes and cardiomyopathy, are potentially life threatening. Also, the development and follow-up of large cohorts of patients means that there are clinical guidelines for the management of patients with mitochondrial disease. There is also considerable research activity to identify novel therapies for the treatment of mitochondrial disease. The revolution in genetics, with the introduction of next-generation sequencing, has made genetic testing more available and establishing a precise genetic diagnosis is important because it will affect the risk for involvement for different organ systems. Establishing a genetic diagnosis is also crucial because important reproductive options have been developed that will prevent the transmission of mitochondrial disease because of mitochondrial DNA variants to the next generation.
Collapse
Affiliation(s)
- Yi Shiau Ng
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Albert Zishen Lim
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Grigorios Panagiotou
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
- NHS Highly Specialised Service for Rare Mitochondrial Disorders, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Mark Walker
- Department of Diabetes and Endocrinology, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
7
|
Abstract
BACKGROUND Previous research suggests that hypertension is more prevalent among patients with mitochondrial diseases. Blood pressure (BP) is linearly related to increased cardiovascular risk, and this relationship is strongest for SBP; nevertheless, studies on SBP and DBP in mitochondrial diseases have not yet been performed. METHOD In a retrospective case-control study design, BP in mitochondrial disease patients was compared with BP in a population cohort. Secondly, using multiple linear regression, we examined blood pressure differences in various genetic mitochondrial diseases. Lastly, we explored additional predictors of BP in a subgroup with the m.3243A>G variant. RESULTS Two hundred and eighty-six genetically confirmed mitochondrial disease patients were included. One hundred and eighty of these patients carried the m.3243A>G mitochondrial DNA variant. SBP was 9 mmHg higher in female mitochondrial disease patients than in the general female population (95% CI: 4.4-13.3 mmHg, P < 0.001), whereas male patients had similar BP compared with controls. BP was not significantly different in patients with m.8344A>G and m.8363G>A, a mtDNA deletion or a nuclear mutation compared with m.3243A>G patients. Higher SBP was a predictor for left ventricular hypertrophy in the m.3243A>G subgroup (P = 0.04). CONCLUSION Novel aspects of the role of mitochondrial dysfunction in blood pressure regulation are exposed in this study. Compared with the general population, female mitochondrial disease patients have a higher SBP. Left ventricular hypertrophy is more prevalent in patients with higher SBP. Clinicians should be aware of this to prevent hypertensive complications in mitochondrial disease patients.
Collapse
|
8
|
Clinicopathological Features of Mitochondrial Nephropathy. Kidney Int Rep 2022; 7:580-590. [PMID: 35257070 PMCID: PMC8897298 DOI: 10.1016/j.ekir.2021.12.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/16/2021] [Accepted: 12/20/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The clinicopathologic characteristics of nephropathy associated with mitochondrial disease (MD) remain unknown. We retrospectively analyzed a cohort of patients with proteinuria, decreased glomerular filtration rate, or Fanconi syndrome who had a genetic mutation confirmed as the cause of MD, defined as mitochondrial nephropathy. Methods This nationwide survey included 757 nephrology sections throughout Japan, and consequently, data on 81 cases of mitochondrial nephropathy were collected. Results The most common renal manifestation observed during the disease course was proteinuria. Hearing loss was the most common comorbidity; a renal-limited phenotype was observed only in mitochondrial DNA (mtDNA) point mutation and COQ8B mutation cases. We found a median time delay of 6.0 years from onset of renal manifestations to diagnosis. Focal segmental glomerular sclerosis (FSGS) was the most common pathologic diagnosis. We then focused on 63 cases with the m.3243A>G mutation. The rate of cases with diabetes was significantly higher among adult-onset cases than among childhood-onset cases. Pathologic diagnoses were more variable in adult-onset cases, including diabetic nephropathy, nephrosclerosis, tubulointerstitial nephropathy, and minor glomerular abnormalities. During the median observation period of 11.0 years from the first onset of renal manifestations in patients with m.3243A>G, renal replacement therapy (RRT) was initiated in 50.8% of patients. Death occurred in 25.4% of the patients during the median observation period of 12.0 years. The median estimated glomerular filtration rate (eGFR) decline was 5.4 ml/min per 1.73 m2/yr in the cases, especially 8.3 ml/min per 1.73 m2/yr in FSGS cases, with m.3243A>G. Conclusion Here, we described the clinicopathologic features and prognosis of mitochondrial nephropathy using large-scale data.
