1
|
Afrisham R, Jadidi Y, Moradi N, Ayyoubzadeh SM, Fadaei R, Kiani Ghalesardi O, Farrokhi V, Alizadeh S. Circulating CCN6/WISP3 in type 2 diabetes mellitus patients and its correlation with insulin resistance and inflammation: statistical and machine learning analyses. BMC Med Inform Decis Mak 2025; 25:114. [PMID: 40050813 PMCID: PMC11887242 DOI: 10.1186/s12911-025-02957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 03/03/2025] [Indexed: 03/09/2025] Open
Abstract
INTRODUCTION Cellular Communication Network Factor 6 (CCN6) is an adipokine whose production undergoes significant alterations in metabolic disorders. Given the well-established link between obesity-induced adipokine dysfunction and the development of insulin resistance and type 2 diabetes mellitus (T2DM), this study investigates the potential role of CCN6 as a biomarker for T2DM. The present study aimed to investigate the association between serum CCN6 levels and T2DM, as well as its risk factors, for the first time. METHODS In this case-control study, a total of 80 individuals diagnosed with T2DM and 80 healthy control individuals, who referred to Shariati hospital (Tehran, Iran), were included in the study. Biochemical parameters including fasting blood glucose (FBG), aspartate transaminase (AST), alanine transaminase (ALT), triglycerides (TG), total cholesterol (TC), high-density lipoprotein (HDL), and low-density lipoprotein (LDL) were determined using the AutoAnalyzer instrument. The circulating levels of CCN6, adiponectin, Tumor necrosis factor-α (TNF)-α, Interleukin 6 (IL-6), and insulin were quantified using ELISA. The Student t-test was applied to data that presented as mean ± standard deviations (SD). Moreover, the Gini Index was utilized to determine the weight of each factor in T2DM classification. Additionally, various machine learning models were employed to develop classifiers for predicting T2DM. RESULTS T2DM patients demonstrated significantly lower levels of CCN6 (1259.76 ± 395.02 pg/ml) compared to controls (1979.17 ± 471.99 pg/ml, P < 0.001), as well as lower levels of adiponectin (P < 0.001) and higher levels of TNF-α and IL-6 (P < 0.001) compared to non-T2DM individuals. In the T2DM group, CCN6 exhibited negative correlations with insulin, Homeostatic Model Assessment for Insulin Resistance (HOMA-IR), body mass index (BMI), IL-6, and TNF-α. Logistic regression analysis indicated an increased risk of T2DM, with a CCN6 cutoff value of 1527.95 pg/mL distinguishing T2DM patients with 86.3% sensitivity and 73.8% specificity. The Gini Index highlighted that HOMA-IR, IL6, and CCN6 had the highest weighting on T2DM. CONCLUSION Our research identified a significant and negative association between serum CCN6 levels and the likelihood of T2DM, as well as inflammation biomarkers (IL-6 and TNF-α). CCN6 shows promise as a potential biomarker for T2DM; however, further investigations are necessary to validate this finding and assess its clinical utility.
