1
|
Wang B, Bian Q. SATB1 prevents immune cell infiltration by regulating chromatin organization and gene expression of a chemokine gene cluster in T cells. Commun Biol 2024; 7:1304. [PMID: 39394451 PMCID: PMC11470149 DOI: 10.1038/s42003-024-07021-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 10/05/2024] [Indexed: 10/13/2024] Open
Abstract
SATB1, a key regulator of T cell development, governs lineage-specific transcriptional programs upon T cell activation. The absence of SATB1 has been linked to the initiation and progression of autoimmunity. However, its precise roles in this process remain incompletely understood. Here we show that conditional knockout of Satb1 in CD4+ T cells in mice led to T cell hyperactivation and inflammatory cell infiltration across multiple organs. Transcriptional profiling on activated T cells revealed that the loss of SATB1 led to aberrant upregulation of CC chemokines. Treating Satb1 conditional knockout mice with CC chemokine receptor inhibitor alleviated inflammatory cell infiltration. Intriguingly, SATB1's transcriptional regulation of chemokine genes could not be attributed to its direct binding to chemokine promoters. Instead, SATB1 exerted its regulatory effects by controlling higher-order chromatin organization at a CC chemokine locus. The loss of SATB1 led to the emergence of a new chromatin domain encompassing the Ccl3, Ccl4, Ccl5, Ccl6, and Ccl9 genes and a distal enhancer, resulting in increased contacts between the enhancer and all five chemokine genes, thus inducing their upregulation. Collectively, these results demonstrate that SATB1 protects organs from immune cell infiltration by regulating chemokine expression, providing valuable insights into the development of autoimmunity-related phenotypes.
Collapse
Affiliation(s)
- Bao Wang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qian Bian
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Shanghai Key Laboratory of Reproductive Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
2
|
Mahjoubin-Tehran M, Rezaei S, Atkin SL, Montecucco F, Sahebkar A. Decoys as potential therapeutic tools for diabetes. Drug Discov Today 2021; 26:1669-1679. [PMID: 33862194 DOI: 10.1016/j.drudis.2021.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 01/15/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Current therapeutic approaches for diabetes are focused on improving glycemic control to prevent diabetes-related complications, but such approached are not completely successful. Decoy technologies such as decoy oligodeoxynucleotides (ODNs) and decoy peptides have emerged as therapeutic tools in diabetes. Decoy ODNs carry a DNA recognition motif for the binding of transcription factors in order to trap them and block their effects, whereas decoy peptides mimic the binding structure of the receptor protein, bind to the docking site of the target ligand, and prevent the interaction of the ligand and receptor. This review summarizes the technologies that have been developed to date and the studies that have investigated the therapeutic effects of decoy ODNs and peptides in diabetes.
Collapse
Affiliation(s)
- Maryam Mahjoubin-Tehran
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Samaneh Rezaei
- Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Fabrizio Montecucco
- IRCCS Ospedale Policlinico San Martino Genoa - Italian Cardiovascular Network, 10 Largo Benzi, 16132 Genoa, Italy; First Clinic of Internal Medicine, Department of Internal Medicine, University of Genoa, 9 viale Benedetto XV, 16132 Genoa, Italy
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Polish Mother's Memorial Hospital Research Institute (PMMHRI), Lodz, Poland; School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
3
|
Novotny Nuñez I, Barrios BE, Macció-Maretto L, Correa SG. Migratory capacity and function of dendritic cells from mesenteric afferent lymph nodes after feeding a single dose of vitamin A. J Nutr Biochem 2017; 49:110-116. [PMID: 28917953 DOI: 10.1016/j.jnutbio.2017.08.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 07/10/2017] [Accepted: 08/15/2017] [Indexed: 12/30/2022]
Abstract
Lamina propria dendritic cells (DCs) have a permanent turnover with constitutive migration to mesenteric lymph nodes and replenishment by progenitors. Luminal bacteria and dietary constituents provide key signals that endow DCs their unique properties in vivo. Taking into account that the intestinal immune system is greatly influenced by retinoids, we evaluated in B6 mice 3, 8, 16 and 24 h after feeding a single dose of vitamin A phenotype and function of cells present in mesenteric afferent lymph nodes as well as signals involved in migration. We studied the frequency of CD11c+MHC-II+CD103+CD86+ and RALDH+ DCs by flow cytometry, we determined CCL-21 and D6 levels in tissue homogenates by Western blot, and we co-cultured cells isolated from afferent lymphatics with sorted CD4+ lymphocytes to assess Foxp-3 induction and homing receptor expression. Sixteen hours after vitamin A administration, DCs isolated from afferent lymphatics were able to induce homing receptors and Foxp3 expression in CD4+ lymphocytes. Our results show that a single dose of vitamin A generated a stream of signals and amplified the tolerogenic activity of DCs migrating to lymphoid tissue.
