1
|
Stegmann SK, Vohlen C, Im NG, Niehues J, Selle J, Janoschek R, Kuiper-Makris C, Lang S, Demir M, Steffen HM, Quaas A, Lackmann JW, Nierhoff D, Neumann-Haefelin C, Dötsch J, Alejandre Alcazar MA, Kasper P. Perinatal obesity primes the hepatic metabolic stress response in the offspring across life span. Sci Rep 2025; 15:6416. [PMID: 39984579 PMCID: PMC11845730 DOI: 10.1038/s41598-025-90082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/22/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Perinatal obesity is associated with an increased risk of metabolic diseases and hepatic dysfunction in offspring. However, the underlying mechanisms of this metabolic programming remain incompletely understood. This study aimed to elucidate the influence of maternal obesity and early life exposure to high-fat diet on offspring liver phenotype, hepatokine profile, and key components of hepatic metabolism. To this end, we employed a murine high-fat diet-induced perinatal obesity model, investigating the offspring in early life and late adulthood. After exposure to perinatal obesity, the offspring showed a significantly increased body weight in early life with no histological signs of steatosis, but a dysregulated hepatokine profile. Proteomic profiling, followed by molecular analyses, revealed a decreased lipogenesis and increased fatty acid oxidation, suggesting a protective mechanism against the development of steatosis. These changes were accompanied by increased markers of lipid peroxidation and DNA damage, indicating increased oxidative stress. Concomitantly, the antioxidative enzymes catalase and superoxide dismutase 2 were significantly reduced and oxidative phosphorylation was impaired, implying an altered oxidative stress response. While changes in oxidative stress level were only detected in early life, the lipid metabolism was altered across life span. This metabolic programming could determine the resilience and susceptibility to chronic liver disease later in life.
Collapse
Affiliation(s)
- Sarah K Stegmann
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Christina Vohlen
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
| | - Nam Gyu Im
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jana Niehues
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jaco Selle
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Ruth Janoschek
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Celien Kuiper-Makris
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sonja Lang
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Münevver Demir
- Department of Hepatology and Gastroenterology, Campus Virchow-Klinikum (CVK) and Campus Charité Mitte (CCM), Charité University Medicine Berlin, Berlin, Germany
| | - Hans-Michael Steffen
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Alexander Quaas
- Department of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jan-Wilm Lackmann
- Cologne Excellence Cluster On Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Dirk Nierhoff
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Neumann-Haefelin
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Jörg Dötsch
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Miguel A Alejandre Alcazar
- Department of Pediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Pediatric and Adolescent Medicine, Translational Experimental Pediatrics, Experimental Pulmonology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Institute for Lung Health (ILH), University of Giessen and Marburg Lung Center (UGMLC), Member of the German Center for Lung Research (DZL), Gießen, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Philipp Kasper
- Department of Gastroenterology and Hepatology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
2
|
Liang X, Lai K, Li X, Ren D, Gui S, Li Y, Xing Z. Association between triglyceride glucose-body mass index and gestational diabetes mellitus: a prospective cohort study. BMC Pregnancy Childbirth 2025; 25:170. [PMID: 39962434 PMCID: PMC11834603 DOI: 10.1186/s12884-025-07294-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Accepted: 02/06/2025] [Indexed: 02/20/2025] Open
Abstract
BACKGROUND Limited research has examined the potential association between triglyceride glucose-body mass index (TyG-BMI) and gestational diabetes mellitus (GDM). The objective of this investigation was to analyze this linkage and evaluate TyG-BMI's capability to predict GDM. METHODS This research employed secondary data derived from a prospective cohort in South Korea, which included 588 pregnant women with singleton gestations, collected between November 2014 and July 2016. To investigate the connection between TyG-BMI and GDM, logistic regression and sensitivity analyses were performed. Furthermore, an analysis of receiver operating characteristics (ROC) was conducted to assess the prognostic accuracy of TyG-BMI in relation to GDM. RESULTS The cohort exhibited a mean age of 32.07 ± 3.80 years, with 36 individuals (6.12%) manifesting GDM during the interval of 24 to 28 weeks of gestation. Following the adjustment for possible confounding variables, an increased TyG-BMI was associated with an elevated risk of GDM, as indicated by an odds ratio (OR) of 1.02 (95% CI: 1.01-1.04). Additionally, the area under the curve (AUC) for TyG-BMI's predictive performance was recorded at 0.7979 (0.7143-0.8814), with an optimal threshold established at 211.03, which resulted in a specificity of 86.23% and a sensitivity of 66.67%. CONCLUSIONS In this South Korean cohort, increased TyG-BMI during early pregnancy (10-14 weeks) was significantly associated with the onset of GDM (during pregnancy 24-28 weeks). TyG-BMI could be integrated into clinical practice as a complementary preliminary screening tool for detecting women who are at increased risk of GDM.