Collapse
Affiliation(s)
- Reza Afrisham
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| | - Yasaman Jadidi
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Nariman Moradi
- Liver and Digestive Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Seyed Mohammad Ayyoubzadeh
- Department of Health Information Management, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Fadaei
- Sleep Disorders Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - Omid Kiani Ghalesardi
- Department of Hematology and Blood Banking, School of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Vida Farrokhi
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Shaban Alizadeh
- Department of Hematology and Transfusion Sciences, School of Allied Medical Sciences, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Singh K, Witek M, Brahmbhatt J, McEntire J, Thirunavukkarasu K, Oladipupo SS. Stage-Dependent Fibrotic Gene Profiling of WISP1-Mediated Fibrogenesis in Human Fibroblasts. Cells 2024; 13:2005. [PMID: 39682753 PMCID: PMC11640464 DOI: 10.3390/cells13232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 11/29/2024] [Indexed: 12/18/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is the most common interstitial lung disease with unknown etiology, characterized by chronic inflammation and tissue scarring. Although, Pirfenidone and Nintedanib slow the disease progression, no currently available drugs or therapeutic interventions address the underlying cause, highlighting the unmet medical need. A matricellular protein, Wnt-1-induced secreted protein 1 (WISP1), also referred to as CCN4 (cellular communication network factor 4), is a secreted multi-modular protein implicated in multi-organ fibrosis. Although the precise mechanism of WISP1-mediated fibrosis remains unclear, emerging evidence indicates that WISP1 is profibrotic in nature. While WISP1-targeting therapy is applied in the clinic for fibrosis, detailed interrogation of WISP1-mediated fibrogenic molecular and biological pathways is lacking. Here, for the first time, using NanoString® technology, we identified a novel WISP1-associated profibrotic gene signature and molecular pathways potentially involved in the initiation and progression of fibrosis in primary human dermal and lung fibroblasts from both healthy individuals and IPF patients. Our data demonstrate that WISP1 is upregulated in IPF-lung fibroblasts as compared to healthy control. Furthermore, our results confirm that WISP1 is downstream of the transforming growth factor-β (TGFβ), and it induces fibroblast cell proliferation. Additionally, WISP1 induced IL6 and CCL2 in fibroblasts. We also developed a novel, combined TGFβ and WISP1 in vitro system to demonstrate a role for WISP1 in the progression of fibrosis. Overall, our findings uncover not only similarities but also striking differences in the molecular profile of WISP1 in human fibroblasts, both during the initiation and progression phases, as well as in disease-specific context.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Marta Witek
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jaladhi Brahmbhatt
- Protein Optimization, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (M.W.); (J.B.)
| | - Jacquelyn McEntire
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| | - Kannan Thirunavukkarasu
- Immunology Research, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA;
| | - Sunday S. Oladipupo
- Biotherapeutics Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46225, USA; (K.S.); (J.M.)
| |
Collapse
|
3
|
Kitaghenda FK, Wang J, Li T, Hong J, Yao L, Zhu X. Normalization of WISP1 circulating level and tissue expression following metabolic and bariatric surgery using rat model. Updates Surg 2024; 76:2841-2849. [PMID: 39407056 DOI: 10.1007/s13304-024-01977-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 08/30/2024] [Indexed: 12/10/2024]
Abstract
Wingless-type inducible signaling pathway protein-1 (WISP1) is a newly recognized adipokine, associated with obesity and type 2 diabetes (T2DM). This study aimed to investigate the effect of metabolic and bariatric surgery (MBS) on WISP1 circulating (serum) levels and tissue expression using rat models. We initially investigated whether WISP1 circulating levels were altered between the T2DM and normal rats. After confirmation, Sprague-Dawley (SD) rats were obtained and randomly divided as follows: Roux-en-Y gastric bypass (RYGB) group (n = 10), sleeve gastrectomy (SG) group (n = 10), SHAM group (n = 10), and normal control (NC) group (n = 10). Rats were followed for 8 weeks postoperatively. Preoperative and postoperative WISP1 circulating (serum) levels, glucose tolerance test (OGTT), insulin tolerance test (ITT), postoperative WISP1 expression (visceral adipose tissue, VAT; and skeletal muscle, SM), body weight, food intake, and fasting blood glucose levels were recorded. MBS significantly induced glucose control and weight loss. At postoperative week 8, WISP1 serum levels decreased in the MBS groups (P < 0.05); furthermore, WISP1 expression in VAT and SM significantly decreased in the RYGB and SG groups than SHAM (P < 0.05, and P < 0.05, respectively). Whereas the difference in the expression level between SG and RYGB did not amount to statistical significance (P > 0.05). MBS significantly decreased WISP1 serum levels, tissue expression in the VAT, and SM. As WISP1 is a regulator of low-grade inflammation associated with obesity and T2DM, further studies are needed to explore its relevance in MBS.
Collapse
Affiliation(s)
- Fidele Kakule Kitaghenda
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jian Wang
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Tianci Li
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Jian Hong
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China
| | - Libin Yao
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| | - Xiaocheng Zhu
- Department of Gastrointestinal Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, Jiangsu, People's Republic of China.
| |
Collapse
|
4
|
Zhao Y, Wang G, Wei Z, Li D, Morshedi M. RETRACTED ARTICLE: Wnt, notch signaling and exercise: what are their functions? Hum Cell 2024; 37:1612. [PMID: 38386243 DOI: 10.1007/s13577-024-01036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/23/2024]
Affiliation(s)
- Yijie Zhao
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Guangjun Wang
- Ministry of Public Sports, Hebei North University, Zhangjiakou, 075000, Hebei, China.