Collapse
|
9
|
Kaisari E, Borruat FX. The Spectrum of Maculopathy in Mitochondrial DNA A3243G Mutation: A Case Series of Six Patients. Klin Monbl Augenheilkd 2021; 238:414-417. [PMID: 33930928 DOI: 10.1055/a-1386-5826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND The mitochondrial DNA (mtDNA) A3243G point mutation encompasses a heterogenous group of disorders including mitochondrial encephalopathy, lactic acidosis, and stroke-like episodes (MELAS), maternally inherited diabetes and deafness (MIDD), and, rarely, chronic progressive external ophthalmoplegia (CPEO). Regardless of the clinical phenotype, a specific retinopathy has been associated with the presence of this mitochondrial DNA mutation. We present six female patients exhibiting retinopathy of the A3243G point mutation at various stages. HISTORY AND SIGNS Six female patients (37 - 70 years old) with the A3243G point mutation (four MELAS, one MIDD, and one CPEO) exhibited a maculopathy. Visual acuity ranged from 1/60 to 10/10. Visual field abnormalities varied from minimal decreased sensitivity to absolute central scotomas. They all exhibited, at various degrees, a characteristic pattern of perimacular and peripapillary retinal pigment epithelium (RPE) alterations, with mottled dys-autofluorescence and RPE atrophy and deposits on OCT. THERAPY AND OUTCOME The level of visual impairment depended on the foveal involvement and the extension of RPE atrophy. The severity of the maculopathy was not related to age. In the only long-term follow-up (15 years), evolution was slowly progressive. CONCLUSIONS A single mtDNA point mutation at locus 3243 can result in a variety of clinical presentations (MELAS, MIDD, or CPEO). Ocular involvement may manifest as a perimacular/peripapillary RPE atrophy/deposit, which can variably impact central visual function (from asymptomatic to legal blindness). The discovery of such a maculopathy should prompt the ophthalmologist to complete the personal and family history, namely, asking for the presence of diabetes mellitus and/or deafness.
Collapse
Affiliation(s)
- Eirini Kaisari
- Ophthalmology, Jules Gonin Eye Hospital, Lausanne, Switzerland
| | | |
Collapse
|
10
|
Marco-Campmany A, Pacheco-Cervera J, Navarrete-Sanchis J, Tomás-Torrent JM, García-Canet S, Cuadrado-Gómez T. Intravitreal bevacizumab in cystoid macular edema associated to maternally inherited diabetes and deafness's macular dystrophy. Eur J Ophthalmol 2020; 32:1120672120969034. [PMID: 33124443 DOI: 10.1177/1120672120969034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Maternally inherited diabetes and deafness (MIDD) is a rare and infradiagnosed cause of diabetes which can, in a high number of cases, associate a macular dystrophy. CASE PRESENTATION We report the case of a 49- year-old man affected of this syndrome, with proven m3243G>A mitochondrial mutation, who developed macular cysts 20 years after the initial presentation of his macular dystrophy. The fluorescein angiography showed no leakage, ruling out a diabetic macular edema. A treatment with intravitreal bevacizumab led to cystic changes resolution and visual acuity recovery. CONCLUSION Intravitreal bevacizumab can be successfully employed for this complication of MIDD's macular dystrophy.
Collapse
Affiliation(s)
| | | | | | | | - Sara García-Canet
- Department of Ophthalmology, Hospital Universitario de La Ribera, Alzira, Spain
| | | |
Collapse
|
11
|
Piquin G, Astroz P, Ohayon A, Amoroso F, Miere A, Souied EH. [Optical coherence tomography, angiography and conventional multimodal imaging findings in a case of maternally inherited diabetes and deafness]. J Fr Ophtalmol 2020; 43:e405-e408. [PMID: 32950285 DOI: 10.1016/j.jfo.2020.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/24/2020] [Accepted: 02/04/2020] [Indexed: 11/25/2022]
Affiliation(s)
- G Piquin
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France
| | - P Astroz
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France
| | - A Ohayon
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France
| | - F Amoroso
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France
| | - A Miere
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France
| | - E H Souied
- Department of ophthalmology, university Paris-Est Créteil, centre hospitalier intercommunal de Créteil, 40, avenue de Verdun, 94000, Créteil, France.
| |
Collapse
|
12
|
Shand JAD, Potter HC, Pilmore HL, Cundy T, Murphy R. Increased Peripheral Blood Heteroplasmy of the mt.3243A>G Mutation Is Associated with Earlier End-Stage Kidney Disease: A Case Report and Review of the Literature. Nephron Clin Pract 2020; 144:358-362. [PMID: 32434190 DOI: 10.1159/000507732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 04/05/2020] [Indexed: 11/19/2022] Open
Abstract
The mitochondrial DNA mutation mt.3243A>G is most commonly associated with maternally inherited diabetes and deafness (MIM 52,000), but it has protean phenotypes including renal disease due to focal segmental glomerulosclerosis. We describe monozygotic twins who both harboured this mutation and developed ESRD. Although otherwise genetically identical, the twins differed in their peripheral blood leucocyte levels of circulating mt.3243A>G heteroplasmy: 20 versus 10%, when assessed at 42 years of age. The twin with the higher heteroplasmy load developed end-stage kidney disease 15 years earlier than her sister. A review of the published literature supports a relationship between heteroplasmy level and the age at the development of the end stage of renal failure in patients with mt.3243A>G-related kidney disease.
