1
|
Elevated hippocampal copper in cases of type 2 diabetes. EBioMedicine 2022; 86:104317. [DOI: 10.1016/j.ebiom.2022.104317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/06/2022] [Accepted: 10/11/2022] [Indexed: 11/05/2022] Open
|
2
|
Kumari A, Somvanshi P, Grover A. Ameliorating amyloid aggregation through osmolytes as a probable therapeutic molecule against Alzheimer's disease and type 2 diabetes. RSC Adv 2020; 10:12166-12182. [PMID: 35497581 PMCID: PMC9050657 DOI: 10.1039/d0ra00429d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/16/2020] [Indexed: 01/31/2023] Open
Abstract
Large numbers of neurological and metabolic disorders occurring in humans are induced by the aberrant growth of aggregated or misfolded proteins.
Collapse
Affiliation(s)
- Anchala Kumari
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
- School of Biotechnology
| | - Pallavi Somvanshi
- Department of Biotechnology
- Teri School of Advanced Studies
- New Delhi-110070
- India
| | - Abhinav Grover
- School of Biotechnology
- Jawaharlal Nehru University
- New Delhi-110067
- India
| |
Collapse
|
3
|
Nie T, Zhang S, Vazhoor Amarsingh G, Liu H, McCann MJ, Cooper GJS. Altered metabolic gene expression in the brain of a triprolyl-human amylin transgenic mouse model of type 2 diabetes. Sci Rep 2019; 9:14588. [PMID: 31601900 PMCID: PMC6787337 DOI: 10.1038/s41598-019-51088-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 09/24/2019] [Indexed: 12/12/2022] Open
Abstract
Type 2 diabetes mellitus is a major health concern worldwide; however, the molecular mechanism underlying its development is poorly understood. The hormone amylin is postulated to be involved, as human amylin forms amyloid in the pancreases of diabetic patients, and oligomers have been shown to be cytotoxic to β-cells. As rodent amylin is non-amyloidogenic, mice expressing human amylin have been developed to investigate this hypothesis. However, it is not possible to differentiate the effects of amylin overexpression from β-cell loss in these models. We have developed transgenic mice that overexpress [25, 28, 29 triprolyl]human amylin, a non-amyloidogenic variant of amylin, designated the Line 44 model. This model allows us to investigate the effects of chronic overexpression of non-cytotoxic amylin. We characterised this model and found it developed obesity, hyperglycaemia and hyperinsulinaemia. This phenotype was associated with alterations in the expression of genes involved in the amylin, insulin and leptin signalling pathways within the brain. This included genes such as c-Fos (a marker of amylin activation); Socs3 (a leptin inhibitor); and Cart, Pomc and Npy (neuropeptides that control appetite). We also examined Socs3 protein expression and phosphorylated Stat3 to determine if changes at the mRNA level would be reflected at the protein level.
Collapse
Affiliation(s)
- Tina Nie
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Shaoping Zhang
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand.,The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand
| | - Greeshma Vazhoor Amarsingh
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Hong Liu
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand
| | - Mark J McCann
- Food Nutrition & Health Team, AgResearch Ltd, Grasslands Research Centre, Palmerston North, 4442, New Zealand
| | - Garth J S Cooper
- School of Biological Sciences, Faculty of Science, the University of Auckland, Private Bag 92019, Auckland, 1142, New Zealand. .,The Maurice Wilkins Centre for Molecular Biodiscovery, Faculty of Science, the University of Auckland, Auckland, New Zealand. .,Centre for Advanced Discovery and Experimental Therapeutics, Division of Cardiovascular Sciences, Faculty of Biology Medicine & Health, School of Medical Sciences, the University of Manchester, Manchester, M13 9NT, United Kingdom.