| | - Zhifeng Wei
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | - Duo Li
- The First Affiliated Hospital of Hebei North University, Zhangjiakou, 075000, Hebei, China
| | | |
Collapse
|
5
|
Singh K, Oladipupo SS. An overview of CCN4 (WISP1) role in human diseases. J Transl Med 2024; 22:601. [PMID: 38937782 PMCID: PMC11212430 DOI: 10.1186/s12967-024-05364-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/01/2024] [Indexed: 06/29/2024] Open
Abstract
CCN4 (cellular communication network factor 4), a highly conserved, secreted cysteine-rich matricellular protein is emerging as a key player in the development and progression of numerous disease pathologies, including cancer, fibrosis, metabolic and inflammatory disorders. Over the past two decades, extensive research on CCN4 and its family members uncovered their diverse cellular mechanisms and biological functions, including but not limited to cell proliferation, migration, invasion, angiogenesis, wound healing, repair, and apoptosis. Recent studies have demonstrated that aberrant CCN4 expression and/or associated downstream signaling is key to a vast array of pathophysiological etiology, suggesting that CCN4 could be utilized not only as a non-invasive diagnostic or prognostic marker, but also as a promising therapeutic target. The cognate receptor of CCN4 remains elusive till date, which limits understanding of the mechanistic insights on CCN4 driven disease pathologies. However, as therapeutic agents directed against CCN4 begin to make their way into the clinic, that may start to change. Also, the pathophysiological significance of CCN4 remains underexplored, hence further research is needed to shed more light on its disease and/or tissue specific functions to better understand its clinical translational benefit. This review highlights the compelling evidence of overlapping and/or diverse functional and mechanisms regulated by CCN4, in addition to addressing the challenges, study limitations and knowledge gaps on CCN4 biology and its therapeutic potential.
Collapse
Affiliation(s)
- Kirti Singh
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA
| | - Sunday S Oladipupo
- Biotherapeutic Enabling Biology, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN, 46225, USA.
| |
Collapse
|
6
|
Chaurasiya V, Pham DD, Harju J, Juuti A, Penttilä A, Emmagouni SKG, Nguyen VD, Zhang B, Perttunen S, Keskitalo S, Zhou Y, Pietiläinen KH, Haridas PAN, Olkkonen VM. Human visceral adipose tissue microvascular endothelial cell isolation and establishment of co-culture with white adipocytes to analyze cell-cell communication. Exp Cell Res 2023; 433:113819. [PMID: 37852349 DOI: 10.1016/j.yexcr.2023.113819] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Communication between adipocytes and endothelial cells (EC) is suggested to play an important role in the metabolic function of white adipose tissue. In order to generate tools to investigate in detail the physiology and communication of EC and adipocytes, a method for isolation of adipose microvascular EC from visceral adipose tissue (VAT) biopsies of subjects with obesity was developed. Moreover, mature white adipocytes were isolated from the VAT biopsies by a method adapted from a previously published Membrane aggregate adipocytes culture (MAAC) protocol. The identity and functionality of the cultivated and isolated adipose microvascular EC (AMvEC) was validated by imaging their morphology, analyses of mRNA expression, fluorescence activated cell sorting (FACS), immunostaining, low-density lipoprotein (LDL) uptake, and in vitro angiogenesis assays. Finally, we established a new trans filter co-culture system (membrane aggregate adipocyte and endothelial co-culture, MAAECC) for the analysis of communication between the two cell types. EC-adipocyte communication in this system was validated by omics analyses, revealing several altered proteins belonging to pathways such as metabolism, intracellular transport and signal transduction in adipocytes co-cultured with AMvEC. In reverse experiments, induction of several pathways including endothelial development and functions was found in AMvEC co-cultured with adipocytes. In conclusion, we developed a robust method to isolate EC from small quantities of human VAT. Furthermore, the MAAECC system established during the study enables one to study the communication between primary white adipocytes and EC or vice-versa and could also be employed for drug screening.