Collapse
Affiliation(s)
- Xiaomin Liang
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Kai Lai
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Xiaohong Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Di Ren
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Shuiqing Gui
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Ying Li
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| | - Zemao Xing
- Department of Critical Care Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Bai H. New exploration on pathogenesis and early diagnosis of gestational diabetes. World J Clin Cases 2025; 13:93826. [DOI: 10.12998/wjcc.v13.i1.93826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 11/07/2024] Open
Abstract
Gestational diabetes mellitus (GDM) refers to varying degrees of abnormal glucose metabolism that occur during pregnancy and excludes patients previously diagnosed with diabetes. GDM is a unique among the four subtypes of diabetes classified by the international World Health Organization standards. Although GDM patients constitute a small proportion of the total number of diabetes cases, the incidence of GDM has risen significantly over the past decade, posing substantial risk to pregnant women and infants. Therefore, it warrants considerable attention. The pathogenesis of GDM is generally considered to resemble that of type II diabetes, though it may have distinct characteristics. Analyzing blood biochemical proteins in the context of GDM can help elucidate its pathogenesis, thereby facilitating more effective prevention and management strategies. This article reviews this critical clinical issue to enhance the medical community's sufficient understanding of GDM.
Collapse
Affiliation(s)
- Hua Bai
- Department of Neurology, The Third Affiliated Hospital of Guizhou Medical University, Duyun 558099, Guizhou Province, China
| |
Collapse
|
4
|
Rathnayake H, Han L, da Silva Costa F, Paganoti C, Dyer B, Kundur A, Singh I, Holland OJ. Advancement in predictive biomarkers for gestational diabetes mellitus diagnosis and related outcomes: a scoping review. BMJ Open 2024; 14:e089937. [PMID: 39675825 PMCID: PMC11647389 DOI: 10.1136/bmjopen-2024-089937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
OBJECTIVE Gestational diabetes mellitus (GDM) is a metabolic disorder associated with adverse maternal and neonatal outcomes. While GDM is diagnosed by oral glucose tolerance testing between 24-28 weeks, earlier prediction of risk of developing GDM via circulating biomarkers has the potential to risk-stratify women and implement targeted risk reduction before adverse obstetric outcomes. This scoping review aims to collate biomarkers associated with GDM development, associated perinatal outcome and medication requirement in GDM. DESIGN The Preferred Reporting Items for Systematic Reviews and Meta-Analysis extension for scoping reviews was used to guide the study. DATA SOURCES This review searched for articles on PubMed, Embase, Scopus, Cochrane Central Register of Controlled Trials, the Cumulative Index to Nursing and Allied Health Literature and the Web of Science from January 2013 to February 2023. ELIGIBILITY CRITERIA The eligibility criteria included analytical observational studies published in English, focusing on pregnant women with maternal plasma or serum biomarkers collected between 6 and 24 weeks of gestation. Studies were excluded if they evaluated drug effects, non-GDM diabetes types or involved twin pregnancies, microbiota, genetic analyses or non-English publications. DATA EXTRACTION AND SYNTHESIS Two independent reviewers extracted data. One reviewer extracted data from papers included in the scoping review using Covidence. From the 8837 retrieved records, 137 studies were included. RESULTS A total of 278 biomarkers with significant changes in individuals with GDM compared with controls were identified. The univariate predictive biomarkers exhibited insufficient clinical sensitivity and specificity for predicting GDM, perinatal outcomes, and the necessity of medication. Multivariable models combining maternal risk factors with biomarkers provided more accurate detection but required validation for use in clinical settings. CONCLUSION This review recommends further research integrating novel omics technology for building accurate models for predicting GDM, perinatal outcome, and the necessity of medication while considering the optimal testing time.
Collapse
Affiliation(s)
- Hasini Rathnayake
- Griffith University School of Pharmacy and Medical Sciences, Gold Coast, Queensland, Australia
- Department of Medical Laboratory Science, Faculty of Allied Health Sciences, University of Peradeniya, Peradeniya, Sri Lanka
| | - Luhao Han
- Griffith University School of Pharmacy and Medical Sciences, Gold Coast, Queensland, Australia
| | - Fabrício da Silva Costa
- Maternal Fetal Medicine Unit, Gold Coast University Hospital, Southport, Queensland, Australia
- Griffith University School of Medicine and Dentistry, Gold Coast, Queensland, Australia
| | - Cristiane Paganoti
- Maternal Fetal Medicine Unit, Gold Coast University Hospital, Southport, Queensland, Australia
| | - Brett Dyer
- Griffith Biostatistics Unit, Griffith University - Gold Coast Campus, Southport, Queensland, Australia
| | - Avinash Kundur
- Griffith University School of Pharmacy and Medical Sciences, Gold Coast, Queensland, Australia
| | - Indu Singh
- Griffith University School of Pharmacy and Medical Sciences, Gold Coast, Queensland, Australia
| | - Olivia J Holland
- Griffith University School of Pharmacy and Medical Sciences, Gold Coast, Queensland, Australia
- Women-Newborn-Children Division, Gold Coast Hospital and Health Service, Southport, Queensland, Australia
| |
Collapse
|
5
|
Inthavong S, Jatavan P, Tongsong T. Predictive Utility of Biochemical Markers for the Diagnosis and Prognosis of Gestational Diabetes Mellitus. Int J Mol Sci 2024; 25:11666. [PMID: 39519218 PMCID: PMC11545977 DOI: 10.3390/ijms252111666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is a common complication during pregnancy with an increasing prevalence worldwide. Early prediction of GDM and its associated adverse outcomes is crucial for timely intervention and improved maternal and fetal health. The objective of this review is to provide a comprehensive summary of contemporary evidence on biomarkers, focusing on their potential to predict the development of GDM and serve as predictors of maternal, fetal, and neonatal outcomes in women with GDM. A literature search was conducted in the PubMed database using relevant terms. Original research articles published in English between 1 January 2015, and 30 June 2024, were included. A two-stage screening process was employed to identify studies on biomarkers for GDM diagnosis and prognosis and to evaluate the evidence for each biomarker's diagnostic performance and its potential prognostic correlation with GDM. Various biochemical markers, including adipokines, inflammatory markers, insulin resistance markers, glycemic markers, lipid profile markers, placenta-derived markers, and other related markers, have shown promise in identifying women at risk of developing GDM and predicting adverse pregnancy outcomes. Several promising markers with high predictive performance were identified. However, no single biomarker has demonstrated sufficient accuracy to replace the current diagnostic criteria for GDM. The complexity of multiple pathways in GDM pathogenesis highlights the need for a multi-marker approach to improve risk stratification and guide personalized management strategies. While significant progress has been made in GDM biomarker research, further studies are required to refine and validate these markers for clinical use and to develop a comprehensive, evidence-based approach to GDM prediction and management that can improve maternal and child health outcomes.