Collapse
Affiliation(s)
- Ivanna Novotny Nuñez
- Inmunología, Centro de Investigaciones en Bioquímica e Inmunología (CIBICI -CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Bibiana E Barrios
- Inmunología, Centro de Investigaciones en Bioquímica e Inmunología (CIBICI -CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Lisa Macció-Maretto
- Inmunología, Centro de Investigaciones en Bioquímica e Inmunología (CIBICI -CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvia G Correa
- Inmunología, Centro de Investigaciones en Bioquímica e Inmunología (CIBICI -CONICET), Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
4
|
Zheng S, Coventry S, Cai L, Powell DW, Jala VR, Haribabu B, Epstein PN. Renal Protection by Genetic Deletion of the Atypical Chemokine Receptor ACKR2 in Diabetic OVE Mice. J Diabetes Res 2015; 2016:5362506. [PMID: 26798651 PMCID: PMC4699014 DOI: 10.1155/2016/5362506] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 09/25/2015] [Accepted: 09/27/2015] [Indexed: 11/29/2022] Open
Abstract
In diabetic nephropathy (DN) proinflammatory chemokines and leukocyte infiltration correlate with tubulointerstitial injury and declining renal function. The atypical chemokine receptor ACKR2 is a chemokine scavenger receptor which binds and sequesters many inflammatory CC chemokines but does not transduce typical G-protein mediated signaling events. ACKR2 is known to regulate diverse inflammatory diseases but its role in DN has not been tested. In this study, we utilized ACKR2(-/-) mice to test whether ACKR2 elimination alters progression of diabetic kidney disease. Elimination of ACKR2 greatly reduced DN in OVE26 mice, an established DN model. Albuminuria was significantly lower at 2, 4, and 6 months of age. ACKR2 deletion did not affect diabetic blood glucose levels but significantly decreased parameters of renal inflammation including leukocyte infiltration and fibrosis. Activation of pathways that increase inflammatory gene expression was attenuated. Human biopsies stained with ACKR2 antibody revealed increased staining in diabetic kidney, especially in some tubule and interstitial cells. The results demonstrate a significant interaction between diabetes and ACKR2 protein in the kidney. Unexpectedly, ACKR2 deletion reduced renal inflammation in diabetes and the ultimate response was a high degree of protection from diabetic nephropathy.
Collapse
Affiliation(s)
- Shirong Zheng
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Susan Coventry
- Department of Pathology, University of Louisville, Louisville, KY 40202, USA
| | - Lu Cai
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - David W. Powell
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Venkatakrishna R. Jala
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Bodduluri Haribabu
- Department of Microbiology and Immunology, University of Louisville, Louisville, KY 40202, USA
| | - Paul N. Epstein
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| |
Collapse
|
5
|
Citro A, Valle A, Cantarelli E, Mercalli A, Pellegrini S, Liberati D, Daffonchio L, Kastsiuchenka O, Ruffini PA, Battaglia M, Allegretti M, Piemonti L. CXCR1/2 inhibition blocks and reverses type 1 diabetes in mice. Diabetes 2015; 64:1329-40. [PMID: 25315007 DOI: 10.2337/db14-0443] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Chemokines and their receptors have been associated with or implicated in the pathogenesis of type 1 diabetes (T1D), but the identification of a single specific chemokine/receptor pathway that may constitute a suitable target for the development of therapeutic interventions is still lacking. Here, we used multiple low-dose (MLD) streptozotocin (STZ) injections and the NOD mouse model to investigate the potency of CXCR1/2 inhibition to prevent inflammation- and autoimmunity-mediated damage of pancreatic islets. Reparixin and ladarixin, noncompetitive allosteric inhibitors, were used to pharmacologically blockade CXCR1/2. Transient blockade of said receptors was effective in preventing inflammation-mediated damage in MLD-STZ and in preventing and reversing diabetes in NOD mice. Blockade of CXCR1/2 was associated with inhibition of insulitis and modification of leukocytes distribution in blood, spleen, bone marrow, and lymph nodes. Among leukocytes, CXCR2(+) myeloid cells were the most decreased subpopulations. Together these results identify CXCR1/2 chemokine receptors as "master regulators" of diabetes pathogenesis. The demonstration that this strategy may be successful in preserving residual β-cells holds the potential to make a significant change in the approach to management of human T1D.
