1
|
Zhaoyu L, Xiaomeng Y, Na L, Jiamin S, Guanhua D, Xiuying Y. Roles of natural products on myokine expression and secretion in skeletal muscle atrophy. Gen Comp Endocrinol 2024; 355:114550. [PMID: 38768928 DOI: 10.1016/j.ygcen.2024.114550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/22/2024]
Abstract
Skeletal muscles serve both in movement and as endocrine organs. Myokines secreted by skeletal muscles activate biological functions within muscles and throughout the body via autocrine, paracrine, and/or endocrine pathways. Skeletal muscle atrophy can influence myokine expression and secretion, while myokines can impact the structure and function of skeletal muscles. Regulating the expression and secretion of myokines through the pharmacological approach is a strategy for alleviating skeletal muscle atrophy. Natural products possess complex structures and chemical properties. Previous studies have demonstrated that various natural products exert beneficial effects on skeletal muscle atrophy. This article reviewed the regulatory effects of natural products on myokines and summarized the research progress on skeletal muscle atrophy associated with myokine regulation. The focus is on how small-molecule natural products affect the regulation of interleukin 6 (IL-6), irisin, myostatin, IGF-1, and FGF-21 expression. We contend that the development of small-molecule natural products targeting the regulation of myokines holds promise in combating skeletal muscle atrophy.
Collapse
Affiliation(s)
- Liu Zhaoyu
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Ye Xiaomeng
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Li Na
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Shang Jiamin
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China
| | - Du Guanhua
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| | - Yang Xiuying
- Beijing Key Laboratory of Drug Target Identification and New Drug Screening, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, PR China.
| |
Collapse
|
2
|
Wu H, Wang J, Bu Y, Li J, Li Y, Jing Q, Wang X, Yan C, Liu D, Han Y. Pentamethylquercetin attenuates angiotensin II-induced abdominal aortic aneurysm formation by blocking nuclear translocation of C/EBPβ at Lys253. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167224. [PMID: 38723872 DOI: 10.1016/j.bbadis.2024.167224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/30/2024] [Accepted: 05/03/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Pentamethylquercetin (PMQ) is a natural polymethyl flavonoid that possesses anti-apoptotic and other biological properties. Abdominal aortic aneurysm (AAA), a fatal vascular disease with a high risk of rupture, is associated with phenotypic switching and apoptosis of medial vascular smooth muscle cells (VSMCs). This study aimed to investigate the protective effects of PMQ on the development of AAA and the underlying mechanism. METHODS ApoE-/- mice were continuously infused with angiotensin II (Ang II) for 4 weeks to develop the AAA model. Intragastric administration of PMQ was initiated 5 days before Ang II infusion and continued for 4 weeks. In vitro, VSMCs were cultured and pretreated with PMQ, stimulated with Ang II. Real-time PCR, western blotting, and immunofluorescence staining were used to examine the roles and mechanisms of PMQ on the phenotypic switching and apoptosis of VSMCs. RESULTS PMQ dose-dependently reduced the incidence of Ang II-induced AAA, aneurysm diameter enlargement, elastin degradation, VSMCs phenotypic switching and apoptosis. Furthermore, PMQ also inhibited phenotypic switching and apoptosis in Ang II-stimulated VSMCs. PMQ exerted protective effects by regulating the C/EBPβ/PTEN/AKT/GSK-3β axis. AAV-mediated overexpression of PTEN reduced the therapeutic effects of PMQ in the AAA model mice, suggesting that the effects of PMQ on Ang II-mediated AAA formation were related to the PTEN/AKT/GSK-3β axis. PMQ inhibited VSMCs phenotypic switching and apoptosis by bounding to C/EBPβ at Lys253 with hydrogen bond to regulate C/EBPβ nuclear translocation and PTEN/AKT/GSK-3β axis, thereby inhibiting Ang II-induced AAA formation. CONCLUSIONS Pentamethylquercetin inhibits angiotensin II-induced abdominal aortic aneurysm formation by bounding to C/EBPβ at Lys253. Therefore, PMQ prevents the formation of AAA and reduces the incidence of AAA.
Collapse
MESH Headings
- Animals
- Aortic Aneurysm, Abdominal/metabolism
- Aortic Aneurysm, Abdominal/pathology
- Aortic Aneurysm, Abdominal/prevention & control
- Aortic Aneurysm, Abdominal/chemically induced
- Aortic Aneurysm, Abdominal/drug therapy
- Angiotensin II/pharmacology
- Mice
- Quercetin/analogs & derivatives
- Quercetin/pharmacology
- Apoptosis/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/pathology
- Male
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/pathology
- Disease Models, Animal
- PTEN Phosphohydrolase/metabolism
- PTEN Phosphohydrolase/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Mice, Inbred C57BL
- Glycogen Synthase Kinase 3 beta/metabolism
- Signal Transduction/drug effects
- Cells, Cultured
- Cell Nucleus/metabolism
- Cell Nucleus/drug effects
Collapse
Affiliation(s)
- Hanlin Wu
- Dalian Medical University, Dalian, Liaoning Province 116044, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Jing Wang
- Dalian Medical University, Dalian, Liaoning Province 116044, China; State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Yuxin Bu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Jia Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Yiming Li
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Quanmin Jing
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Xiaozeng Wang
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Chenghui Yan
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China
| | - Dan Liu
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China.
| | - Yaling Han
- State Key Laboratory of Frigid Zone Cardiovascular Diseases, Department of Cardiology and Cardiovascular Research Institute of PLA, General Hospital of Northern Theater Command, Shenyang, Liaoning Province 110016, China.
| |
Collapse
|
3
|
A cross-talk between sestrins, chronic inflammation and cellular senescence governs the development of age-associated sarcopenia and obesity. Ageing Res Rev 2023; 86:101852. [PMID: 36642190 DOI: 10.1016/j.arr.2023.101852] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/20/2022] [Accepted: 01/10/2023] [Indexed: 01/15/2023]
Abstract
The rapid increase in both the lifespan and proportion of older adults is accompanied by the unprecedented rise in age-associated chronic diseases, including sarcopenia and obesity. Aging is also manifested by increased susceptibility to multiple endogenous and exogenous stresses enabling such chronic conditions to develop. Among the main physiological regulators of cellular adaption to various stress stimuli, such as DNA damage, hypoxia, and oxidative stress, are sestrins (Sesns), a family of three evolutionarily conserved proteins, Sesn1, 2, and 3. Age-associated sarcopenia and obesity are characterized by two key processes: (i) accumulation of senescent cells in the skeletal muscle and adipose tissue and (ii) creation of a systemic, chronic, low-grade inflammation (SCLGI). Presumably, failed SCLGI resolution governs the development of these chronic conditions. Noteworthy, Sesns activate senolytics, which are agents that selectively eliminate senescent cells, as well as specialized pro-resolving mediators, which are factors that physiologically provide inflammation resolution. Sesns reveal clear beneficial effects in pre-clinical models of sarcopenia and obesity. Based on these observations, we propose a novel treatment strategy for age-associated sarcopenia and obesity, complementary to the conventional therapeutic modalities: Sesn activation, SCLGI resolution, and senescent cell elimination.