| |
Collapse
|
4
|
Akter R, Zhyvoloup A, Zheng B, Bhatia SR, Raleigh DP. The triphenylmethane dye brilliant blue G is only moderately effective at inhibiting amyloid formation by human amylin or at disaggregating amylin amyloid fibrils, but interferes with amyloid assays; Implications for inhibitor design. PLoS One 2019; 14:e0219130. [PMID: 31404073 PMCID: PMC6690547 DOI: 10.1371/journal.pone.0219130] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/17/2019] [Indexed: 12/21/2022] Open
Abstract
The development of inhibitors of islet amyloid formation is important as pancreatic amyloid deposition contributes to type-2 diabetes and islet transplant failure. The Alzheimer's Aβ peptide and human amylin (h-amylin), the polypeptide responsible for amyloid formation in type-2 diabetes, share common physio-chemical features and some inhibitors of Aβ also inhibit amyloid formation by h-amylin and vice versa. Thus, a popular and potentially useful strategy to find lead compounds for anti-amylin amyloid agents is to examine compounds that have effects on Aβ amyloid formation. The triphenylmethane dye, brilliant blue G (BBG, Sodium;3-[[4-[(E)-[4-(4-ethoxyanilino)phenyl]-[4-[ethyl-[(3-sulfonatophenyl)methyl]azaniumylidene]-2-methylcyclohexa-2,5-dien-1-ylidene]methyl]-N-ethyl-3-methylanilino]methyl]benzenesulfonate) has been shown to modulate Aβ amyloid formation and inhibit Aβ induced toxicity. However, the effects of BBG on h-amylin have not been examined, although other triphenylmethane derivatives inhibit h-amylin amyloid formation. The compound has only a modest impact on h-amylin amyloid formation unless it is added in significant excess. BBG also remodels preformed h-amylin amyloid fibrils if added in excess, however BBG has no significant effect on h-amylin induced toxicity towards cultured β-cells or cultured CHO-T cells except at high concentrations. BBG is shown to interfere with standard thioflavin-T assays of h-amylin amyloid formation and disaggregation, highlighting the difficulty of interpreting such experiments in the absence of other measurements. BBG also interferes with ANS based assays of h-amylin amyloid formation. The work highlights the differences between inhibition of Aβ and h-amylin amyloid formation, illustrates the limitation of using Aβ inhibitors as leads for h-amylin amyloid inhibitors, and reinforces the difficulties in interpreting dye binding assays of amyloid formation.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States of America
| | - Alexander Zhyvoloup
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, United Kingdom
| | - Bingqian Zheng
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States of America
| | - Surita R Bhatia
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States of America
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY, United States of America
- Institute of Structural and Molecular Biology, University College London, Gower Street, London, United Kingdom
| |
Collapse
|
5
|
Abedini A, Derk J, Schmidt AM. The receptor for advanced glycation endproducts is a mediator of toxicity by IAPP and other proteotoxic aggregates: Establishing and exploiting common ground for novel amyloidosis therapies. Protein Sci 2018; 27:1166-1180. [PMID: 29664151 PMCID: PMC6032365 DOI: 10.1002/pro.3425] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/23/2022]
Abstract
Proteotoxicity plays a key role in many devastating human disorders, including Alzheimer's, Huntington's and Parkinson's diseases; type 2 diabetes; systemic amyloidosis; and cardiac dysfunction, to name a few. The cellular mechanisms of proteotoxicity in these disorders have been the focus of considerable research, but their role in prevalent and morbid disorders, such as diabetes, is less appreciated. There is a large body of literature on the impact of glucotoxicity and lipotoxicity on insulin-producing pancreatic β-cells, and there is increasing recognition that proteotoxicty plays a key role. Pancreatic islet amyloidosis by the hormone IAPP, the production of advanced glycation endproducts (AGE), and insulin misprocessing into cytotoxic aggregates are all sources of β-cell proteotoxicity in diabetes. AGE, produced by the reaction of reducing sugars with proteins and lipids are ligands for the receptor for AGE (RAGE), as are the toxic pre-fibrillar aggregates of IAPP produced during amyloid formation. The mechanisms of amyloid formation by IAPP in vivo or in vitro are not well understood, and the cellular mechanisms of IAPP-induced β-cell death are not fully defined. Here, we review recent findings that illuminate the factors and mechanisms involved in β-cell proteotoxicity in diabetes. Together, these new insights have far-reaching implications for the establishment of unifying mechanisms by which pathological amyloidoses imbue their injurious effects in vivo.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Julia Derk
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Department of MedicineNew York University Medical Center, 550 First Avenue, Smilow 906New YorkNew York10016
| |
Collapse
|
6
|
Zhang X, St Clair JR, London E, Raleigh DP. Islet Amyloid Polypeptide Membrane Interactions: Effects of Membrane Composition. Biochemistry 2017; 56:376-390. [PMID: 28054763 DOI: 10.1021/acs.biochem.6b01016] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amyloid formation by islet amyloid polypeptide (IAPP) contributes to β-cell dysfunction in type 2 diabetes. Perturbation of the β-cell membrane may contribute to IAPP-induced toxicity. We examine the effects of lipid composition, salt, and buffer on IAPP amyloid formation and on the ability of IAPP to induce leakage of model membranes. Even low levels of anionic lipids promote amyloid formation and membrane permeabilization. Increasing the percentage of the anionic lipids, 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine (POPS) or 1,2-dioleoyl-sn-glycero-3-phospho(1'-rac-glycerol), enhances the rate of amyloid formation and increases the level of membrane permeabilization. The choice of zwitterionic lipid has no noticeable effect on membrane-catalyzed amyloid formation but in most cases affects leakage, which tends to decrease in the following order: 1,2-dioleoyl-sn-glycero-3-phosphocholine > 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine > sphingomyelin. Uncharged lipids that increase the level of membrane order weaken the ability of IAPP to induce leakage. Leakage is due predominately to pore formation rather than complete disruption of the vesicles under the conditions used in these studies. Cholesterol at or below physiological levels significantly reduces the rate of vesicle-catalyzed IAPP amyloid formation and decreases the susceptibility to IAPP-induced leakage. The effects of cholesterol on amyloid formation are masked by 25 mol % POPS. Overall, there is a strong inverse correlation between the time to form amyloid and the extent of vesicle leakage. NaCl reduces the rate of membrane-catalyzed amyloid formation by anionic vesicles, but accelerates amyloid formation in solution. The implications for IAPP membrane interactions are discussed, as is the possibility that the loss of phosphatidylserine asymmetry enhances IAPP amyloid formation and membrane damage in vivo via a positive feedback loop.