Collapse
Affiliation(s)
- Vaishali Chaurasiya
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Doctoral Programme in Biomedicine, University of Helsinki, Finland.
| | - Dan Duc Pham
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Jukka Harju
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Juuti
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Anne Penttilä
- Department of Gastrointestinal Surgery, Abdominal Center, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | | | - Van Dien Nguyen
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Birong Zhang
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Sanni Perttunen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Salla Keskitalo
- Molecular Systems Biology Research Group & Proteomics Unit, HiLIFE Helsinki Institute of Life Science, Institute of Biotechnology, University of Helsinki, Finland
| | - You Zhou
- Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, CF14 4XN, UK; Systems Immunity Research Institute, Cardiff University, Cardiff, CF14 4XN, UK
| | - Kirsi H Pietiläinen
- Obesity Research Unit, Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland; HealthyWeightHub, Endocrinology, Abdominal Center, Helsinki University Hospital, Helsinki, Finland
| | - P A Nidhina Haridas
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland
| | - Vesa M Olkkonen
- Minerva Foundation Institute for Medical Research, Biomedicum 2U, Helsinki, Finland; Department of Anatomy, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
7
|
Guo L, Quan M, Pang W, Yin Y, Li F. Cytokines and exosomal miRNAs in skeletal muscle-adipose crosstalk. Trends Endocrinol Metab 2023; 34:666-681. [PMID: 37599201 DOI: 10.1016/j.tem.2023.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Skeletal muscle and adipose tissues (ATs) are secretory organs that release secretory factors including cytokines and exosomes. These factors mediate muscle-adipose crosstalk to regulate systemic metabolism via paracrine and endocrine pathways. Myokines and adipokines are cytokines secreted by skeletal muscle and ATs, respectively. Exosomes loaded with nucleic acids, proteins, lipid droplets, and organelles can fuse with the cytoplasm of target cells to perform regulatory functions. A major regulatory component of exosomes is miRNA. In addition, numerous novel myokines and adipokines have been identified through technological innovations. These discoveries have identified new biomarkers and sparked new insights into the molecular regulation of skeletal muscle growth and adipose deposition. The knowledge may contribute to potential diagnostic and therapeutic targets in metabolic disease.
Collapse
Affiliation(s)
- Liu Guo
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of Chinese Academy of Sciences, Beijing 101408, China
| | - Menchus Quan
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Weijun Pang
- Laboratory of Animal Fat Deposition and Muscle Development, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yulong Yin
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Fengna Li
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
8
|
Pakyurek H, Aykota MR, Kilic-Erkek O, Ozban M, Senol H, Bor-Kucukatay M. Investigation of time-dependent alterations in adipokine levels and endoplasmic reticulum stress markers in obese patients with laparoscopic sleeve gastrectomy. Life Sci 2023; 330:121987. [PMID: 37541576 DOI: 10.1016/j.lfs.2023.121987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/19/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND AND AIMS We aimed to investigate the time-dependent alterations of serum, adipose tissue WISP1, Nrg4, asprosin, SPX adipokines and serum ER stress markers GRP78, XBP1, ATF6, CHOP in obese patients who underwent laparoscopic sleeve gastrectomy (LSG). MATERIALS AND METHODS Morbidly obese patients (n = 19) and normal-weight individuals (n = 19) were compared. Preoperative (control, obese) and postoperative 1st, 3rd and 6th month (obese) follow-up measurements were obtained. Levels of adipokines, ER stress markers were measured with commercial kits. RESULTS Body mass index (BMI), total fat, trunk fat mass, fat percentage of obese patients decreased after LSG. Postoperative serum glucose, insulin, HOMA-IR, triglyceride levels of obese patients decreased, HDL increased. In obese patients, preoperative LDL and total cholesterol, which were not different from control, were higher in the postoperative 6th month measurements. Omentum WISP1, subcutaneous adipose tissue WISP1 and SPX, and serum WISP1, asprosin, CHOP levels were higher, Nrg4 lower in obese patients. Serum Nrg4 was still lower in the postoperative 1st month measurements, while WISP1 was higher in the 3rd and asprosin in the 3rd, 6th months compared to control. 1st and 3rd month ATF6 and 3rd month CHOP concentrations were lower than preoperative values. Serum CHOP measured at the 6th month was significantly higher than control. Negative correlations were observed between serum Nrg4 and fat percentage, TG concentration. CHOP was negatively correlated with fat percentage. CONCLUSION The correlations between changes in serum Nrg4, CHOP and fat percentage highlight the roles of Nrg4 and CHOP in the fat loss following LSG.