Collapse
Affiliation(s)
- James A D Shand
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand,
| | - Howard C Potter
- Molecular Pathology Laboratory, Canterbury Health Laboratories, Canterbury District Health Board, Christchurch, New Zealand
| | - Helen L Pilmore
- Department of Nephrology, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Tim Cundy
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- Department of Endocrinology and Diabetes, Auckland City Hospital, Auckland, New Zealand.,Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
13
|
Affiliation(s)
- Josef Finsterer
- a Neurological Department , Krankenanstalt Rudolfstiftung , Vienna , Austria
| | - Sinda Zarrouk-Mahjoub
- b Pasteur Institute of Tunis , University of Tunis El Manar and Genomics Platform , Tunis , Tunisia
| |
Collapse
|
14
|
Zhu J, Yang P, Liu X, Yan L, Rampersad S, Li F, Li H, Sheng C, Cheng X, Zhang M, Qu S. The clinical characteristics of patients with mitochondrial tRNA Leu(UUR)m.3243A > G mutation: Compared with type 1 diabetes and early onset type 2 diabetes. J Diabetes Complications 2017; 31:1354-1359. [PMID: 28599824 DOI: 10.1016/j.jdiacomp.2017.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/09/2017] [Accepted: 04/03/2017] [Indexed: 12/22/2022]
Abstract
OBJECTIVE This study presents nine patients with mitochondrial tRNA Leu (UUR) m.3243A>G mutation and compares the clinical characteristics and diabetes complications with type 1 diabetes (T1DM) or early onset type 2 diabetes (T2DM). METHODS The study covers 9 patients with MIDD, 33 patients with T1DM and 86 patients (age of onset ≤35years) with early onset T2DM, matched for sex, age at onset of diabetes, duration of diabetes. All patients with MIDD were confirmed as carrying the m.3243A>G mitochondrial DNA mutation. Serum HbA1c, beta-cell function, retinal and renal complications of diabetes, bone metabolic markers, lumbar spine and femoral neck BMD bone mineral density were compared to characterize the clinical features of all patients. RESULTS Nine patients were from five unrelated families, and the mean (SD) onset age of those patients was 31.2±7.2year. Two patients required insulin at presentation, and six patients progressed to insulin requirement after a mean of 7.2years. β-Cell function in the MIDD group was intermediate between T1DM and early-onset T2DM. In MIDD, four patients were diagnosed as diabetic retinopathy (4/9) and five patients (5/9) had macroalbuminuria. The number of patients with diabetic retinopathy and macroalbuminuria in the MIDD group was comparable to T1DM or early-onset T2DM. The rate of osteoporosis (BMD T-score<-2.5 SD) in the patient with MIDD was higher than the T1DM or early-onset T2DM group. CONCLUSION Our study indicates that of the nine subjects with MIDD, three patients (1-II-1, 1-II-3, 1-II-4) who came from the same family had a history of acute pancreatitis. Compared with T1DM or early-onset T2DM matched for sex, age, duration of diabetes, MIDD patients had the highest rate of osteoporosis.
Collapse
MESH Headings
- Adult
- Age of Onset
- Biomarkers/blood
- Biomarkers/urine
- Bone Density
- China/epidemiology
- Deafness/complications
- Deafness/genetics
- Deafness/metabolism
- Deafness/physiopathology
- Diabetes Mellitus, Type 1/blood
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/physiopathology
- Diabetes Mellitus, Type 1/urine
- Diabetes Mellitus, Type 2/blood
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/physiopathology
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/epidemiology
- Diabetic Retinopathy/epidemiology
- Female
- Glycated Hemoglobin/analysis
- Humans
- Male
- Mitochondrial Diseases/complications
- Mitochondrial Diseases/genetics
- Mitochondrial Diseases/metabolism
- Mitochondrial Diseases/physiopathology
- Osteoporosis/complications
- Osteoporosis/epidemiology
- Pancreatitis/complications
- Pancreatitis/epidemiology
- Point Mutation
- Prevalence
- RNA, Transfer, Leu
- Young Adult
Collapse
Affiliation(s)
- Jie Zhu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Peng Yang
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Xiang Liu
- Department of Urology, Putuo District People's Hospital, Shanghai 200060, China
| | - Li Yan
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Sharvan Rampersad
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Feng Li
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Hong Li
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Chunjun Sheng
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Xiaoyun Cheng
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| | - Manna Zhang
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China.