Collapse
Affiliation(s)
- Xiaoxue Zhang
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States
| | - Johnna R St Clair
- Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| | - Erwin London
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Department of Biochemistry and Cell Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University , Stony Brook, New York 11794-3400, United States.,Graduate Program in Biochemistry and Structural Biology, Stony Brook University , Stony Brook, New York 11794-5215, United States
| |
Collapse
|
7
|
Abedini A, Plesner A, Cao P, Ridgway Z, Zhang J, Tu LH, Middleton CT, Chao B, Sartori DJ, Meng F, Wang H, Wong AG, Zanni MT, Verchere CB, Raleigh DP, Schmidt AM. Time-resolved studies define the nature of toxic IAPP intermediates, providing insight for anti-amyloidosis therapeutics. eLife 2016; 5. [PMID: 27213520 PMCID: PMC4940161 DOI: 10.7554/elife.12977] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 05/20/2016] [Indexed: 01/04/2023] Open
Abstract
Islet amyloidosis by IAPP contributes to pancreatic β-cell death in diabetes, but the nature of toxic IAPP species remains elusive. Using concurrent time-resolved biophysical and biological measurements, we define the toxic species produced during IAPP amyloid formation and link their properties to induction of rat INS-1 β-cell and murine islet toxicity. These globally flexible, low order oligomers upregulate pro-inflammatory markers and induce reactive oxygen species. They do not bind 1-anilnonaphthalene-8-sulphonic acid and lack extensive β-sheet structure. Aromatic interactions modulate, but are not required for toxicity. Not all IAPP oligomers are toxic; toxicity depends on their partially structured conformational states. Some anti-amyloid agents paradoxically prolong cytotoxicity by prolonging the lifetime of the toxic species. The data highlight the distinguishing properties of toxic IAPP oligomers and the common features that they share with toxic species reported for other amyloidogenic polypeptides, providing information for rational drug design to treat IAPP induced β-cell death. DOI:http://dx.doi.org/10.7554/eLife.12977.001
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Annette Plesner
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Jinghua Zhang
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Chris T Middleton
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - Brian Chao
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Daniel J Sartori
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| | - Fanling Meng
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Amy G Wong
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Martin T Zanni
- Department of Chemistry, University of Wisconsin-Madison, Madison, United States
| | - C Bruce Verchere
- Child and Family Research Institute, Department of Pathology and Laboratory Medicine and Department of Surgery, University of British Columbia, Vancouver, Canada
| | - Daniel P Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, United States
| | - Ann Marie Schmidt
- Diabetes Research Program, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, New York University School of Medicine, New York, United States
| |
Collapse
|
8
|
Akter R, Cao P, Noor H, Ridgway Z, Tu LH, Wang H, Wong AG, Zhang X, Abedini A, Schmidt AM, Raleigh DP. Islet Amyloid Polypeptide: Structure, Function, and Pathophysiology. J Diabetes Res 2015; 2016:2798269. [PMID: 26649319 PMCID: PMC4662979 DOI: 10.1155/2016/2798269] [Citation(s) in RCA: 173] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 01/29/2023] Open
Abstract
The hormone islet amyloid polypeptide (IAPP, or amylin) plays a role in glucose homeostasis but aggregates to form islet amyloid in type-2 diabetes. Islet amyloid formation contributes to β-cell dysfunction and death in the disease and to the failure of islet transplants. Recent work suggests a role for IAPP aggregation in cardiovascular complications of type-2 diabetes and hints at a possible role in type-1 diabetes. The mechanisms of IAPP amyloid formation in vivo or in vitro are not understood and the mechanisms of IAPP induced β-cell death are not fully defined. Activation of the inflammasome, defects in autophagy, ER stress, generation of reactive oxygen species, membrane disruption, and receptor mediated mechanisms have all been proposed to play a role. Open questions in the field include the relative importance of the various mechanisms of β-cell death, the relevance of reductionist biophysical studies to the situation in vivo, the molecular mechanism of amyloid formation in vitro and in vivo, the factors which trigger amyloid formation in type-2 diabetes, the potential role of IAPP in type-1 diabetes, the development of clinically relevant inhibitors of islet amyloidosis toxicity, and the design of soluble, bioactive variants of IAPP for use as adjuncts to insulin therapy.