Collapse
Affiliation(s)
- Antonio Citro
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy Department of Surgery, University of Pavia, Pavia, Italy
| | - Andrea Valle
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Cantarelli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Mercalli
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Pellegrini
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Daniela Liberati
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luisa Daffonchio
- Research and Development Department, Dompè Farmaceutici S.p.A, L'Aquila, Italy
| | - Olga Kastsiuchenka
- Research and Development Department, Dompè Farmaceutici S.p.A, L'Aquila, Italy
| | | | - Manuela Battaglia
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marcello Allegretti
- Research and Development Department, Dompè Farmaceutici S.p.A, L'Aquila, Italy
| | - Lorenzo Piemonti
- San Raffaele Diabetes Research Institute, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
6
|
Chien SC, Wu YC, Chen ZW, Yang WC. Naturally occurring anthraquinones: chemistry and therapeutic potential in autoimmune diabetes. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2015; 2015:357357. [PMID: 25866536 PMCID: PMC4381678 DOI: 10.1155/2015/357357] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 08/10/2014] [Indexed: 11/29/2022]
Abstract
Anthraquinones are a class of aromatic compounds with a 9,10-dioxoanthracene core. So far, 79 naturally occurring anthraquinones have been identified which include emodin, physcion, cascarin, catenarin, and rhein. A large body of literature has demonstrated that the naturally occurring anthraquinones possess a broad spectrum of bioactivities, such as cathartic, anticancer, anti-inflammatory, antimicrobial, diuretic, vasorelaxing, and phytoestrogen activities, suggesting their possible clinical application in many diseases. Despite the advances that have been made in understanding the chemistry and biology of the anthraquinones in recent years, research into their mechanisms of action and therapeutic potential in autoimmune disorders is still at an early stage. In this paper, we briefly introduce the etiology of autoimmune diabetes, an autoimmune disorder that affects as many as 10 million worldwide, and the role of chemotaxis in autoimmune diabetes. We then outline the chemical structure and biological properties of the naturally occurring anthraquinones and their derivatives with an emphasis on recent findings about their immune regulation. We discuss the structure and activity relationship, mode of action, and therapeutic potential of the anthraquinones in autoimmune diabetes, including a new strategy for the use of the anthraquinones in autoimmune diabetes.
Collapse
Affiliation(s)
- Shih-Chang Chien
- Department of Forestry, National Chung-Hsing University, Taichung 402, Taiwan
| | - Yueh-Chen Wu
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 115, Taiwan
| | | | - Wen-Chin Yang
- Agricultural Biotechnology Research Center, Academia Sinica, No. 128, Academia Sinica Road, Sec. 2, Nankang, Taipei 115, Taiwan
- Animal Technology Institute, Chunan 350, Taiwan
- Department of Life Sciences, National Chung-Hsing University, Taichung 402, Taiwan
- Institute of Biotechnology, National Taiwan University, Taipei 106, Taiwan
- Department of Aquaculture, National Taiwan Ocean University, Keelung 202, Taiwan
- Institute of Pharmacology, Yang-Ming University, Taipei 112, Taiwan
| |
Collapse
|
7
|
Lin MH, Yeh LT, Chen SJ, Chiou HYC, Chu CC, Yen LB, Lin KI, Chang DM, Sytwu HK. T cell-specific BLIMP-1 deficiency exacerbates experimental autoimmune encephalomyelitis in nonobese diabetic mice by increasing Th1 and Th17 cells. Clin Immunol 2014; 151:101-13. [PMID: 24568746 DOI: 10.1016/j.clim.2014.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 01/07/2023]
Abstract
Recently, we demonstrated that B lymphocyte-induced maturation protein 1 (BLIMP-1) has a role in regulating the differentiation and effector function of Th1 and Th17 cells. As these cells play critical roles in the induction and pathogenesis of experimental autoimmune encephalomyelitis (EAE), we investigated the potential role of T cell BLIMP-1 in modulating MOG35-55-induced EAE. We established T cell-specific BLIMP-1 conditional knockout (CKO) NOD mice to dissect the role of BLIMP-1 in EAE using loss-of-function model. Our results indicate that EAE severity is dramatically exacerbated in CKO mice. The numbers of CNS-infiltrating Th1, Th17, IFN-γ(+)IL-17A(+), and IL-21(+)IL-17A(+) CD4(+) T cells are remarkably increased in brain and spinal cord of CKO mice. Moreover, the ratio of Tregs/effectors and IL-10 production of Tregs are significantly downregulated in CNS of CKO mice. We conclude that BLIMP-1 suppresses autoimmune encephalomyelitis via downregulating Th1 and Th17 cells and impairing Treg cells.