Collapse
|
4
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
5
|
Wu J, Du J, Li Z, He W, Wang M, Jin M, Yang L, Liu H. Pentamethylquercetin Regulates Lipid Metabolism by Modulating Skeletal Muscle-Adipose Tissue Crosstalk in Obese Mice. Pharmaceutics 2022; 14:pharmaceutics14061159. [PMID: 35745732 PMCID: PMC9227162 DOI: 10.3390/pharmaceutics14061159] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/27/2022] [Indexed: 01/27/2023] Open
Abstract
Irisin is an exercise-induced hormone that regulates lipid metabolism. The present study investigates whether the anti-obesity effect of the natural flavonoid pentamethylquercetin (PMQ) is related to irisin secretion from skeletal muscle in whole animals and cultured cells. Obese mice induced by monosodium glutamate were administered oral PMQ to determine blood irisin level and in vivo parameters of lipid metabolism, and cultured mouse C2C12 myoblasts and 3T3-L1 preadipocytes were employed to investigate the related molecular identities. PMQ increased circulating irisin and decreased bodyweight, insulin, and lipid levels accompanied with increasing brown-like adipocyte formation in obese mice. The brown adipocyte marker uncoupling protein 1 (UCP-1) and other brown-like adipocyte-specific genes and/or markers were increased in mouse white fat tissue, while PMQ treatment reversed the above changes. PMQ also dose-dependently increased the reduced levels of AMP-activated protein kinase (AMPK), peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α), and fibronectin type III domain-containing 5 (FNDC5) signal molecules in obese mice. Interestingly, the irisin level was increased in the culture medium of C2C12 cells treated with PMQ, and the conditioned medium stimulated the brown-like transition of 3T3-L1 preadipocytes with the increased expression of PGC-1α, FNDC5, UCP-1, and other brown-like adipocyte-specific genes. The effects of conditioned culture medium were abolished in C2C12 cells with silenced PGC-1α. On the other hand, PMQ-induced upregulation of PGC-1α and FNDC5 expression was reduced by AMPK inhibitor Compound C in C2C12 cells. Our results demonstrate the novel information that PMQ-induced irisin secretion from skeletal muscle involves the improvement of metabolic dysfunction in obese mice via activating the AMPK/PGC-1α/FNDC5 signal pathway, suggesting that PMQ modulates skeletal muscle-adipose tissue crosstalk and may be a promising drug candidate for treating obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Jianzhao Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Jingxia Du
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Zhi Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Wei He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Min Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
| | - Manwen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lei Yang
- Department of Anesthesiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
- Correspondence: (L.Y.); (H.L.)
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (J.W.); (J.D.); (Z.L.); (W.H.); (M.W.); (M.J.)
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Huazhong University of Science and Technology, Wuhan 430030, China
- Correspondence: (L.Y.); (H.L.)
| |
Collapse
|
6
|
Dhanya R, Kartha CC. Quercetin improves oxidative stress-induced pancreatic beta cell alterations via mTOR-signaling. Mol Cell Biochem 2021; 476:3879-3887. [PMID: 34129156 DOI: 10.1007/s11010-021-04193-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 05/26/2021] [Indexed: 01/09/2023]
Abstract
Citrus flavonoids particularly quercetin which is abundant in grapefruit, onion, green tea, berries etc. are known to have a protective effect on oxidative stress. Pancreatic β cells which synthesize and secrete insulin are prone to oxidative stress induced damage because of low cellular antioxidant enzymes. To delineate the effects of quercetin on pancreatic β cells we evaluated the protective effect of quercetin on TC6 insulinoma cells subjected to oxidative stress induced by tert-butyl-hydrogen-peroxide (TBHP). Quercetin was found to reduce TBHP induced apoptosis and trigger insulin secretion in response to glucose, in a dose-dependent manner. Quercetin treatment increased mitochondrial biogenesis, caused hypertrophy in pancreatic β cells and activated mTOR signaling with a transient change in mitochondrial membrane potential and AMP/ATP. Activation of mTOR signaling resulted in enhanced insulin secretion in TC6 cells.
Collapse
Affiliation(s)
- R Dhanya
- Cardiovascular Diseases and Diabetes Biology Division, Rajiv Gandhi Centre for Biotechnology (RGCB), Thycaud Post, Poojappura, Trivandrum, 695014, Kerala, India.
| | - C C Kartha
- Society for Continuing Medical Education & Research, KIMS Health, P.B.No.1, Anayara P.O, Trivandrum, 695029, Kerala, India
| |
Collapse
|
7
|
Zhu W, Yang F, Cai X, Zhang W, Zhang J, Cai M, Li X, Xiang J, Cai D. Role of glucocorticoid receptor phosphorylation-mediated synaptic plasticity in anxiogenic and depressive behaviors induced by monosodium glutamate. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2021; 394:151-164. [PMID: 32444989 DOI: 10.1007/s00210-020-01845-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/19/2020] [Indexed: 12/15/2022]
Abstract
Psychiatric diseases and metabolic disorders frequently cooccur, yet the mechanisms underlying this interaction remain unknown. The aim of this study was to determine the role of glucocorticoid receptor (GR) phosphorylation in the comorbidity of metabolic and psychiatric disorders. Neonatal Sprague-Dawley rats were subcutaneously injected with monosodium glutamate (MSG) every 2 days for 10 days after birth. Metabolic and behavioral tests were performed 12 weeks later. Golgi staining and transmission electron microscopy (TEM) were performed to evaluate synaptic structural plasticity. Changes in GR phosphorylation and the BDNF/TrkB pathway were evaluated by western blotting and immunofluorescence. We found that MSG-treated rats displayed significant metabolic abnormalities accompanied by anxiogenic and depressive behaviors, an altered synaptic ultrastructure and the loss of dendritic spines. The expression of phosphorylated GR was reduced in the brain. Furthermore, a specific agonist of BDNF/TrkB significantly reversed the reduction in GR phosphorylation, as well as the metabolic and behavioral outcomes. These findings indicate that a decrease in BDNF/TrkB pathway-dependent GR phosphorylation is a long-term effect of MSG treatment that may contribute to metabolic and behavioral disturbances.