Collapse
Affiliation(s)
| | - Phudit Jatavan
- Department of Obstetrics and Gynecology, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand; (S.I.); (T.T.)
| | | |
Collapse
|
6
|
Xie YP, Lin S, Xie BY, Zhao HF. Recent progress in metabolic reprogramming in gestational diabetes mellitus: a review. Front Endocrinol (Lausanne) 2024; 14:1284160. [PMID: 38234430 PMCID: PMC10791831 DOI: 10.3389/fendo.2023.1284160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024] Open
Abstract
Gestational diabetes mellitus is a prevalent metabolic disease that can impact the normal course of pregnancy and delivery, leading to adverse outcomes for both mother and child. Its pathogenesis is complex and involves various factors, such as insulin resistance and β-cell dysfunction. Metabolic reprogramming, which involves mitochondrial oxidative phosphorylation and glycolysis, is crucial for maintaining human metabolic balance and is involved in the pathogenesis and progression of gestational diabetes mellitus. However, research on the link and metabolic pathways between metabolic reprogramming and gestational diabetes mellitus is limited. Therefore, we reviewed the relationship between metabolic reprogramming and gestational diabetes mellitus to provide new therapeutic strategies for maternal health during pregnancy and reduce the risk of developing gestational diabetes mellitus.
Collapse
Affiliation(s)
- Ya-ping Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, the Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
- Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Bao-yuan Xie
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| | - Hui-fen Zhao
- Nursing Department, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian, China
| |
Collapse
|
7
|
The ANGPTL3-4-8 Axis in Normal Gestation and in Gestational Diabetes, and Its Potential Involvement in Fetal Growth. Int J Mol Sci 2023; 24:ijms24032486. [PMID: 36768809 PMCID: PMC9917010 DOI: 10.3390/ijms24032486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/18/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Dyslipidemia in gestational diabetes has been associated with worse perinatal outcomes. The ANGPTL3-4-8 axis regulates lipid metabolism, especially in the transition from fasting to feeding. In this study, we evaluated the response of ANGPTL3, 4, and 8 after the intake of a mixed meal in women with normal glucose tolerance and gestational diabetes, and we assessed their gene expressions in different placental locations. Regarding the circulating levels of ANGPTL3, 4, and 8, we observed an absence of ANGPTL4 response after the intake of the meal in the GDM group compared to its presence in the control group. At the placental level, we observed a glucose tolerance-dependent expression pattern of ANGPTL3 between the two placental sides. When we compared the GDM pregnancies with the control pregnancies, a downregulation of the maternal side ANGPTL3 expression was observed. This suggests a dysregulation of the ANGPTL3-4-8 axis in GDM, both at the circulating level after ingestion and at the level of placental expression. Furthermore, we discerned that the expressions of ANGPTL3, 4, and 8 were related to birth weight and placental weight in the GDM group, but not in the control group, which suggests that they may play a role in regulating the transplacental passage of nutrients.