Collapse
Affiliation(s)
- Ming-Hong Lin
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Li-Tzu Yeh
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Hsin-Ying C Chiou
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Chin-Chen Chu
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan, ROC; Department of Recreation and Health-Care Management, Chia Nan University of Pharmacy and Science, Tainan, Taiwan, ROC.
| | - Linju B Yen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, ROC
| | - Kuo-I Lin
- Genomics Research Center, Academia Sinica, Taipei, Taiwan, ROC
| | - Deh-Ming Chang
- Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, ROC
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan, ROC; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC.
| |
Collapse
|
8
|
Advances in our understanding of the pathophysiology of Type 1 diabetes: lessons from the NOD mouse. Clin Sci (Lond) 2013; 126:1-18. [PMID: 24020444 DOI: 10.1042/cs20120627] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
T1D (Type 1 diabetes) is an autoimmune disease caused by the immune-mediated destruction of pancreatic β-cells. Studies in T1D patients have been limited by the availability of pancreatic samples, a protracted pre-diabetic phase and limitations in markers that reflect β-cell mass and function. The NOD (non-obese diabetic) mouse is currently the best available animal model of T1D, since it develops disease spontaneously and shares many genetic and immunopathogenic features with human T1D. Consequently, the NOD mouse has been extensively studied and has made a tremendous contribution to our understanding of human T1D. The present review summarizes the key lessons from NOD mouse studies concerning the genetic susceptibility, aetiology and immunopathogenic mechanisms that contribute to autoimmune destruction of β-cells. Finally, we summarize the potential and limitations of immunotherapeutic strategies, successful in NOD mice, now being trialled in T1D patients and individuals at risk of developing T1D.
Collapse
|
9
|
Lin MH, Chou FC, Yeh LT, Fu SH, Chiou HYC, Lin KI, Chang DM, Sytwu HK. B lymphocyte-induced maturation protein 1 (BLIMP-1) attenuates autoimmune diabetes in NOD mice by suppressing Th1 and Th17 cells. Diabetologia 2013; 56:136-46. [PMID: 23052053 DOI: 10.1007/s00125-012-2722-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 08/14/2012] [Indexed: 10/27/2022]
Abstract
AIMS/HYPOTHESIS Recent reports indicate that B lymphocyte-induced maturation protein 1 (BLIMP-1), encoded by the Prdm1 gene, expands its control over T cells and is associated with susceptibility to colitis in mice with T cell-specific BLIMP-1 deficiency. In this study, we aimed to investigate the potential role of BLIMP-1 in regulating autoimmune diabetes and T helper type 17 (Th17) cells. METHODS We generated T cell-specific Blimp1 (also known as Prdm1) transgenic (Tg) or conditional knockout (CKO) NOD mice, in which Blimp1 is overexpressed or deleted in T cells, respectively. By side-by-side analysing these Tg or CKO mice, we further dissected the potential mechanisms of BLIMP-1-mediated modulation on autoimmune diabetes. RESULTS Overproduction of BLIMP-1 in T cells significantly attenuated insulitis and the incidence of diabetes in NOD mice. Consistent with these results, the diabetogenic effect of splenocytes was remarkably impaired in Blimp1 Tg mice. Moreover, overproduction of BLIMP-1 repressed the proliferation and activation of lymphocytes and enhanced the function of regulatory T cells (Tregs) in NOD mice. In contrast, mice lacking BLIMP-1 in T cells markedly increased Th1 and Th17 cells, and developed highly proliferative and activated lymphocytes. Strikingly, overexpansion of Th1 and Th17 cells in CKO mice was significantly reduced by introducing a Blimp1 transgene, reinforcing the emerging role of BLIMP-1 in autoimmunity. CONCLUSIONS/INTERPRETATION We conclude that BLIMP-1 orchestrates a T cell-specific modulation of autoimmunity by affecting lymphocyte proliferation and activation, Th1 and Th17 cell differentiation, and Treg function. Our results provide a theoretical basis for developing BLIMP-1-manipulated therapies for autoimmune diabetes.