Collapse
Affiliation(s)
- Wen Zhu
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Feng Yang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiaofang Cai
- Department of Stomatology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wen Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jingsi Zhang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Min Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Xiangting Li
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China
| | - Jun Xiang
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| | - Dingfang Cai
- Department of Integrative Medicine, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Laboratory of Neurology, Institute of Integrative Medicine, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
8
|
Giacometti J, Muhvić D, Grubić-Kezele T, Nikolić M, Šoić-Vranić T, Bajek S. Olive Leaf Polyphenols (OLPs) Stimulate GLUT4 Expression and Translocation in the Skeletal Muscle of Diabetic Rats. Int J Mol Sci 2020; 21:ijms21238981. [PMID: 33256066 PMCID: PMC7729747 DOI: 10.3390/ijms21238981] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 11/24/2020] [Indexed: 12/18/2022] Open
Abstract
Skeletal muscles are high-insulin tissues responsible for disposing of glucose via the highly regulated process of facilitated glucose transporter 4 (GLUT4). Impaired insulin action in diabetes, as well as disorders of GLUT4 vesicle trafficking in the muscle, are involved in defects in insulin-stimulated GLUT4 translocation. Since the Rab GTPases are the main regulators of vesicular membrane transport in exo- and endo-cytosis, in the present work, we studied the effect of olive leaf polyphenols (OLPs) on Rab8A, Rab13, and Rab14 proteins of the rat soleus muscle in a model of streptozotocin (SZT)-induced diabetes (DM) in a dose-dependent manner. Glucose, cholesterol, and triglyceride levels were determined in the blood, morphological changes of the muscle tissue were captured by hematoxylin and eosin histological staining, and expression of GLUT4, Rab8A, Rab13, and Rab14 proteins were analyzed in the rat soleus muscle by the immunofluorescence staining and immunoblotting. OLPs significantly reduced blood glucose level in all treated groups. Furthermore, significantly reduced blood triglycerides were found in the groups with the lowest and highest OLPs treatment. The dynamics of activation of Rab8A, Rab13, and Rab14 was OLPs dose-dependent and more effective at higher OLP doses. Thus, these results indicate a beneficial role of phenolic compounds from the olive leaf in the regulation of glucose homeostasis in the skeletal muscle.
Collapse
Affiliation(s)
- Jasminka Giacometti
- Department of Biotechnology, University of Rijeka, Radmile Matejčić 2, 51000 Rijeka, Croatia
- Correspondence: ; Tel.: +385-51-584-557
| | - Damir Muhvić
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
| | - Tanja Grubić-Kezele
- Department of Physiology and Immunology, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (D.M.); (T.G.-K.)
- Clinical Department for Clinical Microbiology, Clinical Hospital Center Rijeka, Krešimirova 42, 51000 Rijeka, Croatia
| | - Marina Nikolić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Tamara Šoić-Vranić
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| | - Snježana Bajek
- Department of Anatomy, Faculty of Medicine, University of Rijeka, Braće Branchetta 20, 51000 Rijeka, Croatia; (M.N.); (T.Š.-V.); (S.B.)
| |
Collapse
|
9
|
Saadeldeen FS, Niu Y, Wang H, Zhou L, Meng L, Chen S, Sun-Waterhouse D, Waterhouse GIN, Liu Z, Kang W. Natural products: Regulating glucose metabolism and improving insulin resistance. FOOD SCIENCE AND HUMAN WELLNESS 2020. [DOI: 10.1016/j.fshw.2020.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Li Z, Gao WQ, Wang P, Wang TQ, Xu WC, Zhu XY, Liu H. Pentamethylquercetin Inhibits Hepatocellular Carcinoma Progression and Adipocytes-induced PD-L1 Expression via IFN-γ Signaling. Curr Cancer Drug Targets 2020; 20:868-874. [PMID: 32748749 DOI: 10.2174/1568009620999200730184514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/03/2020] [Accepted: 07/07/2020] [Indexed: 01/22/2023]
Abstract
BACKGROUND Obesity is a significant risk factor for the development of types of cancer. Programmed death 1 and its ligand programmed death-ligand 1 (PD-L1) play a crucial role in tumor immune escape. Although, the role of PD-L1 in obesity-associated hepatocellular carcinoma (HCC) remains unknown. We previously showed that the natural flavonoid pentamethylquercetin (PMQ) possesses anti-obesity properties. OBJECTIVE This study was designed to investigate the effects of PMQ on the development of HCC in obese mice and whether PMQ regulates PD-L1 and expression in HCC. METHODS Monosodium glutamate-induced obese mice were inoculated with H22 tumor cells. Tumor volumes and weights were measured. In vitro, 3T3-L1 preadipocytes were differentiated and lipid accumulation was measured by oil-red staining, and IFN-γ level was detected by Elisa. Hepatoma HepG2 cells were treated with conditional media from 3T3-L1 adipocytes (adi-CM). Western blotting was applied to detect PD-L1 protein levels in tumor tissue and HepG2 cells. RESULTS Compared with control mice, H22 tumors grew faster and exhibited higher PD-L1 protein levels in obese mice. PMQ inhibited H22 tumor growth and reduced PD-L1 expression in tumor tissues. PD-L1 protein level was elevated in adi-CM-treated HepG2 cells. IFN-γ was detectable in adi-CM and exogenous IFN-γ induced PD-L1 expression in HepG2 cells. PMQ affected the differentiation of 3T3-L1 preadipocytes, decreased the level of IFN-γ secreted by adipocytes and downregulated adi-CM-induced PD-L1 expression in HepG2 cells. CONCLUSION PMQ could inhibit HCC progression in obese mice at least in part through down-regulating adipocytes-induced PD-L1 expression via IFN-γ signaling.