Collapse
Affiliation(s)
- H Pakyurek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
| | - M R Aykota
- Pamukkale University, Faculty of Medicine, Department of General Surgery, Denizli, Turkey
| | - O Kilic-Erkek
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey
| | - M Ozban
- Pamukkale University, Faculty of Medicine, Department of General Surgery, Denizli, Turkey
| | - H Senol
- Pamukkale University, Faculty of Medicine, Department of Biostatistics, Denizli, Turkey
| | - M Bor-Kucukatay
- Pamukkale University, Faculty of Medicine, Department of Physiology, Denizli, Turkey.
| |
Collapse
|
9
|
Xega V, Alami T, Liu JL. Recent progress on the role of cellular communication network factors (CCN) 3, 4 and 6 in regulating adiposity, liver fibrosis and pancreatic islets. J Cell Commun Signal 2023:10.1007/s12079-023-00765-8. [PMID: 37245185 DOI: 10.1007/s12079-023-00765-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/03/2023] [Indexed: 05/29/2023] Open
Abstract
CCN/WISP (cellular communication network factors, or Wnt-inducted secreted proteins) family of proteins consists of six extracellular matrix (ECM)-associated proteins that regulate development, cell adhesion and proliferation, ECM remodeling, inflammation, and tumorigenesis. In the last two decades, metabolic regulation by these matricellular proteins has been studied extensively, several excellent reviews have covered the roles of CCN1, -2 and - 5. In this brief review, we will focus on those lesser-known members and more recent discoveries, together with other recent articles presenting a more complete picture of the current state of knowledge. We have found that CCN2, -4, and - 5 promote pancreatic islet function, while CCN3 plays a unique and negative role. CCN3 and - 4 are pro-adiposity leading to insulin resistance, but CCN5 and - 6 are anti-adiposity. While CCN2 and - 4 promote tissue fibrosis and inflammation, all other four members are clearly anti-fibrotic. As for cellular signaling, they are known to interact with integrins, other cell membrane proteins and ECM thereby regulate Akt/protein kinase B, myocardin-related transcription factor (MRTF), and focal adhesion kinase. Yet, a cohesive mechanism of action to comprehensively explain those major functions is still lacking.
Collapse
Affiliation(s)
- Viktoria Xega
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Tara Alami
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada
| | - Jun-Li Liu
- MeDiC Program, The Research Institute of McGill University Health Centre, 1001 Decarie Blvd, Montreal, QC, H4A 3J1, Canada.
- Division of Endocrinology and Metabolism, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada.
| |
Collapse
|
10
|
Yeger H. CCN proteins: opportunities for clinical studies-a personal perspective. J Cell Commun Signal 2023:10.1007/s12079-023-00761-y. [PMID: 37195381 DOI: 10.1007/s12079-023-00761-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023] Open
Abstract
The diverse members of the CCN family now designated as CCN1(CYR61), CCN2 (CTGF), CCN3(NOV), CCN4(WISP1), CCN5(WISP2), CCN6(WISP3) are a conserved matricellular family of proteins exhibiting a spectrum of functional properties throughout all organs in the body. Interaction with cell membrane receptors such as integrins trigger intracellular signaling pathways. Proteolytically cleaved fragments (constituting the active domains) can be transported to the nucleus and perform transcriptional relevant functional activities. Notably, as also found in other protein families some members act opposite to others creating a system of functionally relevant checks and balances. It has become apparent that these proteins are secreted into the circulation, are quantifiable, and can serve as disease biomarkers. How they might also serve as homeostatic regulators is just becoming appreciated. In this review I have attempted to highlight the most recent evidence under the subcategories of cancer and non-cancer relevant that could lead to potential therapeutic approaches or ideas that can be factored into clinical advances. I have added my own personal perspective on feasibility.