Collapse
Affiliation(s)
- Rehana Akter
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Harris Noor
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Zachary Ridgway
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Ling-Hsien Tu
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Hui Wang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Amy G. Wong
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Xiaoxue Zhang
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | - Andisheh Abedini
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Ann Marie Schmidt
- Diabetes Research Program, NYU School of Medicine, 550 First Avenue, New York, NY 10016, USA
| | - Daniel P. Raleigh
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
- Research Department of Structural and Molecule Biology, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
9
|
Effects of gold complexes on the assembly behavior of human islet amyloid polypeptide. J Inorg Biochem 2015; 152:114-22. [DOI: 10.1016/j.jinorgbio.2015.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 08/09/2015] [Accepted: 08/20/2015] [Indexed: 11/24/2022]
|
10
|
Zhao DS, Chen YX, Li YM. Rational design of an orthosteric regulator of hIAPP aggregation. Chem Commun (Camb) 2015; 51:2095-8. [DOI: 10.1039/c4cc06739h] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Compounds that can block hIAPP toxic oligomer but not fibril formation have been rationally designed based on the helix aggregation mechanism.
Collapse
Affiliation(s)
- De-Sheng Zhao
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| | - Yong-Xiang Chen
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| | - Yan-Mei Li
- Department of Chemistry
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education)
- Tsinghua University
- Beijing 10084
- P. R. China
| |
Collapse
|
11
|
Susa AC, Wu C, Bernstein SL, Dupuis NF, Wang H, Raleigh DP, Shea JE, Bowers MT. Defining the molecular basis of amyloid inhibitors: human islet amyloid polypeptide-insulin interactions. J Am Chem Soc 2014; 136:12912-9. [PMID: 25144879 PMCID: PMC4183647 DOI: 10.1021/ja504031d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Indexed: 11/28/2022]
Abstract
Human islet amyloid polypeptide (hIAPP or Amylin) is a 37 residue hormone that is cosecreted with insulin from the pancreatic islets. The aggregation of hIAPP plays a role in the progression of type 2 diabetes and contributes to the failure of islet cell grafts. Despite considerable effort, little is known about the mode of action of IAPP amyloid inhibitors, and this has limited rational drug design. Insulin is one of the most potent inhibitors of hIAPP fibril formation, but its inhibition mechanism is not understood. In this study, the aggregation of mixtures of hIAPP with insulin, as well as with the separate A and B chains of insulin, were characterized using ion mobility spectrometry-based mass spectrometry and atomic force microscopy. Insulin and the insulin B chain target the hIAPP monomer in its compact isoform and shift the equilibrium away from its extended isoform, an aggregation-prone conformation, and thus inhibit hIAPP from forming β-sheets and subsequently amyloid fibrils. All-atom molecular modeling supports these conclusions.
Collapse
Affiliation(s)
- Anna C. Susa
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Chun Wu
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Summer L. Bernstein
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Nicholas F. Dupuis
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Hui Wang
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Daniel P. Raleigh
- Department
of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Joan-Emma Shea
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| | - Michael T. Bowers
- Department
of Chemistry and Biochemistry, University
of California, Santa Barbara, California 93106, United States
| |
Collapse
|
12
|
Zhang S, Liu H, Chuang CL, Li X, Au M, Zhang L, Phillips ARJ, Scott DW, Cooper GJS. The pathogenic mechanism of diabetes varies with the degree of overexpression and oligomerization of human amylin in the pancreatic islet β cells. FASEB J 2014; 28:5083-96. [PMID: 25138158 DOI: 10.1096/fj.14-251744] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The aggregation of human amylin (hA) to form cytotoxic structures has been closely associated with the causation of type 2 diabetes. We sought to advance understanding of how altered expression and aggregation of hA might link β-cell degeneration with diabetes onset and progression, by comparing phenotypes between homozygous and hemizygous hA-transgenic mice. The homozygous mice displayed elevated islet hA that correlated positively with measures of oligomer formation (r=0.91; P<0.0001). They also developed hyperinsulinemia with transient insulin resistance during the prediabetes stage and then underwent rapid β-cell loss, culminating in severe juvenile-onset diabetes. The prediabetes stage was prolonged in the hemizygous mice, wherein β-cell dysfunction and extensive oligomer formation occurred in adulthood at a much later stage, when hA levels were lower (r=-0.60; P<0.0001). This is the first report to show that hA-evoked diabetes is associated with age, insulin resistance, progressive islet dysfunction, and β-cell apoptosis, which interact variably to cause the different diabetes syndromes. The various levels of hA elevation cause different extents of oligomer formation in the disease stages, thus eliciting early- or adult-onset diabetes syndromes, reminiscent of type 1 and 2 diabetes, respectively. Thus, the hA-evoked diabetes phenotypes differ substantively according to degree of amylin overproduction. These findings are relevant to the understanding of the pathogenesis and the development of experimental therapeutics for diabetes.