Collapse
Affiliation(s)
- Zhi Li
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Wen-Qi Gao
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Peng Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Tian-Qi Wang
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Wen-Chao Xu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Xin-Yu Zhu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science
and Technology, Wuhan, China,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Hubei, China
| |
Collapse
|
11
|
Li Z, Zhang C, Du JX, Zhao J, Shi MT, Jin MW, Liu H. Adipocytes promote tumor progression and induce PD-L1 expression via TNF-α/IL-6 signaling. Cancer Cell Int 2020; 20:179. [PMID: 32477009 PMCID: PMC7240984 DOI: 10.1186/s12935-020-01269-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 05/14/2020] [Indexed: 12/31/2022] Open
Abstract
Background Obesity confers increased risk for various types of cancer. PD-L1 is a key molecule in tumor immune evasion by inducing T cell exhaustion. The relationship between obesity and PD-L1 is still ambiguous. This study was designed to reveal the development of hepatocellular carcinoma and melanoma in obese mice and to investigate if adipocytes regulate PD-L1 expression and the underlying mechanism. Methods Monosodium glutamate-induced obese mice were inoculated with H22 tumor cells and High fat diet (HFD)-induced obese mice were inoculated with B16-F1 mouse melanoma cells. Human hepatoma HepG2 cells and B16-F1 cells were treated with conditional media from 3T3-L1 adipocytes (adi-CM). Neutralized anti-TNF-α and anti-IL-6 antibodies and inhibitor of NF-κB or STAT3 were used to reveal the mechanism of effect of adi-CM. Results In obese mice, H22 and B16-F1 tumor tissues grew faster and PD-L1 expression in tumor tissue was increased. Adi-CM up-regulated PD-L1 level in HepG2 and B16-F1 cells in vitro. Differentiated 3T3-L1 adipocytes secreted TNF-α and IL-6, and neutralizing TNF-α and/or IL-6 reduced PD-L1 expression in adi-CM-treated cells. p-NF-κB/NF-κB level was downregulated in HepG2 and B16-F1 cells, and p-STAT3/STAT3 level was also decreased in HepG2 cells. In addition, inhibitor of NF-κB or STAT3 reversed the effect of adi-CM on PD-L1 expression. Conclusions TNF-α and IL-6 secreted by adipocytes up-regulates PD-L1 in hepatoma and B16-F1 cells, which may be at least partially involved in the role of obesity in promoting tumor progression.
Collapse
Affiliation(s)
- Zhi Li
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cai Zhang
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing-Xia Du
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Zhao
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Ting Shi
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man-Wen Jin
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| | - Hui Liu
- 1Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China
| |
Collapse
|
12
|
Pentamethylquercetin Attenuates Cardiac Remodeling via Activation of the Sestrins/Keap1/Nrf2 Pathway in MSG-Induced Obese Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:3243906. [PMID: 32090078 PMCID: PMC7013309 DOI: 10.1155/2020/3243906] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/11/2019] [Accepted: 12/30/2019] [Indexed: 02/06/2023]
Abstract
Objective Obesity causes a variety of metabolic alterations that may contribute to abnormalities of the cardiac structure and function (obesity cardiomyopathy). In previous works, we have shown that pentamethylquercetin (PMQ) significantly improved metabolic disorders in obese mice and it inhibited pressure overload-induced cardiac remodeling in mice. However, its potential benefit in obesity cardiomyopathy remains unclear. The aim of this study was to investigate the effects of PMQ on cardiac remodeling in obese mice. Methods We generated a monosodium glutamate-induced obese (MSG-IO) model in mice, which were treated with PMQ (5, 10, and 20 mg/kg) for 16 weeks consecutively. We examined the metabolic parameters and observed cardiac remodeling by performing cardiac echocardiography and Masson's staining. The expression levels of molecules associated with the endogenous antioxidant system, including the sestrins/kelch-like ECH-associated protein 1 (Keap1)/Nuclear factor (erythroid-derived 2)-like 2 (Nrf2) signaling pathway, were analyzed by western blotting and immunofluorescent staining. Results We found that PMQ treatment significantly ameliorated obesity phenotypes and improved metabolic disorders in MSG-IO mice. PMQ decreased the heart wall thickness and attenuated cardiac fibrosis. Further study revealed that the protective effects of PMQ might be mediated by promoting Keap1 degradation and augmenting sestrins expression and Nrf2 nuclear translocation. Conclusion Our findings indicated that PMQ ameliorated cardiac remodeling in obese mice by targeting the sestrins/Keap1/Nrf2 signaling pathway.
Collapse
|
13
|
Mori RC, Poças da Silva T, Campello RS, Machado UF. Carbenoxolone enhances peripheral insulin sensitivity and GLUT4 expression in skeletal muscle of obese rats: Potential participation of UBC9 protein. Life Sci 2019; 229:157-165. [PMID: 31077719 DOI: 10.1016/j.lfs.2019.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 01/06/2023]
Abstract
AIM This study investigates the insulin sensitizer effect of carbenoxolone (CBX) and potentially involved peripheral mechanisms. MAIN METHODS Taking glucose transporter 4 (GLUT4) as a marker of glucose disposal, we investigated the CBX effects on whole-body insulin sensitivity and solute carrier 2a4 (Slc2a4)/GLUT4 expression in visceral (VAT) and subcutaneous (SAT) adipose tissues and soleus muscle of monosodium glutamate (MSG)-induced obese rats. Sterol regulatory element binding protein (SREBP1), an enhancer of Slc2a4 expression was analyzed through mRNA content and SREBP1-binding to Slc2a4 promoter. Finally, the small ubiquitin-modifier conjugating enzyme 9 (UBC9), whose low content indicates accelerated GLUT4 degradation was analyzed in soleus. KEY FINDINGS Hypercorticosteronemia, hyperinsulinemia and low glucose decay rate in the insulin tolerance test of obese rats were restored by CBX (P < 0.05). Slc2a4/GLUT4 increased in SAT (P < 0.05) and decreased in VAT (P < 0.01) of obese rats. In soleus, obesity increased Slc2a4 but decreased GLUT4 (P < 0.01), possibly by accelerating GLUT4 degradation, as suggested by decreased UBC9 (P < 0.01). CBX restored both UBC9 and GLUT4 contents. SREBP1 did not participate in the Slc2a4 transcriptional regulation. SIGNIFICANCE The insulin sensitizer effect of CBX involves the increase of GLUT4 expression in soleus, indicating an increased glucose disposal in skeletal muscle. This observation reinforces the skeletal muscle as the main site of insulin-induced glucose uptake and sheds new light on the metabolic effects of 11βHSD1 inhibitors, since most of the studies so far have focused on its effects on liver and adipose tissues.