Collapse
MESH Headings
- Animals
- Autoimmunity
- Cell Differentiation
- Cell Proliferation
- Cells, Cultured
- Crosses, Genetic
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/metabolism
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 1/prevention & control
- Female
- Immunosuppression Therapy
- Lymphocyte Activation
- Male
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- Mice, Transgenic
- Pancreas/immunology
- Pancreas/pathology
- Positive Regulatory Domain I-Binding Factor 1
- Specific Pathogen-Free Organisms
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th17 Cells/immunology
- Th17 Cells/pathology
- Transcription Factors/biosynthesis
- Transcription Factors/genetics
- Transcription Factors/metabolism
Collapse
Affiliation(s)
- M-H Lin
- Graduate Institute of Medical Sciences, National Defense Medical Center, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan, Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Chou FC, Chen HY, Chen SJ, Fang MC, Sytwu HK. Rodent models for investigating the dysregulation of immune responses in type 1 diabetes. J Diabetes Res 2013; 2013:138412. [PMID: 23671851 PMCID: PMC3647569 DOI: 10.1155/2013/138412] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2012] [Accepted: 02/07/2013] [Indexed: 12/02/2022] Open
Abstract
Type 1 diabetes (T1D) is an autoimmune disease mediated by T cells that selectively destroy the insulin-producing β cells. Previous reports based on epidemiological and animal studies have demonstrated that both genetic factors and environmental parameters can either promote or attenuate the progression of autoimmunity. In recent decades, several inbred rodent strains that spontaneously develop diabetes have been applied to the investigation of the pathogenesis of T1D. Because the genetic manipulation of mice is well developed (transgenic, knockout, and conditional knockout/transgenic), most studies are performed using the nonobese diabetic (NOD) mouse model. This paper will focus on the use of genetically manipulated NOD mice to explore the pathogenesis of T1D and to develop potential therapeutic approaches.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, R8324, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan
| | - Heng-Yi Chen
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, R8324, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan
| | - Shyi-Jou Chen
- Department of Pediatrics, Tri-Service General Hospital, 325, Section 2, Chenggong Road, Neihu, Taipei 114, Taiwan
| | - Mei-Cho Fang
- Laboratory Animal Center, National Defense Medical Center, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, R8324, 161, Section 6, MinChuan East Road, Neihu, Taipei 114, Taiwan
- *Huey-Kang Sytwu:
| |
Collapse
|
11
|
Graham GJ, Locati M, Mantovani A, Rot A, Thelen M. The biochemistry and biology of the atypical chemokine receptors. Immunol Lett 2012; 145:30-8. [PMID: 22698181 DOI: 10.1016/j.imlet.2012.04.004] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 04/13/2012] [Indexed: 01/13/2023]
Abstract
A subset of chemokine receptors, initially called "silent" on the basis of their apparent failure to activate conventional signalling events, has recently attracted growing interest due to their ability to internalize, degrade, or transport ligands and thus modify gradients and create functional chemokine patterns in tissues. These receptors recognize distinct and complementary sets of ligands with high affinity, are strategically expressed in different cellular contexts, and lack structural determinants supporting Gα(i) activation, a key signalling event in cell migration. This is in keeping with the hypothesis that they have evolved to fulfil fundamentally different functions to the classical signalling chemokine receptors. Based on these considerations, these receptors (D6, Duffy antigen receptor for chemokines (DARC), CCX-CKR1 and CXCR7) are now collectively considered as an emerging class of 'atypical' chemokine receptors. In this article, we review the biochemistry and biology of this emerging chemokine receptor subfamily.
Collapse
Affiliation(s)
- G J Graham
- Institute of Infection, Immunity and Inflammation, Glasgow Biomedical Research Centre, University of Glasgow, Glasgow G12 8TA, UK.