Collapse
Affiliation(s)
- Shaoping Zhang
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Hong Liu
- The School of Biological Sciences and
| | | | | | - Maggie Au
- The School of Biological Sciences and
| | - Lin Zhang
- The School of Biological Sciences and
| | - Anthony R J Phillips
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand
| | | | - Garth J S Cooper
- The School of Biological Sciences and The Maurice Wilkins Centre for Molecular BioDiscovery, Faculty of Science, University of Auckland, Auckland, New Zealand Centre for Advanced Discovery and Experimental Therapeutics, Central Manchester University Hospitals National Health Service (NHS) Foundation Trust, Manchester, UK; and Centre for Endocrinology and Diabetes, Institute of Human Development, Faculty of Medical and Human Sciences, Manchester Academic Health Sciences Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
13
|
Structural similarities and differences between amyloidogenic and non-amyloidogenic islet amyloid polypeptide (IAPP) sequences and implications for the dual physiological and pathological activities of these peptides. PLoS Comput Biol 2013; 9:e1003211. [PMID: 24009497 PMCID: PMC3757079 DOI: 10.1371/journal.pcbi.1003211] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 07/20/2013] [Indexed: 12/22/2022] Open
Abstract
IAPP, a 37 amino-acid peptide hormone belonging to the calcitonin family, is an intrinsically disordered protein that is coexpressed and cosecreted along with insulin by pancreatic islet β-cells in response to meals. IAPP plays a physiological role in glucose regulation; however, in certain species, IAPP can aggregate and this process is linked to β-cell death and Type II Diabetes. Using replica exchange molecular dynamics with extensive sampling (16 replicas per sequence and 600 ns per replica), we investigate the structure of the monomeric state of two species of aggregating peptides (human and cat IAPP) and two species of non-aggregating peptides (pig and rat IAPP). Our simulations reveal that the pig and rat conformations are very similar, and consist of helix-coil and helix-hairpin conformations. The aggregating sequences, on the other hand, populate the same helix-coil and helix-hairpin conformations as the non-aggregating sequence, but, in addition, populate a hairpin structure. Our exhaustive simulations, coupled with available peptide-activity data, leads us to a structure-activity relationship (SAR) in which we propose that the functional role of IAPP is carried out by the helix-coil conformation, a structure common to both aggregating and non-aggregating species. The pathological role of this peptide may have multiple origins, including the interaction of the helical elements with membranes. Nonetheless, our simulations suggest that the hairpin structure, only observed in the aggregating species, might be linked to the pathological role of this peptide, either as a direct precursor to amyloid fibrils, or as part of a cylindrin type of toxic oligomer. We further propose that the helix-hairpin fold is also a possible aggregation prone conformation that would lead normally non-aggregating variants of IAPP to form fibrils under conditions where an external perturbation is applied. The SAR relationship is used to suggest the rational design of therapeutics for treating diabetes. IAPP, a 37 amino-acid peptide hormone belonging to the calcitonin family, is an intrinsically disordered peptide produced along with insulin by pancreatic islet β-cells in response to meals. In its functional form, IAPP acts as a synergic partner of insulin to reduce blood glucose. IAPP can, however, also play a pathological role, contributing to Type II diabetes (T2D). Knowledge of the structural nature of the physiological and pathological forms of IAPP will facilitate the rational design of novel drugs for therapeutic treatment of T2D. However, because IAPP does not fold to a single structure, but rather co-exists between multiple functional (and toxic) structures, it is extremely challenging for experimental methods to gain detailed structural information. Using a computational approach, we were able to obtain detailed structures of four IAPP variants and propose a novel structural hypothesis for the two opposing roles of this peptide.