| | - Shen Qu
- Department of Endocrinology & Metabolism, Shanghai Tenth People's Hospital, Tongji University School of Medicine, 301 Middle Yanchang Road, Shanghai 200072, China
| |
Collapse
|
15
|
Qian CX, Branham K, Khan N, Lundy SK, Heckenlively JR, Jayasundera T. Cystoid macular changes on optical coherence tomography in a patient with maternally inherited diabetes and deafness (MIDD)-associated macular dystrophy. Ophthalmic Genet 2017; 38:467-472. [PMID: 28140742 DOI: 10.1080/13816810.2016.1253106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The clinical presentation and optical coherence tomography findings in a patient with maternally inherited diabetes and deafness (MIDD) are presented to highlight the presence of macular cystoid spaces in some patients with this disease. Typically, patients with MIDD demonstrate progression of a pigmentary maculopathy into areas of geographic macular atrophy. At the time of initial visit, the 30-year-old patient had large macular cystoid changes in addition to retinal pigmentary changes in both eyes. The cystoid changes responded to treatment with systemic immunosuppression and a topical carbonic anhydrase inhibitor (CAI), recurred when treated with topical CAI monotherapy, and finally resolved after an intravitreal triamcinolone acetonide injection. Over time, the retinal atrophy continued to progress, but the macular cysts did not recur. The patient received systemic immunosuppression for renal transplantation due to renal failure resulting from focal glomerulosclerosis. There was no evidence of diabetic retinopathy at any time during the five-and-a-half-year follow-up, and the patient retained good visual acuity in both eyes.
Collapse
Affiliation(s)
- Cynthia X Qian
- a Kellogg Eye Center , University of Michigan , Ann Arbor , Michigan , USA.,b Department of Ophthalmology, Retina Service , University of Montreal , Montreal , Quebec , Canada
| | - Kari Branham
- a Kellogg Eye Center , University of Michigan , Ann Arbor , Michigan , USA
| | - Naheed Khan
- a Kellogg Eye Center , University of Michigan , Ann Arbor , Michigan , USA
| | - Steven K Lundy
- a Kellogg Eye Center , University of Michigan , Ann Arbor , Michigan , USA
| | | | - Thiran Jayasundera
- a Kellogg Eye Center , University of Michigan , Ann Arbor , Michigan , USA
| |
Collapse
|
16
|
Gilbert RD, Hind E, Vadgama B. Diabetes and nephrotic syndrome: Answers. Pediatr Nephrol 2017; 32:1887-1889. [PMID: 28012006 PMCID: PMC5579146 DOI: 10.1007/s00467-016-3560-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Accepted: 12/05/2016] [Indexed: 11/22/2022]
Affiliation(s)
- Rodney D Gilbert
- Southampton Children's Hospital and University of Southampton School of Medicine, Tremona Road, Southampton, SO16 6YD, UK.
| | - Edward Hind
- grid.439351.9Hampshire Hospitals NHS Foundation Trust, Basingstoke, Hampshire, UK
| | - Bhumita Vadgama
- 0000000103590315grid.123047.3Department of Cellular Pathology, University Hospital Southampton, Southampton, UK
| |
Collapse
|
17
|
Maternally Inherited Diabetes and Deafness is Phenotypically and Genotypically Heterogeneous. J Neuroophthalmol 2016; 36:346-7. [DOI: 10.1097/wno.0000000000000387] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
El Ouafi A, El Mellaoui M, Laktaoui A. [Diagnostic approach of macular degeneration with "spectral-domain" OCT: clinical case]. Pan Afr Med J 2016; 22:61. [PMID: 26834914 PMCID: PMC4725667 DOI: 10.11604/pamj.2015.22.61.4850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 11/01/2014] [Indexed: 11/11/2022] Open
Abstract
Le diagnostic de la dégénérescence maculaire occulte est difficile. Il pourrait être facilité grâce aux nouvelles techniques d'acquisition des images par S-D OCT. L'objectif de ce travail est de discuter de l'intérêt de l'OCT à haute résolution dans le diagnostic d'une dégénérescence maculaire occulte.