Collapse
Affiliation(s)
- Rosana Cristina Mori
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.
| | - Thaís Poças da Silva
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Raquel Saldanha Campello
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Ubiratan Fabres Machado
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| |
Collapse
|
14
|
Quines CB, Jardim NS, Araujo PCO, Cechella JL, Prado VC, Nogueira CW. Resistance training restores metabolic alterations induced by monosodium glutamate in a sex-dependent manner in male and female rats. J Cell Biochem 2019; 120:13426-13440. [PMID: 30916837 DOI: 10.1002/jcb.28617] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Revised: 01/14/2019] [Accepted: 01/28/2019] [Indexed: 01/07/2023]
Abstract
Despite resistance exercises being associated with health outcomes, numerous issues are still unresolved and further research is required before the exercise can faithfully be prescribed as medicine. The goal of this study was to investigate whether there are sex differences in resistance training effects on metabolic alterations induced by monosodium glutamate (MSG), a model of obesity, in male and female rats. Male and female Wistar rats received MSG (4 g/kg body weight/day, s.c.) from postnatal day 1 to 10. After 10 days from MSG administration, the rats were separated into two groups: MSG-sedentary and MSG-exercised. At postnatal day 60, the animals started a resistance training protocol in an 80 degrees inclined vertical ladder apparatus and performed it for 7 weeks. Control rats received saline solution and were divided in saline-sedentary and saline-exercised. Resistance training restored all plasma biochemical parameters (glucose, cholesterol, triglycerides, aspartate aminotransferase, and alanine aminotransferase) increased in male and female rats treated with MSG. The MSG administration induced hyperglycemia associated with a decrease in the skeletal muscle glucose transporter 4 (GLUT4) levels and accompanied by deregulation in proteins, G-6Pase, and tyrosine aminotransferase, involved in hepatic glucose metabolism of male and female rats. MSG induced dyslipidemia and lipotoxicity in the liver and skeletal muscle of male rats. Regarding female rats, lipotoxicity was found only in the skeletal muscle. The resistance training had beneficial effects against metabolic alterations induced by MSG in male and female rats, through regulation of proteins (GLUT2, protein kinase B, and GLUT4) involved in glucose and lipid pathways in the liver and skeletal muscle.
Collapse
Affiliation(s)
- Caroline B Quines
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Natália S Jardim
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Paulo Cesar O Araujo
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - José Luiz Cechella
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Vinicius C Prado
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| | - Cristina W Nogueira
- Departamento de Bioquímica e Biologia Molecular, Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, Rio Grande do Sul, Brazil
| |
Collapse
|
15
|
Obesity: Pathophysiology, monosodium glutamate-induced model and anti-obesity medicinal plants. Biomed Pharmacother 2019; 111:503-516. [DOI: 10.1016/j.biopha.2018.12.108] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 02/08/2023] Open
|
16
|
Tatsuzaki J, Ohwada T, Otani Y, Inagi R, Ishikawa T. A simple and effective preparation of quercetin pentamethyl ether from quercetin. Beilstein J Org Chem 2018; 14:3112-3121. [PMID: 30643589 PMCID: PMC6317434 DOI: 10.3762/bjoc.14.291] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 12/12/2018] [Indexed: 11/23/2022] Open
Abstract
Among the five hydroxy (OH) groups of quercetin (3,5,7,3',4'-pentahydroxyflavone), the OH group at 5 position is the most resistant to methylation due to its strong intramolecular hydrogen bonding with the carbonyl group at 4 position. Thus, it is generally difficult to synthesize the pentamethyl ether efficiently by conventional methylation. Here, we describe a simple and effective per-O-methylation of quercetin with dimethyl sulfate in potassium (or sodium) hydroxide/dimethyl sulfoxide at room temperature for about 2 hours, affording quercetin pentamethyl ether (QPE) quantitatively as a single product. When methyl iodide was used in place of dimethyl sulfate, the C-methylation product 6-methylquercetin pentamethyl ether was also formed. A computational study provided a rationale for the experimental results.
Collapse
Affiliation(s)
- Jin Tatsuzaki
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tomohiko Ohwada
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Yuko Otani
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Reiko Inagi
- Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0013, Japan
| | - Tsutomu Ishikawa
- Tokiwa Phytochemical Co. Ltd., 158 Kinoko, Sakura, Chiba 285-0801, Japan
| |
Collapse
|
17
|
Quines CB, Rosa SG, Velasquez D, Prado VC, Neto JS, Nogueira CW. (p-ClPhSe)2 stabilizes metabolic function in a rat model of neuroendocrine obesity induced by monosodium glutamate. Food Chem Toxicol 2018; 118:168-180. [PMID: 29738801 DOI: 10.1016/j.fct.2018.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 04/30/2018] [Accepted: 05/04/2018] [Indexed: 12/13/2022]
|
18
|
Buonerba C, De Placido P, Bruzzese D, Pagliuca M, Ungaro P, Bosso D, Ribera D, Iaccarino S, Scafuri L, Liotti A, Romeo V, Izzo M, Perri F, Casale B, Grimaldi G, Vitrone F, Brunetti A, Terracciano D, Marinelli A, De Placido S, Di Lorenzo G. Isoquercetin as an Adjunct Therapy in Patients With Kidney Cancer Receiving First-Line Sunitinib (QUASAR): Results of a Phase I Trial. Front Pharmacol 2018; 9:189. [PMID: 29615901 PMCID: PMC5864863 DOI: 10.3389/fphar.2018.00189] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 02/19/2018] [Indexed: 12/14/2022] Open
Abstract
Sunitinib is the most commonly prescribed drug for advanced renal cell carcinoma in the first-line setting and has been associated with multiple adverse events related to its on–and off–target effects, including hand and foot syndrome and fatigue. It was hypothesized that sunitinib-induced fatigue may be related to off target inhibition of the AMPK enzyme, which results in impairment of energy-producing processes at a systemic level. Quercetin is a naturally occurring flavonol with established AMPK-stimulating activity. While clinical use of quercetin is limited by its poor bio-availability, quercetin-3-O-β-d-glucopyranoside, that is isoquercetin, has an improved pharmacokinetic profile. On the grounds of the in vitro stimulatory activity with respect to AMPk, we hypothesized that oral isoquercetin could improve fatigue in kidney cancer patients receiving sunitinib. Given the lack of data on the safety of isoquercetin given concomitantly with sunitinib, we conducted a phase I trial to assess the safety of GMP manufactured isoquercetin given at two dose levels (450 and 900 mg a day). In the 12-patient study cohort included in this study, isoquercetin was administered concomitantly with 50 mg sunitinib for a median 81 days (IQR, 75.5, 86.5). None of the 12 patients required isoquercetin suspension or isoquercetin dose reduction because of adverse events. No abnormalities in ECG, heart or lower limbs doppler ultrasound were detected. A statistically significant improvement was reported for the FACIT fatigue score (6.8 points; 95% CI: 2.8–10.8; p = 0.002) and for the FACIT Adverse Events score (18.9 points; 95% CI: 9.1–28.8; p < 0.001) after isoquercetin consumption vs. baseline. In this phase I trial, isoquercetin was remarkably safe, with a preliminary signal of activity in terms of improvement of sunitinib adverse events.