Collapse
|
14
|
Stoilova T, Colombo L, Forloni G, Tagliavini F, Salmona M. A new face for old antibiotics: tetracyclines in treatment of amyloidoses. J Med Chem 2013; 56:5987-6006. [PMID: 23611039 DOI: 10.1021/jm400161p] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of tetracyclines has declined because of the appearance of resistant bacterial strains. However, the indications of nonantimicrobial activities of these drugs have considerably raised interest and triggered clinical trials for a number of different pathologies. About 10 years ago we first reported that tetracyclines inhibited the aggregation of prion protein fragments and Alzheimer's β peptides, destabilizing their aggregates and promoting their degradation by proteases. On the basis of these observations, the antiamyloidogenic effects of tetracyclines on a variety of amyloidogenic proteins were studied and confirmed by independent research groups. In this review we comment on the data available on their antiamyloidogenic activity in preclinical and clinical studies. We also put forward that the beneficial effects of these drugs are a result of a peculiar pleiotropic action, comprising their interaction with oligomers and disruption of fibrils, as well as their antioxidant, anti-inflammatory, antiapoptotic, and matrix metalloproteinase inhibitory activities.
Collapse
Affiliation(s)
- Tatiana Stoilova
- IRCCS-Istituto di Ricerche Farmacologiche Mario Negri, Via Giuseppe La Masa 19, 20156 Milano, Italy
| | | | | | | | | |
Collapse
|
15
|
Cao P, Marek P, Noor H, Patsalo V, Tu LH, Wang H, Abedini A, Raleigh DP. Islet amyloid: from fundamental biophysics to mechanisms of cytotoxicity. FEBS Lett 2013; 587:1106-18. [PMID: 23380070 DOI: 10.1016/j.febslet.2013.01.046] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/22/2013] [Accepted: 01/23/2013] [Indexed: 12/21/2022]
Abstract
Pancreatic islet amyloid is a characteristic feature of type 2 diabetes. The major protein component of islet amyloid is the polypeptide hormone known as islet amyloid polypeptide (IAPP, or amylin). IAPP is stored with insulin in the β-cell secretory granules and is released in response to the stimuli that lead to insulin secretion. IAPP is normally soluble and is natively unfolded in its monomeric state, but forms islet amyloid in type 2 diabetes. Islet amyloid is not the cause of type 2 diabetes, but it leads to β-cell dysfunction and cell death, and contributes to the failure of islet cell transplantation. The mechanism of IAPP amyloid formation is not understood and the mechanisms of cytotoxicity are not fully defined.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, Stony Brook, NY 11794-3400, USA
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Abedini A, Schmidt AM. Mechanisms of islet amyloidosis toxicity in type 2 diabetes. FEBS Lett 2013; 587:1119-27. [PMID: 23337872 DOI: 10.1016/j.febslet.2013.01.017] [Citation(s) in RCA: 143] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 01/10/2013] [Accepted: 01/10/2013] [Indexed: 12/19/2022]
Abstract
Amyloid formation by the neuropancreatic hormone, islet amyloid polypeptide (IAPP or amylin), one of the most amyloidogenic sequences known, leads to islet amyloidosis in type 2 diabetes and to islet transplant failure. Under normal conditions, IAPP plays a role in the maintenance of energy homeostasis by regulating several metabolic parameters, such as satiety, blood glucose levels, adiposity and body weight. The mechanisms of IAPP amyloid formation, the nature of IAPP toxic species and the cellular pathways that lead to pancreatic β-cell toxicity are not well characterized. Several mechanisms of toxicity, including receptor and non-receptor-mediated events, have been proposed. Analogs of IAPP have been approved for the treatment of diabetes and are under investigation for the treatment of obesity.
Collapse
Affiliation(s)
- Andisheh Abedini
- Diabetes Research Program, Division of Endocrinology, Department of Medicine, New York University Medical Center, 550 First Avenue, Smilow 906, New York, NY 10016, USA.
| | | |
Collapse
|
17
|
Cao P, Abedini A, Raleigh DP. Aggregation of islet amyloid polypeptide: from physical chemistry to cell biology. Curr Opin Struct Biol 2012; 23:82-9. [PMID: 23266002 DOI: 10.1016/j.sbi.2012.11.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 11/15/2012] [Indexed: 01/15/2023]
Abstract
Amyloid formation in the pancreas by islet amyloid polypeptide (IAPP) leads to β-cell death and dysfunction, contributing to islet transplant failure and to type-2 diabetes. IAPP is stored in the β-cell insulin secretory granules and cosecreted with insulin in response to β-cell secretagogues. IAPP is believed to play a role in the control of food intake, in controlling gastric emptying and in glucose homeostasis. The polypeptide is natively unfolded in its monomeric state, but is one of the most amyloidogenic sequences known. The mechanisms of IAPP amyloid formation in vivo and in vitro are not understood; the mechanisms of IAPP induced cell death are unclear; and the nature of the toxic species is not completely defined. Recent work is shedding light on these important issues.