Collapse
|
8
|
Ye Z, Wang S, Huang X, Chen P, Deng L, Li S, Lin S, Wang Z, Liu B. Plasma Exosomal miRNAs Associated With Metabolism as Early Predictor of Gestational Diabetes Mellitus. Diabetes 2022; 71:2272-2283. [PMID: 35926094 PMCID: PMC9630082 DOI: 10.2337/db21-0909] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 08/02/2022] [Indexed: 01/25/2023]
Abstract
To date, the miRNA expression profile of plasma exosomes in women whose pregnancy is complicated by gestational diabetes mellitus (GDM) has not been fully clarified. In this study, differentially expressed miRNAs in plasma exosomes were identified by high-throughput small-RNA sequencing in 12 pregnant women with GDM and 12 with normal glucose tolerance (NGT) and validated in 102 pregnant women with GDM and 101 with NGT. A total of 22 exosomal miRNAs were found, five of which were verified by real-time qPCR. Exosomal miR-423-5p was upregulated, whereas miR-122-5p, miR-148a-3p, miR-192-5p, and miR-99a-5p were downregulated in women whose pregnancy was complicated by GDM. IGF1R and GYS1 as target genes of miR-423-5p, and G6PC3 and FDFT1 as target genes of miR-122-5p were associated with insulin and AMPK signaling pathways and may participate in the regulation of metabolism in GDM. The five exosomal miRNAs had an area under the curve of 0.82 (95%CI, 0.73, ∼0.91) in early prediction of GDM. Our study demonstrates that dysregulated exosomal miRNAs in plasma from pregnant women with GDM might influence the insulin and AMPK signaling pathways and could contribute to the early prediction of GDM.
Collapse
Affiliation(s)
- Zhixin Ye
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Songzi Wang
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Xiaoqing Huang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Peisong Chen
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Langhui Deng
- Department of Laboratory Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Shiqi Li
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Suiwen Lin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Zilian Wang
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
| | - Bin Liu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, People’s Republic of China
- Corresponding author: Bin Liu,
| |
Collapse
|
9
|
Yang X, Ye Y, Wang Y, Wu P, Lu Q, Liu Y, Yuan J, Song X, Yan S, Qi X, Wang YX, Wen Y, Liu G, Lv C, Yang CX, Pan A, Zhang J, Pan XF. Association between early-pregnancy serum C-peptide and risk of gestational diabetes mellitus: a nested case-control study among Chinese women. Nutr Metab (Lond) 2022; 19:56. [PMID: 35996181 PMCID: PMC9396763 DOI: 10.1186/s12986-022-00691-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/01/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE To examine the association of early-pregnancy serum C-peptide with incident gestational diabetes mellitus (GDM) and the predictive ability of maternal C-peptide for GDM. METHODS A nested case-control study of 332 GDM cases and 664 controls was established based on the Tongji-Shuangliu Birth Cohort. The GDM cases and controls were matched at 1:2 on maternal age (± 3 years) and gestational age (± 4 weeks). Multivariable conditional logistic regression was applied to assess the association of C-peptide with risk of GDM. Partial Spearman's correlation coefficients were estimated for the correlations between C-peptide and multiple metabolic biomarkers. C-statistics were calculated to assess the predictive ability of early-pregnancy C-peptide for GDM. RESULTS Of 996 pregnant women, median maternal age was 28.0 years old and median gestational age was 11.0 weeks. After adjustment for potential confounders, the odds ratio of GDM comparing the extreme quartiles of C-peptide was 2.28 (95% confidence interval, 1.43, 3.62; P for trend < 0.001). Partial correlation coefficients ranged between 0.07 and 0.77 for the correlations of C-peptide with fasting insulin, homeostatic model of insulin resistance, leptin, fasting blood glucose, triglycerides, glycosylated hemoglobin, waist-hip ratio, systolic blood pressure, and low-density lipoprotein cholesterol (P ≤ 0.025), and were - 0.11 and - 0.17 for high-density lipoprotein cholesterol and adiponectin (P < 0.001). Serum C-peptide slightly improved the predictive performance of the model with conventional predictive factors (0.66 vs. 0.63; P = 0.008). CONCLUSION While the predictive value for subsequent GDM should be validated, early-pregnancy serum C-peptide may be positively associated with risk of GDM.
Collapse
Affiliation(s)
- Xue Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Non-Communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China.,Wenjiang Institute of Women's and Children's Health, Wenjiang Maternal and Child Health Hospital, Chengdu, 611130, Sichuan, China
| | - Yi Ye
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yi Wang
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Ping Wu
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Qi Lu
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Yan Liu
- Department of Obstetrics and Gynecology, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Jiaying Yuan
- Department of Science and Education, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China
| | - Xingyue Song
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Shijiao Yan
- Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, Hainan, China.,School of Public Health, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Xiaorong Qi
- Department of Gynecology and Obstetrics, West China Second Hospital, State Key Laboratory of Biotherapy, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yi-Xin Wang
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, MA, 02115, USA
| | - Ying Wen
- Department of Communicable Diseases Control and Prevention, Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Gang Liu
- Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Department of Nutrition and Food Hygiene, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Chuanzhu Lv
- Department of Emergency, Hainan Clinical Research Center for Acute and Critical Diseases, The Second Affiliated Hospital of Hainan Medical University, Haikou, 571199, Hainan, China.,Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199, Hainan, China.,Research Unit of Island Emergency Medicine, Chinese Academy of Medical Sciences, Hainan Medical University, Haikou, 571199, Hainan, China
| | - Chun-Xia Yang
- Department of Epidemiology and Biostatistics, West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.,Non-Communicable Diseases Research Center, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, 610041, Sichuan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.,Ministry of Education and Ministry of Environmental Protection Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubation), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China
| | - Jianli Zhang
- Wenjiang Institute of Women's and Children's Health, Wenjiang Maternal and Child Health Hospital, Chengdu, 611130, Sichuan, China.