Collapse
Affiliation(s)
- Carlo Buonerba
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy.,Istituto Zooprofilattico Sperimentale del Mezzogiorno, Portici, Italy
| | - Pietro De Placido
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Dario Bruzzese
- Department of Public Health, Federico II University of Naples, Naples, Italy
| | - Martina Pagliuca
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Paola Ungaro
- Institute of Experimental Endocrinology and Oncology (IEOS-CNR) "G. Salvatore", Naples, Italy
| | - Davide Bosso
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Dario Ribera
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Simona Iaccarino
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Luca Scafuri
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Antonietta Liotti
- Department of Translational Medical Sciences, University "Federico II", Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy
| | - Michela Izzo
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Francesco Perri
- Medical Oncology Unit, POC SS Annunziata Taranto, Taranto, Italy
| | - Beniamino Casale
- Dipartimento di Pneumologia e Tisiologia, Day Hospital Pneumologia e Pneumoncologico, AORN Vincenzo Monaldi, Naples, Italy
| | - Giuseppe Grimaldi
- U.O. Medicina-Oncoematologia Ospedale Umberto I, Nocera Inferiore, Italy
| | - Francesca Vitrone
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, University Federico II of Naples, Naples, Italy
| | - Daniela Terracciano
- Department of Translational Medical Sciences, University "Federico II", Naples, Italy
| | - Alfredo Marinelli
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy.,IRCCS Istituto Neurologico Mediterraneo Neuromed, Pozzilli (IS), Italy
| | - Sabino De Placido
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| | - Giuseppe Di Lorenzo
- Medical Oncology Division, Department of Clinical Medicine and Surgery, University Federico II of Naples, Naples, Italy
| |
Collapse
|
19
|
Quines CB, Chagas PM, Hartmann D, Carvalho NR, Soares FA, Nogueira CW. (p
-ClPhSe)2
Reduces Hepatotoxicity Induced by Monosodium Glutamate by Improving Mitochondrial Function in Rats. J Cell Biochem 2017; 118:2877-2886. [DOI: 10.1002/jcb.25938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 02/15/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Caroline B. Quines
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
| | - Pietro M. Chagas
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
| | - Diane Hartmann
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Nélson R. Carvalho
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Félix A. Soares
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| | - Cristina W. Nogueira
- Laboratório de Síntese, Reatividade e Avaliação Farmacológica e Toxicológica de Organocalcogênios, Centro de Ciências Naturais e Exatas, Departamento de Bioquímica e Biologia Molecular; Universidade Federal de Santa Maria; Santa Maria CEP 97105-900, RS Brazil
- Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria; Campus UFSM; Santa Maria RS 97105-900 Brazil
| |
Collapse
|
20
|
Han Y, Wu JZ, Shen JZ, Chen L, He T, Jin MW, Liu H. Pentamethylquercetin induces adipose browning and exerts beneficial effects in 3T3-L1 adipocytes and high-fat diet-fed mice. Sci Rep 2017; 7:1123. [PMID: 28442748 PMCID: PMC5430711 DOI: 10.1038/s41598-017-01206-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 03/27/2017] [Indexed: 12/13/2022] Open
Abstract
Browning white adipocytes may be a new target in anti-obesity therapy. Pentamethylquercetin (PMQ) has been shown to have anti-obesity effects in monosodium glutamate-induced obese mice. Here, we aimed to study the anti-obesity effects of PMQ in vitro and in vivo and to determine if adipose browning is involved in the mechanism underlying the anti-obesity effects of PMQ. We evaluated the effects of PMQ on cell proliferation, cell differentiation, glucose consumption, cellular lipid metabolism, and related brown gene expression in 3T3-L1 adipocytes. We also investigated the effects of PMQ in a mouse model of high-fat diet (HFD)-induced obesity. Our results demonstrated that PMQ increased the consumption of glucose, inhibited the accumulation of cellular triglycerides (TGs), and induced the expression of brown adipocyte-specific genes, such as uncoupling protein 1 (UCP-1), during the early stage of differentiation in 3T3-L1 adipocytes. In HFD mice, PMQ treatment reduced waist circumference, LEE index, white adipose tissue (WAT) weight and white adipocyte size and increased brown adipose tissue (BAT) weight. Moreover, PMQ treatment induced mitochondrial biogenesis and upregulated UCP-1 expression in WAT. These findings suggest that PMQ may induce browning of adipose tissue, a phenomenon that is at least partly related to its anti-obesity effects.