Collapse
Affiliation(s)
- Aziz El Ouafi
- Service Ophtalmologie Hopital Militaire Mohammed IV, Meknès, Maroc
| | - Med El Mellaoui
- Service Ophtalmologie Hopital Militaire Mohammed IV, Meknès, Maroc
| | | |
Collapse
|
19
|
Hall AM, Vilasi A, Garcia-Perez I, Lapsley M, Alston CL, Pitceathly RDS, McFarland R, Schaefer AM, Turnbull DM, Beaumont NJ, Hsuan JJ, Cutillas PR, Lindon JC, Holmes E, Unwin RJ, Taylor RW, Gorman GS, Rahman S, Hanna MG. The urinary proteome and metabonome differ from normal in adults with mitochondrial disease. Kidney Int 2015; 87:610-22. [PMID: 25207879 DOI: 10.1038/ki.2014.297] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/27/2014] [Accepted: 07/10/2014] [Indexed: 02/08/2023]
Abstract
We studied the extent and nature of renal involvement in a cohort of 117 adult patients with mitochondrial disease, by measuring urinary retinol-binding protein (RBP) and albumin; established markers of tubular and glomerular dysfunction, respectively. Seventy-five patients had the m.3243A>G mutation and the most frequent phenotypes within the entire cohort were 14 with MELAS, 33 with MIDD, and 17 with MERRF. Urinary RBP was increased in 29 of 75 of m.3243A>G patients, whereas albumin was increased in 23 of the 75. The corresponding numbers were 16 and 14, respectively, in the 42 non-m.3243A>G patients. RBP and albumin were higher in diabetic m.3243A>G patients than in nondiabetics, but there were no significant differences across the three major clinical phenotypes. The urine proteome (mass spectrometry) and metabonome (nuclear magnetic resonance) in a subset of the m.3243A>G patients were markedly different from controls, with the most significant alterations occurring in lysosomal proteins, calcium-binding proteins, and antioxidant defenses. Differences were also found between asymptomatic m.3243A>G carriers and controls. No patients had an elevated serum creatinine level, but 14% had hyponatremia, 10% had hypophosphatemia, and 14% had hypomagnesemia. Thus, abnormalities in kidney function are common in adults with mitochondrial disease, exist in the absence of elevated serum creatinine, and are not solely explained by diabetes.
Collapse
Affiliation(s)
- Andrew M Hall
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Annalisa Vilasi
- Laboratory of Mass Spectrometry and Proteomics, Institute of Protein Biochemistry-CNR, Naples, Italy
| | - Isabel Garcia-Perez
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Marta Lapsley
- South West Thames Institute for Renal Research, St Helier University Hospitals, Surrey, UK
| | - Charlotte L Alston
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Robert D S Pitceathly
- Medical Research Council Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, UK
| | - Robert McFarland
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Andrew M Schaefer
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Doug M Turnbull
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Nick J Beaumont
- Division of Medicine, Institute for Liver & Digestive Health, University College London, London, UK
| | - Justin J Hsuan
- Division of Medicine, Institute for Liver & Digestive Health, University College London, London, UK
| | - Pedro R Cutillas
- Centre for Haemato-Oncology, Barts Cancer Institute, Queen Mary, University of London, London, UK
| | - John C Lindon
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Elaine Holmes
- Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Robert J Unwin
- UCL Centre for Nephrology, Royal Free Hospital, London, UK
| | - Robert W Taylor
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | - Grainne S Gorman
- Wellcome Trust Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, UK
| | | | - Michael G Hanna
- Medical Research Council Centre for Neuromuscular Diseases, National Hospital for Neurology and Neurosurgery, University College London Institute of Neurology, London, UK
| |
Collapse
|
20
|
Mitochondrial Retinal Dystrophy Associated with the m.3243A>G Mutation. Ophthalmology 2013; 120:2684-2696. [DOI: 10.1016/j.ophtha.2013.05.013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Revised: 05/08/2013] [Accepted: 05/09/2013] [Indexed: 01/27/2023] Open
|
21
|
Scheibye-Knudsen M, Croteau DL, Bohr VA. Mitochondrial deficiency in Cockayne syndrome. Mech Ageing Dev 2013; 134:275-83. [PMID: 23435289 PMCID: PMC3663877 DOI: 10.1016/j.mad.2013.02.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Revised: 01/24/2013] [Accepted: 02/08/2013] [Indexed: 01/05/2023]
Abstract
Cockayne syndrome is a rare inherited disorder characterized by accelerated aging, cachectic dwarfism and many other features. Recent work has implicated mitochondrial dysfunction in the pathogenesis of this disease. This is particularly interesting since mitochondrial deficiencies are believed to be important in the aging process. In this review, we discuss recent findings of mitochondrial pathology in Cockayne syndrome and suggest possible mechanisms for the mitochondrial dysfunction.