Collapse
Affiliation(s)
- Ping Cao
- Department of Chemistry, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794-3400, United States
| | | | | |
Collapse
|
18
|
Montane J, Klimek-Abercrombie A, Potter KJ, Westwell-Roper C, Bruce Verchere C. Metabolic stress, IAPP and islet amyloid. Diabetes Obes Metab 2012; 14 Suppl 3:68-77. [PMID: 22928566 DOI: 10.1111/j.1463-1326.2012.01657.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Amyloid forms within pancreatic islets in type 2 diabetes from aggregates of the β-cell peptide islet amyloid polypeptide (IAPP). These aggregates are toxic to β-cells, inducing β-cell death and dysfunction, as well as inciting islet inflammation. The β-cell is subject to a number of other stressors, including insulin resistance and hyperglycaemia, that may contribute to amyloid formation by increasing IAPP production by the β-cell. β-Cell dysfunction, evident as impaired glucose-stimulated insulin secretion and defective prohormone processing and exacerbated by metabolic stress, is also a likely prerequisite for islet amyloid formation to occur in type 2 diabetes. Islet transplants in patients with type 1 diabetes face similar stressors, and are subject to rapid amyloid formation and impaired proinsulin processing associated with progressive loss of β-cell function and mass. Declining β-cell mass is predicted to increase metabolic demand on remaining β-cells, promoting a feed-forward cycle of β-cell decline.
Collapse
Affiliation(s)
- J Montane
- Department of Pathology & Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | |
Collapse
|
19
|
Cooper GJS. Therapeutic potential of copper chelation with triethylenetetramine in managing diabetes mellitus and Alzheimer's disease. Drugs 2011; 71:1281-320. [PMID: 21770477 DOI: 10.2165/11591370-000000000-00000] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This article reviews recent evidence, much of which has been generated by my group's research programme, which has identified for the first time a previously unknown copper-overload state that is central to the pathogenesis of diabetic organ damage. This state causes tissue damage in the blood vessels, heart, kidneys, retina and nerves through copper-mediated oxidative stress. This author now considers this copper-overload state to provide an important new target for therapeutic intervention, the objective of which is to prevent or reverse the diabetic complications. Triethylenetetramine (TETA) has recently been identified as the first in a new class of anti-diabetic molecules through the original work reviewed here, thus providing a new use for this molecule, which was previously approved by the US FDA in 1985 as a second-line treatment for Wilson's disease. TETA acts as a highly selective divalent copper (Cu(II)) chelator that prevents or reverses diabetic copper overload, thereby suppressing oxidative stress. TETA treatment of diabetic animals and patients has identified and quantified the interlinked defects in copper metabolism that characterize this systemic copper overload state. Copper overload in diabetes mellitus differs from that in Wilson's disease through differences in their respective causative molecular mechanisms, and resulting differences in tissue localization and behaviour of the excess copper. Elevated pathogenetic tissue binding of copper occurs in diabetes. It may well be mediated by advanced-glycation endproduct (AGE) modification of susceptible amino-acid residues in long-lived fibrous proteins, for example, connective tissue collagens in locations such as blood vessel walls. These AGE modifications can act as localized, fixed endogenous chelators that increase the chelatable-copper content of organs such as the heart and kidneys by binding excessive amounts of catalytically active Cu(II) in specific vascular beds, thereby focusing the related copper-mediated oxidative stress in susceptible tissues. In this review, summarized evidence from our clinical studies in healthy volunteers and diabetic patients with left-ventricular hypertrophy, and from nonclinical models of diabetic cardiac, arterial, renal and neural disease is used to construct descriptions of the mechanisms by which TETA treatment prevents injury and regenerates damaged organs. Our recent phase II proof-of-principle studies in patients with type 2 diabetes and in nonclinical models of diabetes have helped to define the pathogenetic defects in copper regulation, and have shown that they are reversible by TETA. The drug tightly binds and extracts excess systemic Cu(II) into the urine whilst neutralizing its catalytic activity, but does not cause systemic copper deficiency, even after prolonged use. Its physicochemical properties, which are pivotal for its safety and efficacy, clearly differentiate it from all other clinically available transition metal chelators, including D-penicillamine, ammonium tetrathiomolybdate and clioquinol. The studies reviewed here show that TETA treatment is generally effective in preventing or reversing diabetic organ damage, and support its ongoing development as a new medicine for diabetes. Trientine (TETA dihydrochloride) has been used since the mid-1980s as a second-line treatment for Wilson's disease, and our recent clinical studies have reinforced the impression that it is likely to be safe for long-term use in patients with diabetes and related metabolic disorders. There is substantive evidence to support the view that diabetes shares many pathogenetic mechanisms with Alzheimer's disease and vascular dementia. Indeed, the close epidemiological and molecular linkages between them point to Alzheimer's disease/vascular dementia as a further therapeutic target where experimental pharmacotherapy with TETA could well find further clinical application.