Collapse
Affiliation(s)
- Yi Han
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Department of Pharmacy, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China
| | - Jian-Zhao Wu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ji-Zhong Shen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Chen
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ting He
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Man-Wen Jin
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.,Biomedicine Research Center, Wuhan Institute of Biotechnology, Wuhan, China
| | - Hui Liu
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China. .,The Key Laboratory for Drug Target Researches and Pharmacodynamic Evaluation of Hubei Province, Wuhan, China.
| |
Collapse
|
21
|
Pentamethylquercetin (PMQ) reduces thrombus formation by inhibiting platelet function. Sci Rep 2015; 5:11142. [PMID: 26059557 PMCID: PMC4461919 DOI: 10.1038/srep11142] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 05/12/2015] [Indexed: 11/10/2022] Open
Abstract
Flavonoids exert both anti-oxidant and anti-platelet activities in vitro and in vivo. Pentamethylquercetin (PMQ), a polymethoxylated flavone derivative, has been screened for anti-carcinogenic and cardioprotective effects. However, it is unclear whether PMQ has anti-thrombotic effects. In the present study, PMQ (20 mg/kg) significantly inhibited thrombus formation in the collagen- epinephrine- induced acute pulmonary thrombosis mouse model and the ferric chloride-induced carotid injury model. To explore the mechanism, we evaluated the effects of PMQ on platelet function. We found that PMQ inhibited platelet aggregation and granule secretion induced by low dose agonists, including ADP, collagen, thrombin and U46619. Biochemical analysis revealed that PMQ inhibited collagen-, thrombin- and U46619-induced activation of Syk, PLCγ2, Akt, GSK3β and Erk1/2. Therefore, we provide the first report to show that PMQ possesses anti-thrombotic activity in vivo and inhibited platelet function in vitro, suggesting that PMQ may represent a potential therapeutic candidate for the prevention or treatment of thrombotic disorders.
Collapse
|
22
|
Matsuda H, Nakamura S, Yoshikawa M. Search for new type of PPARγ agonist-like anti-diabetic compounds from medicinal plants. Biol Pharm Bull 2015; 37:884-91. [PMID: 24882400 DOI: 10.1248/bpb.b14-00037] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Potent ligands of peroxisome proliferator-activated receptor γ (PPARγ) such as thiazolidinediones (pioglitazone, troglitazone, etc.) improve insulin sensitivity by increasing the levels of adiponectin, an important adipocytokine associated with insulin sensitivity in adipose tissue. Several constituents from medicinal plants were recently reported to show PPARγ agonist-like activity in 3T3-L1 cells, but did not show agonistic activity at the receptor site different from thiazolidinediones. Our recent studies on PPARγ agonist-like constituents, such as hydrangenol and hydrangeic acid from the processed leaves of Hydrangea macrophylla var. thunbergii, piperlonguminine and retrofractamide A from the fruit of Piper chaba, and tetramethylkaempferol and pentamethylquercetin from the rhizomes of Kaempferia parviflora, are reviewed.
Collapse
|
23
|
Gannon NP, Conn CA, Vaughan RA. Dietary stimulators of GLUT4 expression and translocation in skeletal muscle: a mini-review. Mol Nutr Food Res 2014; 59:48-64. [PMID: 25215442 DOI: 10.1002/mnfr.201400414] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 09/07/2014] [Accepted: 09/08/2014] [Indexed: 12/23/2022]
Abstract
Chronic insulin resistance can lead to type II diabetes mellitus, which is also directly influenced by an individual's genetics as well as their lifestyle. Under normal circumstances, insulin facilitates glucose uptake in skeletal muscle and adipose tissue by stimulating glucose transporter 4 (GLUT4) translocation and activity. GLUT4 activity is directly correlated with the ability to clear elevated blood glucose and insulin sensitivity. In diabetes, energy excess and prolonged hyperinsulinemia suppress muscle and adipose response to insulin, in part through reduced GLUT4 membrane levels. This work uniquely describes much of the experimental data demonstrating the effects of various dietary components on GLUT4 expression and translocation in skeletal muscle. These observations implicate several individual dietary chemicals as potential adjuvant therapies in the maintenance of diabetes and insulin resistance.
Collapse
Affiliation(s)
- Nicholas P Gannon
- Department of Biochemistry and Molecular Biology, University of New Mexico, Health Sciences Center, School of Medicine, Albuquerque, NM, USA
| | | | | |
Collapse
|
24
|
Dief AE, Kamha ES, Baraka AM, Elshorbagy AK. Monosodium glutamate neurotoxicity increases beta amyloid in the rat hippocampus: A potential role for cyclic AMP protein kinase. Neurotoxicology 2014; 42:76-82. [DOI: 10.1016/j.neuro.2014.04.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 03/25/2014] [Accepted: 04/16/2014] [Indexed: 10/25/2022]
|
25
|
Matoušková P, Bártíková H, Boušová I, Hanušová V, Szotáková B, Skálová L. Reference genes for real-time PCR quantification of messenger RNAs and microRNAs in mouse model of obesity. PLoS One 2014; 9:e86033. [PMID: 24465854 PMCID: PMC3895018 DOI: 10.1371/journal.pone.0086033] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/04/2013] [Indexed: 11/18/2022] Open
Abstract
Obesity and metabolic syndrome is increasing health problem worldwide. Among other ways, nutritional intervention using phytochemicals is important method for treatment and prevention of this disease. Recent studies have shown that certain phytochemicals could alter the expression of specific genes and microRNAs (miRNAs) that play a fundamental role in the pathogenesis of obesity. For study of the obesity and its treatment, monosodium glutamate (MSG)-injected mice with developed central obesity, insulin resistance and liver lipid accumulation are frequently used animal models. To understand the mechanism of phytochemicals action in obese animals, the study of selected genes expression together with miRNA quantification is extremely important. For this purpose, real-time quantitative PCR is a sensitive and reproducible method, but it depends on proper normalization entirely. The aim of present study was to identify the appropriate reference genes for mRNA and miRNA quantification in MSG mice treated with green tea catechins, potential anti-obesity phytochemicals. Two sets of reference genes were tested: first set contained seven commonly used genes for normalization of messenger RNA, the second set of candidate reference genes included ten small RNAs for normalization of miRNA. The expression stability of these reference genes were tested upon treatment of mice with catechins using geNorm, NormFinder and BestKeeper algorithms. Selected normalizers for mRNA quantification were tested and validated on expression of NAD(P)H:quinone oxidoreductase, biotransformation enzyme known to be modified by catechins. The effect of selected normalizers for miRNA quantification was tested on two obesity- and diabetes- related miRNAs, miR-221 and miR-29b, respectively. Finally, the combinations of B2M/18S/HPRT1 and miR-16/sno234 were validated as optimal reference genes for mRNA and miRNA quantification in liver and 18S/RPlP0/HPRT1 and sno234/miR-186 in small intestine of MSG mice. These reference genes will be used for mRNA and miRNA normalization in further study of green tea catechins action in obese mice.