Collapse
Affiliation(s)
| | - Deborah L. Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, USA
| | - Vilhelm A. Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, USA
| |
Collapse
|
22
|
D’Aco KE, Manno M, Clarke C, Ganesh J, Meyers KEC, Sondheimer N. Mitochondrial tRNA(Phe) mutation as a cause of end-stage renal disease in childhood. Pediatr Nephrol 2013; 28:515-9. [PMID: 23135609 PMCID: PMC3557766 DOI: 10.1007/s00467-012-2354-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2012] [Revised: 10/08/2012] [Accepted: 10/10/2012] [Indexed: 01/19/2023]
Abstract
BACKGROUND We identified a mitochondrial tRNA mutation (m.586 G > A) in a patient with renal failure and symptoms consistent with a mitochondrial cytopathy. This mutation was of unclear significance due to the absence of consistent reports of linkage to specific disease phenotypes and any data pertaining to its effects on mitochondrial function. CASE-DIAGNOSIS/TREATMENT A 16-month-old girl with failure-to-thrive, developmental regression, persistent lactic acidosis, hypotonia, gastrointestinal dysmotility, adrenal insufficiency, and hematologic abnormalities developed hypertension and renal impairment with chronic tubulointerstitial fibrosis, progressing to renal failure with the need for peritoneal dialysis. Evaluation of her muscle and blood led to the identification of a mutation of the mitochondrial tRNA for phenylalanine, m.586 G > A. CONCLUSIONS The m.586 G > A mutation is pathogenic and a cause of end-stage renal disease in childhood. The mutation interferes with the stability of tRNA(Phe) and affects the translation of mitochondrial proteins and the stability of the electron transport chain.
Collapse
Affiliation(s)
- Kristin E D’Aco
- Division of Genetics, Department of Pediatrics, University of Rochester School of Medicine and Dentistry, 601 Elmwood Ave, Box 777, Rochester, NY 14612, USA
| | - Megan Manno
- Section of Biochemical Genetics, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Colleen Clarke
- Section of Biochemical Genetics, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Jaya Ganesh
- Section of Biochemical Genetics, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,Department of Pediatrics, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Kevin EC Meyers
- Division of Nephrology, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,Department of Pediatrics, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Neal Sondheimer
- Section of Biochemical Genetics, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA,Department of Pediatrics, The University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA,Corresponding author: Neal Sondheimer, Section of Biochemical Genetics, The Children’s Hospital of Philadelphia, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA. Tel: +1 215 590 3376 (office), Fax: +1 215 590 3850;
| |
Collapse
|
23
|
Arden GB, Sivaprasad S. The pathogenesis of early retinal changes of diabetic retinopathy. Doc Ophthalmol 2012; 124:15-26. [PMID: 22302291 DOI: 10.1007/s10633-011-9305-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Accepted: 12/14/2011] [Indexed: 01/04/2023]
Abstract
Recent successful trials of antibodies to vascular endothelial growth factor (VEGF) in diabetic retinopathy implicate this cytokine as a major cause of diabetic retinopathy (DR) and diabetic macular oedema (DME). The mechanisms which cause VEGF to be over-expressed to cause the vasculopathy are not entirely clear. This review explores the earliest changes to the retina in DR and the factors that predispose or prevent DR, including sleep apnoea, receptor degenerations laser treatment and VEGF polymorphism. The review also presents the evidence that retinal hypoxia, existing in the earliest stages, causes DR. This hypoxia is much increased by dark adaptation, indicating a new and possibly superior therapy.
Collapse
|
24
|
Vantyghem MC, Dobbelaere D, Mention K, Wemeau JL, Saudubray JM, Douillard C. Endocrine manifestations related to inherited metabolic diseases in adults. Orphanet J Rare Dis 2012; 7:11. [PMID: 22284844 PMCID: PMC3349544 DOI: 10.1186/1750-1172-7-11] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2011] [Accepted: 01/28/2012] [Indexed: 02/07/2023] Open
Abstract
Most inborn errors of metabolism (IEM) are recessive, genetically transmitted diseases and are classified into 3 main groups according to their mechanisms: cellular intoxication, energy deficiency, and defects of complex molecules. They can be associated with endocrine manifestations, which may be complications from a previously diagnosed IEM of childhood onset. More rarely, endocrinopathies can signal an IEM in adulthood, which should be suspected when an endocrine disorder is associated with multisystemic involvement (neurological, muscular, hepatic features, etc.). IEM can affect all glands, but diabetes mellitus, thyroid dysfunction and hypogonadism are the most frequent disorders. A single IEM can present with multiple endocrine dysfunctions, especially those involving energy deficiency (respiratory chain defects), and metal (hemochromatosis) and storage disorders (cystinosis). Non-autoimmune diabetes mellitus, thyroid dysfunction and/or goiter and sometimes hypoparathyroidism should steer the diagnosis towards a respiratory chain defect. Hypogonadotropic hypogonadism is frequent in haemochromatosis (often associated with diabetes), whereas primary hypogonadism is reported in Alström disease and cystinosis (both associated with diabetes, the latter also with thyroid dysfunction) and galactosemia. Hypogonadism is also frequent in X-linked adrenoleukodystrophy (with adrenal failure), congenital disorders of glycosylation, and Fabry and glycogen storage diseases (along with thyroid dysfunction in the first 3 and diabetes in the last). This is a new and growing field and is not yet very well recognized in adulthood despite its consequences on growth, bone metabolism and fertility. For this reason, physicians managing adult patients should be aware of these diagnoses.