| | - Xiong-Fei Pan
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,NMPA Key Laboratory for Technical Research on Drug Products in Vitro and in Vivo Correlation, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China. .,Shuangliu Institute of Women's and Children's Health, Shuangliu Maternal and Child Health Hospital, Chengdu, 610200, Sichuan, China.
| |
Collapse
|
10
|
Machine learning-based models for gestational diabetes mellitus prediction before 24–28 weeks of pregnancy: A review. Artif Intell Med 2022; 132:102378. [DOI: 10.1016/j.artmed.2022.102378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 11/21/2022]
|
11
|
New Insights into Adipokines in Gestational Diabetes Mellitus. Int J Mol Sci 2022; 23:ijms23116279. [PMID: 35682958 PMCID: PMC9181219 DOI: 10.3390/ijms23116279] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/12/2022] Open
Abstract
Gestational diabetes mellitus (GDM) is the most common metabolic disorder of pregnancy and has considerable short- and long-term consequences for the health of both the mother and the newborn. Within its pathophysiology, genetic, nutritional, epigenetic, immunological, and hormonal components have been described. Within the last two items, it is known that different hormones and cytokines secreted by adipose tissue, known collectively as adipokines, are involved in the metabolic alterations underlying GDM. Although the maternal circulating profile of adipokines in GDM has been extensively studied, and there are excellent reviews on the subject, it is in recent years that more progress has been made in the study of their expression in visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), placenta, and their concentrations in the umbilical circulation. Thus, this review compiles and organizes the most recent findings on the maternal and umbilical circulating profile and the levels of expression of adipokines in VAT, SAT, and placenta in GDM.
Collapse
|
12
|
Novel Biomolecules in the Pathogenesis of Gestational Diabetes Mellitus 2.0. Int J Mol Sci 2022; 23:ijms23084364. [PMID: 35457182 PMCID: PMC9031541 DOI: 10.3390/ijms23084364] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 12/04/2022] Open
Abstract
Gestational diabetes mellitus (GDM) has become a major public health problem and one of the most discussed issues in modern obstetrics. GDM is associated with serious adverse perinatal outcomes and long-term health consequences for both the mother and child. Currently, the importance and purposefulness of finding a biopredictor that will enable the identification of women with an increased risk of developing GDM as early as the beginning of pregnancy are highly emphasized. Both “older” molecules, such as adiponectin and leptin, and “newer” adipokines, including fatty acid-binding protein 4 (FABP4), have proven to be of pathophysiological importance in GDM. Therefore, in our previous review, we presented 13 novel biomolecules, i.e., galectins, growth differentiation factor-15, chemerin, omentin-1, osteocalcin, resistin, visfatin, vaspin, irisin, apelin, FABP4, fibroblast growth factor 21, and lipocalin-2. The purpose of this review is to present the potential and importance of another nine lesser known molecules in the pathogenesis of GDM, i.e., 3-carboxy-4-methyl-5-propyl-2-furanpropanoic acid (CMPF), angiopoietin-like protein-8 (ANGPTL-8), nesfatin-1, afamin, adropin, fetuin-A, zonulin, secreted frizzled-related proteins (SFRPs), and amylin. It seems that two of them, fetuin-A and zonulin in high serum levels, may be applied as biopredictors of GDM.
Collapse
|
13
|
Omazić J, Viljetić B, Ivić V, Kadivnik M, Zibar L, Müller A, Wagner J. Early markers of gestational diabetes mellitus: what we know and which way forward? Biochem Med (Zagreb) 2021; 31:030502. [PMID: 34658643 PMCID: PMC8495622 DOI: 10.11613/bm.2021.030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 08/28/2021] [Indexed: 12/11/2022] Open
Abstract
Women's metabolism during pregnancy undergoes numerous changes that can lead to gestational diabetes mellitus (GDM). The cause and pathogenesis of GDM, a heterogeneous disease, are not completely clear, but GDM is increasing in prevalence and is associated with the modern lifestyle. Most diagnoses of GDM are made via the guidelines from the International Association of Diabetes and Pregnancy Study Groups (IADSPG), which involve an oral glucose tolerance test (OGTT) between 24 and 28 weeks of pregnancy. Diagnosis in this stage of pregnancy can lead to short- and long-term implications for the mother and child. Therefore, there is an urgent need for earlier GDM markers in order to enable prevention and earlier treatment. Routine GDM biomarkers (plasma glucose, insulin, C-peptide, homeostatic model assessment of insulin resistance, and sex hormone-binding globulin) can differentiate between healthy pregnant women and those with GDM but are not suitable for early GDM diagnosis. In this article, we present an overview of the potential early biomarkers for GDM that have been investigated recently. We also present our view of future developments in the laboratory diagnosis of GDM.