Collapse
Affiliation(s)
- Garth J S Cooper
- Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, UK.
| |
Collapse
|
20
|
Melnik BC. Milk signalling in the pathogenesis of type 2 diabetes. Med Hypotheses 2011; 76:553-9. [PMID: 21251764 DOI: 10.1016/j.mehy.2010.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2010] [Revised: 10/04/2010] [Accepted: 12/23/2010] [Indexed: 01/02/2023]
Abstract
The presented hypothesis identifies milk consumption as an environmental risk factor of Western diet promoting type 2 diabetes (T2D). Milk, commonly regarded as a valuable nutrient, exerts important endocrine functions as an insulinotropic, anabolic and mitogenic signalling system supporting neonatal growth and development. The presented hypothesis substantiates milk's physiological role as a signalling system for pancreatic β-cell proliferation by milk's ability to increase prolactin-, growth hormone and incretin-signalling. The proposed mechanism of milk-induced postnatal β-cell mass expansion mimics the adaptive prolactin-dependent proliferative changes observed in pregnancy. Milk signalling down-regulates the key transcription factor FoxO1 leading to up-regulation of insulin promoter factor-1 which stimulates β-cell proliferation, insulin secretion as well as coexpression of islet amyloid polypeptide (IAPP). The recent finding that adult rodent β-cells only proliferate by self-duplication is of crucial importance, because permanent milk consumption beyond the weaning period may continuously over-stimulate β-cell replication thereby accelerating the onset of replicative β-cell senescence. The long-term use of milk may thus increase endoplasmic reticulum (ER) stress and toxic IAPP oligomer formation by overloading the ER with cytotoxic IAPPs thereby promoting β-cell apoptosis. Both increased β-cell proliferation and β-cell apoptosis are hallmarks of T2D. This hypothesis gets support from clinical states of hyperprolactinaemia and progeria syndromes with early onset of cell senescence which are both associated with an increased incidence of T2D and share common features of milk signalling. Furthermore, the presented milk hypothesis of T2D is compatible with the concept of high ER stress in T2D and the toxic oligomer hypothesis of T2D and may explain the high association of T2D and Alzheimer disease.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Osnabrück, Germany.
| |
Collapse
|
21
|
Casas S, Casini P, Piquer S, Altirriba J, Soty M, Cadavez L, Gomis R, Novials A. BACE2 plays a role in the insulin receptor trafficking in pancreatic ß-cells. Am J Physiol Endocrinol Metab 2010; 299:E1087-95. [PMID: 20943756 DOI: 10.1152/ajpendo.00420.2010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACE1 (β-site amyloidogenic cleavage of precursor protein-cleaving enzyme 1) is a β-secretase protein that plays a central role in the production of the β-amyloid peptide in the brain and is thought to be involved in the Alzheimer's pathogenesis. In type 2 diabetes, amyloid deposition within the pancreatic islets is a pathophysiological hallmark, making crucial the study in the pancreas of BACE1 and its homologous BACE2 to understand the pathological mechanisms of this disease. The objectives of the present study were to characterize the localization of BACE proteins in human pancreas and determine their function. High levels of BACE enzymatic activity were detected in human pancreas. In normal human pancreas, BACE1 was observed in endocrine as well as in exocrine pancreas, whereas BACE2 expression was restricted to β-cells. Intracellular analysis using immunofluorescence showed colocalization of BACE1 with insulin and BACE2 with clathrin-coated vesicles of the plasma membrane in MIN6 cells. When BACE1 and -2 were pharmacologically inhibited, BACE1 localization was not altered, whereas BACE2 content in clathrin-coated vesicles was increased. Insulin internalization rate was reduced, insulin receptor β-subunit (IRβ) expression was decreased at the plasma membrane and increased in the Golgi apparatus, and a significant reduction in insulin gene expression was detected. Similar results were obtained after specific BACE2 silencing in MIN6 cells. All these data point to a role for BACE2 in the IRβ trafficking and insulin signaling. In conclusion, BACE2 is hereby presented as an important enzyme in β-cell function.
Collapse
Affiliation(s)
- Silvia Casas
- Hospital Clínic de Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|