Collapse
Affiliation(s)
- Marie-Christine Vantyghem
- Service d'Endocrinologie et Maladies Métaboliques, 1, Rue Polonovski, Hôpital C Huriez, Centre Hospitalier Régional et Universitaire de Lille, 59037 Lille cedex, France.
| | | | | | | | | | | |
Collapse
|
25
|
Sacconi S, Baillif-Gostoli S, Desnuelle C. [Retinal involvement and genetic myopathy]. Rev Neurol (Paris) 2010; 166:998-1009. [PMID: 21071050 DOI: 10.1016/j.neurol.2010.09.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 05/25/2010] [Accepted: 09/22/2010] [Indexed: 01/06/2023]
Abstract
INTRODUCTION In genetic diseases, association between retinal and muscular involvement is uncommon, quite specific and frequently allows the diagnosis. In this context, three types of retinal involvement have been described: retinitis pigmentosa (RP), pattern retinal dystrophy (PRD) and exudative retinitis resembling Coats disease (CD). STATE OF THE ART The association between RP, PRD and muscle weakness is highly evocative of a mitochondrial disorder. Extra ocular muscles may be affected, but limb girdle or distal weakness can also be present in association or not with symptoms and signs of multisystemic involvement. In a large number of patients suffering from facioscapulohumeral muscular dystrophy (FSHD), retinal vessels telangectasia can be found at the fundoscopic examination. This finding, which corresponds to a developmental abnormality of peripheral retinal blood vessels, is not progressive and remains clinically asymptomatic. Nevertheless, a few patients with FSHD can develop an exsudative retinopathy resembling Coats disease with the risk of the major complication, recurrent retinal detachments. PERSPECTIVES AND CONCLUSIONS Considering the diagnostic interest and the deleterious consequences that may follow retinal involvement, close collaboration between the neurologist and ophthalmologist is needed in order to establish the diagnosis, detect complications early, and set up appropriate therapies.
Collapse
Affiliation(s)
- S Sacconi
- Centre de référence des maladies neuromusculaires et SLA, hôpital Archet 1, CHU de Nice, 151, route de Saint-Antoine-de-Ginestière, 06202 Nice, France.
| | | | | |
Collapse
|
26
|
Meas T, Laloi-Michelin M, Virally M, Ambonville C, Kevorkian JP, Guillausseau PJ. Diagnostic clinique et biologique du diabète mitochondrial et particularités de sa prise en charge. Rev Med Interne 2010; 31:216-21. [DOI: 10.1016/j.revmed.2008.11.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/19/2008] [Accepted: 11/26/2008] [Indexed: 10/21/2022]
|
27
|
McKnight AJ, Currie D, Maxwell AP. Unravelling the genetic basis of renal diseases; from single gene to multifactorial disorders. J Pathol 2010; 220:198-216. [PMID: 19882676 DOI: 10.1002/path.2639] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Chronic kidney disease is common with up to 5% of the adult population reported to have an estimated glomerular filtration rate of < 60 ml/min/1.73 m(2). A large number of pathogenic mutations have been identified that are responsible for 'single gene' renal disorders, such as autosomal dominant polycystic kidney disease and X-linked Alport syndrome. These single gene disorders account for < 15% of the burden of end-stage renal disease that requires dialysis or kidney transplantation. It has proved more difficult to identify the genetic susceptibility underlying common, complex, multifactorial kidney conditions, such as diabetic nephropathy and hypertensive nephrosclerosis. This review describes success to date and explores strategies currently employed in defining the genetic basis for a number of renal disorders. The complementary use of linkage studies, candidate gene and genome-wide association analyses are described and a collation of renal genetic resources highlighted.