Collapse
Affiliation(s)
- Jelena Omazić
- Department of Laboratory and Transfusion Medicine, National Memorial Hospital Vukovar, Vukovar, Croatia
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Barbara Viljetić
- Department of Medical Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Vedrana Ivić
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Mirta Kadivnik
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia
- Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Lada Zibar
- Department of Pathophysiology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
- Department of Nephrology, Clinical Hospital Merkur, Zagreb, Croatia
| | - Andrijana Müller
- Clinic of Obstetrics and Gynecology, University Hospital Center Osijek, Osijek, Croatia
- Department of Obstetrics and Gynecology, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| | - Jasenka Wagner
- Department of Medical Biology and Genetics, Faculty of Medicine, J.J. Strossmayer University, Osijek, Croatia
| |
Collapse
|
14
|
Abdeltawab A, Zaki ME, Abdeldayem Y, Mohamed AA, Zaied SM. Circulating micro RNA-223 and angiopoietin-like protein 8 as biomarkers of gestational diabetes mellitus. Br J Biomed Sci 2021; 78:12-17. [PMID: 32421465 DOI: 10.1080/09674845.2020.1764211] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/24/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a serious health problem associated with both foetal and maternal complications. New biomarkers that can predict or help in the early diagnosis of GDM are needed to minimize the hazards of hyperglycaemia in pregnant women and their offspring. We hypothesised a link between levels of microRNA-223 (miRNA-223) and Angiopoietin-Like Protein 8 (ANGPTL8) and GDM. MATERIALS AND METHODS The study included 109 patients with confirmed early diagnosed GDM and 103 healthy control pregnant women in their second or third trimester. miRNA-223 and ANGPTL8 blood levels were assessed by real-time RT-PCR and sandwich ELISA, respectively, laboratory markers by standard methods. RESULTS There was a significant increase in mean [SD] miRNA-223 and ANGPTL8 in GDM (0.31 [0.06] relative units) and (692 [199] pg/ml), respectively, in the GDM women compared to healthy pregnant women (0.17[0.05] relative units) and (261 [127] pg/ml), respectively, P < 0.001. miRNA-223 and ANGPTL8 correlated significantly with each other (r = 0.38, P < 0.001) and with fasting, 1-h and 2-h postprandial blood glucose levels (all P ≤ 0.002) HbA1 c (P < 0.025), total cholesterol (P < 0.01), LDL-C and triglycerides (both P ≤ 0.005). The ROC area under curve (AUC) (95%CI) was 0.94 (0.91-0.97) for ANGPTL8, 0.92 (0.88-0.96) for miRNA-223 and 0.97 (0.95 - 0.99) for their combination. CONCLUSIONS These findings support the hypothesis of involvement of both miRNA-223 and ANGPTL8 in the pathogenesis of GDM. The difference between levels in GDM patients and in control pregnant women indicates potential use for early diagnosis or prediction of GDM.
Collapse
Affiliation(s)
- A Abdeltawab
- Physiology Department, College of Medicine, Jouf University , Sakaka, Saudi Arabia
- Physiology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - M E Zaki
- Clinical Pathology Department, Faculty of Medicine, Mansoura University , Mansoura, Egypt
| | - Y Abdeldayem
- Obstetric and Gynecology Department, Mansoura University , Mansoura, Egypt
| | - A A Mohamed
- Medical Biochemistry Division, Pathology Department, Jouf University , Sakaka, Saudi Arabia
- Medical Biochemistry Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| | - S M Zaied
- Clinical and Chemical Pathology Department, Faculty of Medicine, Beni-Suef University , Beni-Suef, Egypt
| |
Collapse
|
15
|
Bai Y, Du Q, Zhang L, Li L, Wang N, Wu B, Li P, Li L. Silencing of ANGPTL8 Alleviates Insulin Resistance in Trophoblast Cells. Front Endocrinol (Lausanne) 2021; 12:635321. [PMID: 34163433 PMCID: PMC8215783 DOI: 10.3389/fendo.2021.635321] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 05/06/2021] [Indexed: 12/11/2022] Open
Abstract
This study aims to investigate the effect of angiopoietin like 8 (ANGPTL8) on gestational diabetes mellitus (GDM) and insulin resistance (IR). The GDM model was induced by high fat diet in mice, and IR was observed. The expression and secretion of ANGPTL8 were promoted in placenta of GDM mice. IR was induced in trophoblast cell HTR-8/SVneo by treatment of high concentration of insulin, and the expression levels of ANGPTL8 were increased. Silencing of ANGPTL8 alleviated IR and decreased glucose uptake in HTR-8/SVneo cells. However, the inflammation and oxidative stress in IR cells were not restrained by ANGPTL8 knockdown. In addition, c-Jun N-terminal kinase (JNK) signaling was activated by IR, which was inhibited by silencing of ANGPTL8. The effect of ANGPTL8 knockdown on IR was attenuated by JNK antagonist, and aggravated by JNK agonist, suggesting that ANGPTL8 affected IR by regulating JNK signaling. In conclusion, we demonstrated that the silencing of ANGPTL8 ameliorated IR by inhibiting JNK signaling in trophoblast cells. These findings may provide novel insights for diagnosis and treatment of GDM in clinic.