Collapse
Affiliation(s)
- Petra Matoušková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- * E-mail:
| | - Hana Bártíková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Iva Boušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Veronika Hanušová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
- Department of Medical Biology and Genetics, Charles University in Prague, Faculty of Medicine, Hradec Králové, Czech Republic
| | - Barbora Szotáková
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| | - Lenka Skálová
- Department of Biochemical Sciences, Charles University in Prague, Faculty of Pharmacy, Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Arias N, Macarulla MT, Aguirre L, Martínez-Castaño MG, Portillo MP. Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. GENES AND NUTRITION 2013; 9:361. [PMID: 24338341 DOI: 10.1007/s12263-013-0361-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/14/2013] [Indexed: 12/18/2022]
Abstract
Quercetin exhibits a wide range of biological functions. The first aim of the present work was to analyze the effects of quercetin on fat accumulation in adipose tissue and glycemic control in rats. Any potential involvement of muscle fatty acid oxidation in its effect on glycemic control was also assessed. Animals were fed a high-fat high-sucrose diet either supplemented with quercetin (30 mg/kg body weight/day), or not supplemented, for 6 weeks. One week before killing, a glucose tolerance test was carried out. Muscle triacylglycerol content, serum glucose, insulin, fructosamine and free fatty acids were measured, and homeostatic model assessment for insulin resistance (HOMA-IR) was calculated. The activities of lipogenic enzymes and lipoprotein lipase in adipose tissue, carnitine palmitoyl transferase-1b (CPT-1b) and citrate synthase in skeletal muscle, and the expression of several genes, ACO, CD36, CPT-1b, PPAR-α, PGC-1α, UCP3, TFAM and COX-2 in skeletal muscle were analyzed. Quercetin caused no significant reduction in body weight or adipose tissue sizes. However, fructosamine, basal glucose and insulin, and consequently HOMA-IR, were significantly reduced by quercetin. No changes were observed in the activity of lipogenic enzymes and lipoprotein lipase. Muscle triacylglycerol content was similar in both experimental groups. The expression of ACO, CD36, CPT-1b, PPAR-α, PGC-1α, UCP3, TFAM and COX-2 remained unchanged. It can be concluded that quercetin is more effective as an anti-diabetic than as an anti-obesity biomolecule. The improvement in insulin resistance induced by this flavonoid is not mediated by a delipidating effect in skeletal muscle.
Collapse
Affiliation(s)
- N Arias
- Nutrition and Obesity Group, Department of Nutrition and Food Science, Faculty of Pharmacy, Lascaray Research Center, University of the Basque Country (UPV/EHU), Vitoria, Spain
| | | | | | | | | |
Collapse
|
27
|
Pentamethylquercetin reduces fat deposition via Sirt1-mediated pathways in male obese mice induced by a high fat diet. Food Chem Toxicol 2013; 62:463-9. [DOI: 10.1016/j.fct.2013.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Revised: 08/22/2013] [Accepted: 09/03/2013] [Indexed: 12/18/2022]
|
28
|
Pentamethylquercetin ameliorates fibrosis in diabetic Goto-Kakizaki rat kidneys and mesangial cells with suppression of TGF-β/Smads signaling. Eur J Pharmacol 2013; 713:6-15. [DOI: 10.1016/j.ejphar.2013.04.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 04/19/2013] [Accepted: 04/26/2013] [Indexed: 11/22/2022]
|
29
|
Chen W, Chen Z, Xue N, Zheng Z, Li S, Wang L. Effects of CB1 receptor blockade on monosodium glutamate induced hypometabolic and hypothalamic obesity in rats. Naunyn Schmiedebergs Arch Pharmacol 2013; 386:721-32. [PMID: 23620336 DOI: 10.1007/s00210-013-0875-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Accepted: 04/10/2013] [Indexed: 12/16/2022]
Abstract
Effects of cannabinoid receptor 1 (CB1R) blockade were observed by comparing 9-day and 6-week SR141716 treatments in monosodium glutamate (MSG)-induced hypometabolic and hypothalamic obesity (HO) in rats for the first time and molecular mechanisms were investigated. Compared with normal rats, the MSG rats display typical symptoms of the metabolic syndrome, i.e., excessive abdominal obesity, hypertriglyceridemia, hyperinsulinemia, insulin resistance, and hepatic steatosis, but with lower food intake. Although both the 9-day and 6-week treatments with the specific CB1R antagonist SR141716 effectively lowered body weight, intraperitoneal adipose tissue mass, serum triglyceride (TG), and insulin level, the effect of chronic treatment is more impressive. Moreover, serum cholesterol, free fatty acids (FFA), fasted and postprandial blood glucose, and insulin insensitivity were more effectively improved by 6-week exposure to SR141716, whereas hypophagia was only effective within the initial 2 weeks. In addition, hepatic steatosis as well as hepatic and adipocyte morphology was improved. Western blot analysis revealed that the markedly increased CB1R expression and decreased insulin receptor (INR) expression in liver and adipose tissues were effectively corrected by SR141716. Consistent with this, deregulated gene expression of lipogenesis and lipolysis as well as glucose metabolic key enzymes were also restored by SR141716. In conclusion, based on present data we found that: (1) alteration of the hypothalamus in MSG rats leads to a lower expression of INR in crucially insulin-targeted tissues and hyperinsulinemia that was reversed by SR141716, (2) the abnormally increased expression of CB1R in liver and adipose tissues plays a vital role in the pathophysiological process of MSG rats, and (3) chronic CB1R blockade leads to a sustained improvement of the metabolic dysfunctions of MSG rats.
Collapse
Affiliation(s)
- Wei Chen
- Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
30
|
Collison KS, Zaidi MZ, Inglis A, Al-Mohanna FA. Letter-to-the-Editor on “No effects of monosodium glutamate consumption on the body weight or composition of adult rats and mice” — further information. Physiol Behav 2013; 110-111:1-2. [DOI: 10.1016/j.physbeh.2012.11.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/28/2012] [Indexed: 10/27/2022]
|
31
|
Dai X, Ding Y, Zhang Z, Cai X, Bao L, Li Y. Quercetin But Not Quercitrin Ameliorates Tumor Necrosis Factor-Alpha-Induced Insulin Resistance in C2C12 Skeletal Muscle Cells. Biol Pharm Bull 2013; 36:788-95. [DOI: 10.1248/bpb.b12-00947] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Xiaoqian Dai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Ye Ding
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Zhaofeng Zhang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Lei Bao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University Health Science Center
| |
Collapse
|