| | | | | | | | | |
Collapse
|
12
|
Chou FC, Kuo CC, Wang YL, Lin MH, Linju Yen B, Chang DM, Sytwu HK. Overexpression of galectin-9 in islets prolongs grafts survival via downregulation of Th1 responses. Cell Transplant 2012; 22:2135-2145. [PMID: 23067523 DOI: 10.3727/096368912x657891] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The differential activation of T helper (Th) cells and production of cytokines contribute to graft rejection or tolerance. In general, the Th1-type cytokines and cytotoxic T-cells are detected consistently in a host who is undergoing rejection, whereas Th2 responses are linked to a tolerance condition. Galectin-9 modulates Th1 cell immunity by binding to the T-cell immunoglobulin mucin-3 (Tim-3) molecule expressed on the Th1 cells. We investigate whether overexpression of galectin-9 in islets prolongs grafts survival in diabetic recipients. Islets were transduced with lentiviruses carrying galectin-9 and were then transplanted to streptozotocin-induced diabetic NOD/SCID recipients. The normoglycemic recipients then received splenocytes from diabetic NOD mice. Blood glucose concentration was monitored daily after adoptive transfer. The histology of the islet grafts and flow cytometric analyses were assessed at the end of the study. Overexpression of galectin-9 in islets prolonged graft survival in NOD/SCID mice after challenge with diabetogenic splenocytes (mean graft survival, 38.5 vs. 26.0 days, n=10, respectively; p=0.0096). The galectin-9-overexpressed grafts showed decreased infiltration of IFN-γ-producing CD4(+) and CD8(+) T-cells, but not of IL-17-producing CD4(+) T-cells. Strikingly, this islet-specific genetic manipulation did not affect the systemic lymphocyte composition, indicating that galectin-9 may regulate T-cell-mediated inflammation in situ. We demonstrate that galectin-9 protects grafts from Th1 and Tc1 cell-mediated rejections, suggesting that galectin-9 has preventive and/or therapeutic benefit in transplant therapy for autoimmune diabetes and may be applied further to the transplantation of other organs or tissues.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei, Taiwan
| | | | | | | | | | | | | |
Collapse
|
13
|
Chou FC, Huang SH, Sytwu HK. Genetically engineered islets and alternative sources of insulin-producing cells for treating autoimmune diabetes: quo vadis? Int J Endocrinol 2012; 2012:296485. [PMID: 22690214 PMCID: PMC3368364 DOI: 10.1155/2012/296485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 03/29/2012] [Indexed: 01/29/2023] Open
Abstract
Islet transplantation is a promising therapy for patients with type 1 diabetes that can provide moment-to-moment metabolic control of glucose and allow them to achieve insulin independence. However, two major problems need to be overcome: (1) detrimental immune responses, including inflammation induced by the islet isolation/transplantation procedure, recurrence autoimmunity, and allorejection, can cause graft loss and (2) inadequate numbers of organ donors. Several gene therapy approaches and pharmaceutical treatments have been demonstrated to prolong the survival of pancreatic islet grafts in animal models; however, the clinical applications need to be investigated further. In addition, for an alternative source of pancreatic β-cell replacement therapy, the ex vivo generation of insulin-secreting cells from diverse origins of stem/progenitor cells has become an attractive option in regenerative medicine. This paper focuses on the genetic manipulation of islets during transplantation therapy and summarizes current strategies to obtain functional insulin-secreting cells from stem/progenitor cells.
Collapse
Affiliation(s)
- Feng-Cheng Chou
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu, Taipei 114, Taiwan
| | - Shing-Hwa Huang
- Department of General Surgery, Tri-Service General Hospital, Taipei 114, Taiwan
| | - Huey-Kang Sytwu
- Department and Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Neihu, Taipei 114, Taiwan
- *Huey-Kang Sytwu:
| |
Collapse
|
14
|
Ziolkowski AF, Popp SK, Freeman C, Parish CR, Simeonovic CJ. Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. J Clin Invest 2012; 122:132-41. [PMID: 22182841 PMCID: PMC3248281 DOI: 10.1172/jci46177] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022] Open
Abstract
The autoimmune type 1 diabetes (T1D) that arises spontaneously in NOD mice is considered to be a model of T1D in humans. It is characterized by the invasion of pancreatic islets by mononuclear cells (MNCs), which ultimately leads to destruction of insulin-producing β cells. Although T cell dependent, the molecular mechanisms triggering β cell death have not been fully elucidated. Here, we report that a glycosaminoglycan, heparan sulfate (HS), is expressed at extraordinarily high levels within mouse islets and is essential for β cell survival. In vitro, β cells rapidly lost their HS and died. β Cell death was prevented by HS replacement, a treatment that also rendered the β cells resistant to damage from ROS. In vivo, autoimmune destruction of islets in NOD mice was associated with production of catalytically active heparanase, an HS-degrading enzyme, by islet-infiltrating MNCs and loss of islet HS. Furthermore, in vivo treatment with the heparanase inhibitor PI-88 preserved intraislet HS and protected NOD mice from T1D. Our results identified HS as a critical molecular requirement for islet β cell survival and HS degradation as a mechanism for β cell destruction. Our findings suggest that preservation of islet HS could be a therapeutic strategy for preventing T1D.
Collapse
Affiliation(s)
- Andrew F Ziolkowski
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|