Collapse
|
16
|
Vatannejad A, Salimi F, Moradi N, Fouani FZ, Zandieh Z, Ansaripour S, Sadeghi A, Fadaei R. Evaluation of angiopoietin-like protein 3 (ANGPTL3) levels in polycystic ovary syndrome. Life Sci 2020; 263:118595. [PMID: 33075372 DOI: 10.1016/j.lfs.2020.118595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/21/2020] [Accepted: 10/08/2020] [Indexed: 02/07/2023]
Abstract
AIM Angiopoietin-like protein 3 (ANGPTL3) is recognized as a regulator of lipid metabolism. However, little is known about its association with insulin resistance in polycystic ovary syndrome (PCOS) setting. The present study aimed to investigate the serum levels of ANGPTL3 and adiponectin in PCOS women compared to healthy controls. MAIN METHOD In this study, a total of 175 premenopausal women (117 PCOS and 58 non-PCOS) were enrolled. Serum concentrations of ANGPTL3, adiponectin, fasting insulin, and other hormonal variables were measured using ELISA technique. KEY FINDINGS Results showed that adiponectin levels were significantly lower in PCOS group than those of non-PCOS group. However, serum levels of ANGPTL3, high-sensitivity C-reactive protein (hs-CRP), and homocysteine (Hcy) were found to be higher in PCOS patients, when compared to non-PCOS ones. Moreover, serum ANGPTL3 positively correlated with BMI and serum triglyceride, while it inversely correlated with serum HDL-C in PCOS patients. SIGNIFICANCE Our results demonstrated that increased levels of ANGPTL3 correlated with insulin resistance and dyslipidemia in PCOS patients, highlighting the need for future studies targeting its role in the pathogenesis of this disease.
Collapse
Affiliation(s)
- Akram Vatannejad
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fouzieh Salimi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Nariman Moradi
- Cellular and Molecular Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Fatima Zahraa Fouani
- Department of Cellular and Molecular Nutrition, School of Nutritional Sciences and Dietetics, University of Medical Sciences, Tehran, Iran
| | - Zahra Zandieh
- Shahid Akbar Abadi Clinical Research Development Unit (ShACRDU), Iran University of Medical Sciences, Tehran, Iran
| | - Soheila Ansaripour
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Asie Sadeghi
- Department of Clinical Biochemistry, Faculty of Medicine, Kerman University of Medical Sciences, Kerman, Iran; Physiology Research Center, Institute of Basic and Clinical Physiology Sciences, Kerman University of Medical Sciences, Kerman, Iran.
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
17
|
Jiang R, Wu S, Fang C, Wang C, Yang Y, Liu C, Hu J, Huang Y. Amino acids levels in early pregnancy predict subsequent gestational diabetes. J Diabetes 2020; 12:503-511. [PMID: 31883199 DOI: 10.1111/1753-0407.13018] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND We aimed to estimate the performance of amino acids levels in predicting the risk of subsequent gestational diabetes mellitus (GDM). METHODS A total of 431 women at 12 to 16 weeks of gestation in the Department of Obstetrics and Gynecology of the Second Affiliated Hospital of Soochow University were recruited. High-performance liquid chromatography electrospray tandem mass spectrometry was used to measure amino acids levels in maternal blood at 12 to 16 weeks of gestation. At 24 to 28 weeks of gestation, all participants were administered 75-g oral glucose tolerance tests for the diagnosis of GDM. RESULTS Alanine, isoleucine, and tyrosine levels in early pregnancy were significantly different between women who developed GDM and those who remained normal glucose tolerant. Logistic regressions showed that after adjustments for age, parity, body mass index, family history of diabetes, γ-glutamyltranspeptidase, triglycerides, fasting glucose and fasting insulin levels, alanine (odds ratio [OR], 1.46; 95% CI, 1.05-2.04; P = .027), isoleucine (OR, 1.48; 95% CI, 1.12-1.96; P = .0062), and tyrosine (OR, 1.46; 95% CI, 1.07-2.03; P = .020) levels in early pregnancy were independently associated with subsequent GDM. The addition of isoleucine and tyrosine into the conventional model improved the area under curve from 0.692 to 0.737 (P = .036) and significantly increased the net reclassification improvement (+13.7%, P = .0025). CONCLUSIONS The present study suggests that elevated isoleucine, tyrosine, and alanine levels are independently and significantly associated with subsequent incidence of GDM. New models including conventional risk factors, isoleucine and tyrosine levels in early pregnancy might help physicians identify high-risk population of GDM.