Collapse
Affiliation(s)
- Amy J McKnight
- Nephrology Research Group, Queen's University of Belfast, Belfast BT9 7AB, Northern Ireland, UK
| | | | | |
Collapse
|
28
|
Bergamin CS, Rolim LC, Dib SA, Moisés RS. Unusual occurrence of intestinal pseudo obstruction in a patient with maternally inherited diabetes and deafness (MIDD) and favorable outcome with coenzyme Q10. ACTA ACUST UNITED AC 2009; 52:1345-9. [PMID: 19169492 DOI: 10.1590/s0004-27302008000800023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Accepted: 10/16/2008] [Indexed: 11/22/2022]
Abstract
Maternally inherited diabetes and deafness (MIDD) has been related to an A to G transition in the mitochondrial tRNA Leu (UUR) gene at the base pair 3243. This subtype of diabetes is characterized by maternal transmission, young age at onset and bilateral hearing impairment. Besides diabetes and deafness, the main diagnostic features, a wide range of multisystemic symptoms may be associated with the A3243G mutation. Organs that are most metabolically active, such as muscles, myocardium, retina, cochlea, kidney and brain are frequently affected. Gastrointestinal tract symptoms are also common in patients with mitochondrial disease and constipation and diarrhea are the most frequent manifestations. However, there are few prior reports of intestinal pseudo obstruction in MIDD patients. Here we report the case of a patient with MIDD associated with the mtDNA A3243G mutation who developed chronic intestinal pseudo obstruction, and the introduction of Coenzyme Q10 as adjunctive therapy led to a solution of the pseudo obstruction.
Collapse
Affiliation(s)
- Carla S Bergamin
- Escola Paulista de Medicina, Universidade Federal de São Paulo, SP, Brasil
| | | | | | | |
Collapse
|
29
|
Laloi-Michelin M, Meas T, Ambonville C, Bellanné-Chantelot C, Beaufils S, Massin P, Vialettes B, Gin H, Timsit J, Bauduceau B, Bernard L, Bertin E, Blickle JF, Cahen-Varsaux J, Cailleba A, Casanova S, Cathebras P, Charpentier G, Chedin P, Crea T, Delemer B, Dubois-Laforgue D, Duchemin F, Ducluzeau PH, Bouhanick B, Dusselier L, Gabreau T, Grimaldi A, Guerci B, Jacquin V, Kaloustian E, Larger E, Lecleire-Collet A, Lorenzini F, Louis J, Mausset J, Murat A, Nadler-Fluteau S, Olivier F, Paquis-Flucklinger V, Paris-Bockel D, Raynaud I, Reznik Y, Riveline JP, Schneebeli S, Sonnet E, Sola-Gazagnes A, Thomas JL, Trabulsi B, Virally M, Guillausseau PJ. The clinical variability of maternally inherited diabetes and deafness is associated with the degree of heteroplasmy in blood leukocytes. J Clin Endocrinol Metab 2009; 94:3025-30. [PMID: 19470619 DOI: 10.1210/jc.2008-2680] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
CONTEXT Maternally inherited diabetes and deafness (MIDD) is a rare form of diabetes with a matrilineal transmission, sensorineural hearing loss, and macular pattern dystrophy due to an A to G transition at position 3243 of mitochondrial DNA (mtDNA) (m.3243A>G). The phenotypic heterogeneity of MIDD may be the consequence of different levels of mutated mtDNA among mitochondria in a given tissue. OBJECTIVE The aim of the present study was thus to ascertain the correlation between the severity of the phenotype in patients with MIDD and the level of heteroplasmy in the blood leukocytes. PARTICIPANTS The GEDIAM prospective multicenter register was initiated in 1995. Eighty-nine Europid patients from this register, with MIDD and the mtDNA 3243A>G mutation, were included. Patients with MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes) or with mitochondrial diabetes related to other mutations or to deletions of mtDNA were excluded. RESULTS A significant negative correlation was found between levels of heteroplasmy and age of the patients at the time of sampling for molecular analysis, age at the diagnosis of diabetes, and body mass index. After adjustment for age at sampling for molecular study and gender, the correlation between heteroplasmy levels and age at the diagnosis of diabetes was no more significant. The two other correlations remained significant. A significant positive correlation between levels of heteroplasmy and HbA(1c) was also found and remained significant after adjustment for age at molecular sampling and gender. CONCLUSIONS These results support the hypothesis that heteroplasmy levels are at least one of the determinants of the severity of the phenotype in MIDD.
Collapse
Affiliation(s)
- M Laloi-Michelin
- Department of Internal Medicine B, Hôpital Lariboisière, 2 Rue Ambroise Paré, Paris Cedex 10, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Current literature in diabetes. Diabetes Metab Res Rev 2009; 25:i-x. [PMID: 19219862 DOI: 10.1002/dmrr.918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|