Collapse
Affiliation(s)
- Rong Jiang
- The Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuhua Wu
- The Department of Geriatrics, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chen Fang
- The Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Wang
- School of Radiation Medicine and Protection, Jiangsu Provincial Key Laboratory of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| | - Ya Yang
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Chao Liu
- Institute of Forensic Sciences, Soochow University, Suzhou, China
| | - Ji Hu
- The Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yun Huang
- The Department of Endocrinology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
18
|
Zhou J, Zhe R, Guo X, Chen Y, Zou Y, Zhou L, Wang Z. The Role of PPARδ Agosnist GW501516 in Rats with Gestational Diabetes Mellitus. Diabetes Metab Syndr Obes 2020; 13:2307-2316. [PMID: 32669864 PMCID: PMC7335770 DOI: 10.2147/dmso.s251491] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 05/19/2020] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Gestational diabetes mellitus (GDM) is a disorder of glucose metabolism that occurs or is found for the first time during pregnancy. GDM is very harmful and urgently needs drug treatment to improve pregnancy outcome. PPARδ is involved in a variety of biological processes related to glycolipid metabolism in the body, suggesting that it may be closely related to insulin resistance and impaired glucose tolerance. The role of PPARδ agonist GW501516 in gestational diabetes has not been studied. METHODS Firstly, the rat model of GDM was established. Then, fasting blood-glucose (FGB), fasting insulin (FINS), HOMA-islet resistance index (HOMA-IR) and insulin sensitivity index (ISI) of GDM rats treated with GW501516 were measured on day 3, day 10 and day 17. Glucose tolerance test was performed on the 20th day of gestation to measure glucose tolerance in rats. The expression of PPARδ and Angptl8 in islet tissues of rats was detected by Western blot and immunohistochemistry (IHC). Histopathological changes of islet were detected by HE stain; apoptosis rate of islet cells was detected by Tunel; and expression of apoptosis-related proteins in the cells was detected by Western blot. The biochemical kits were used to detect the expression of lipid metabolism-related factors in blood of GDM rats after the PPARδ agonist GW501516 treatment. Finally, the expression of SREBP-1c and GLUT2 in islet tissues was detected by RT-qPCR and IHC. RESULTS The PPARδ agonist GW501516 decreased the expression of FGB, FINS and HOMA-IR in GDM rats, and we found that GW501516 decreased ISI in GDM rats. GW501516 increased glucose tolerance in GDM rats too. In GDM rats, the expression of PPARδ in islet decreased and the expression of Angptl8 increased, which was reversed by GW501516. In addition, we also found that GW501516 can improve the damaged islet tissue of GDM rats, reduce the apoptosis rate of islet cells and inhibit the expression of lipid metabolism-related factors in the blood. Finally, we found that GW501516 inhibited the expression of SREBP-1c and promoted the expression of GLUT2 in the islet tissue. CONCLUSION The PPARδ agonist GW501516 could improve the blood glucose level, damaged islet tissue and increase the insulin content in the rats with GDM, possibly by regulating the SREBP-1c/GLUT2 pathway. Our study provided a new basis for clinical treatment of GDM in pregnant women with PPARδ agonist GW501516.
Collapse
Affiliation(s)
- Jun Zhou
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Ruilian Zhe
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Xiaohui Guo
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Yuying Chen
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Yan Zou
- Emergency Department of Shenzhen Maternal and Child Health Hospital, Shenzhen518000, People’s Republic of China
| | - Li Zhou
- Department of Obstetrics, Shenzhen People’s Hospital, Shenzhen518000, People’s Republic of China
| | - Zhijian Wang
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong510510, People’s Republic of China
- Correspondence: Zhijian Wang Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, Number 1838, North Guangzhou Avenue, Guangzhou, Guangdong510515, People’s Republic of China Email
| |
Collapse
|
19
|
Liao Z, Wu X, Song Y, Luo R, Yin H, Zhan S, Li S, Wang K, Zhang Y, Yang C. Angiopoietin-like protein 8 expression and association with extracellular matrix metabolism and inflammation during intervertebral disc degeneration. J Cell Mol Med 2019; 23:5737-5750. [PMID: 31211513 PMCID: PMC6653761 DOI: 10.1111/jcmm.14488] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 05/12/2019] [Accepted: 05/23/2019] [Indexed: 12/28/2022] Open
Abstract
Intervertebral disc degeneration (IDD) is considered the primary culprit for low back pain. Although the underlying mechanisms remain unknown, hyperactive catabolism of the extracellular matrix (ECM) and inflammation are suggested to play critical roles in IDD progression. This study was designed to elucidate the role of angiopoietin-like protein 8 (ANGPTL8) in the progression of IDD, especially the relationship of ANGPTL8 with ECM metabolism and inflammation. A positive association between ANGPTL8 expression and degenerative grades of IDD was detected in the analysis of human nucleus pulposus tissue samples. Silencing of ANGPTL8 attenuated the degradation of the anabolic protein type collagen II, and reduced the expression of the catabolic proteins MMP3 and MMP9, and the inflammatory cytokine IL-6 through inhibition of NF-κB signalling activation. In addition, the effect of ANGPTL8 was evaluated in a rat model of puncture-induced IDD. Based on the imaging results and histological examination in animal study, knockdown of ANGPTL8 was demonstrated to ameliorate the IDD progression. These results demonstrate the detrimental role of ANGPTL8 expression in the pathogenesis of IDD and may provide a new therapeutic target for IDD treatment.
Collapse
Affiliation(s)
- Zhiwei Liao
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Xinghuo Wu
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yu Song
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Rongjin Luo
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Huipeng Yin
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shengfeng Zhan
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Shuai Li
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Kun Wang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Yukun Zhang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| | - Cao Yang
- Department of OrthopaedicsUnion Hospital, Tongji Medical College, Huazhong University of Science and TechnologyWuhanChina
| |
Collapse
|
20
|
|