Collapse
Affiliation(s)
- Herman Yeger
- Developmental and Stem Cell Biology, Research Institute, SickKids, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
11
|
Wang YD, Wu LL, Qi XY, Wang YY, Liao ZZ, Liu JH, Xiao XH. New insight of obesity-associated NAFLD: Dysregulated "crosstalk" between multi-organ and the liver? Genes Dis 2023; 10:799-812. [PMID: 37396503 PMCID: PMC10308072 DOI: 10.1016/j.gendis.2021.12.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/28/2021] [Accepted: 12/01/2021] [Indexed: 11/18/2022] Open
Abstract
Obesity plays a crucial role in the development of non-alcoholic fatty liver disease (NAFLD). However, the underlying mechanism for the pathogenesis of obesity-associated NAFLD remains largely obscure. Although the "multiple hit" theory provides a more accurate explanation of NAFLD pathogenesis, it still cannot fully explain precisely how obesity causes NAFLD. The liver is the key integrator of the body's energy needs, receiving input from multiple metabolically active organs. Thus, recent studies have advocated the "multiple crosstalk" hypothesis, highlighting that obesity-related hepatic steatosis may be the result of dysregulated "crosstalk" among multiple extra-hepatic organs and the liver in obesity. A wide variety of circulating endocrine hormones work together to orchestrate this "crosstalk". Of note, with deepening understanding of the endocrine system, the perception of hormones has gradually risen from the narrow sense (i.e. traditional hormones) to the broad sense of hormones as organokines and exosomes. In this review, we focus on the perspective of organic endocrine hormones (organokines) and molecular endocrine hormones (exosomes), summarizing systematically how the two types of new hormones mediate the dialogue between extra-hepatic organs and liver in the pathogenesis of obesity-related NAFLD.
Collapse
Affiliation(s)
- Ya-Di Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Liang-Liang Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xiao-Yan Qi
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yuan-Yuan Wang
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Zhe-Zhen Liao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Jiang-Hua Liu
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xin-Hua Xiao
- Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
12
|
Mei Y, Zhao Z, Lyu Y, Li Y. Circulating growth differentiation factor 15 levels and apolipoprotein B to apolipoprotein A1 ratio in coronary artery disease patients with type 2 diabetes mellitus. Lipids Health Dis 2022; 21:59. [PMID: 35842724 PMCID: PMC9287968 DOI: 10.1186/s12944-022-01667-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/29/2022] [Indexed: 12/06/2022] Open
Abstract
BACKGROUND Clinical investigations have found that there was a close association between T2DM and adverse cardiovascular events, with possible mechanisms included inflammation, apoptosis, and lipid metabolism disorders. High serum GDF-15 concentration and the apolipoprotein B/apolipoprotein A1 ratio (ApoB/ApoA1) are involved in the above-mentioned mechanisms and are thought to be related to the occurrence of adverse cardiovascular events. However, it remains unclear whether circulating GDF-15 levels and the ApoB/ApoA1 ratio are related to T2DM patients with CAD. METHODS T2DM patients with or without CAD were eligible for this study. According to the inclusion and exclusion criteria, 502 T2DM patients were enrolled between January 2021 and December 2021 and were then divided into T2DM group (n = 249) and CAD group (n = 253). The ApoB, ApoA1 and GDF-15 concentrations were measured at hospital admission and the ApoB/ApoA1 ratio was then calculated. RESULTS Compared with T2DM group, serum GDF-15 levels and ApoB/ApoA1 ratio increased in CAD group. Furthermore, a positive relationship between the occurrence of CAD in diabetic population and circulating GDF-15 concentrations and ApoB/ApoA1 ratio was observed in logistic regression analysis (p < 0.01). Restrictive cubic spline analysis after adjusted for multiple risky variables showed that serum GDF-15 or ApoB/ApoA1 ratio correlated positively with CAD. CONCLUSIONS Circulating GDF-15 levels and serum ApoB/ApoA1 ratio vary in CAD group and T2DM group. ApoB/ApoA1 and GDF-15 may be helpful for predicting the occurrence of CAD in patients with T2DM.
Collapse
Affiliation(s)
- Yufeng Mei
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Zhiming Zhao
- Department of Geratology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yongnan Lyu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China
| | - Yan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, 430060, People's Republic of China.
| |
Collapse
|
13
|
Fahlbusch P, Nikolic A, Hartwig S, Jacob S, Kettel U, Köllmer C, Al-Hasani H, Lehr S, Müller-Wieland D, Knebel B, Kotzka J. Adaptation of Oxidative Phosphorylation Machinery Compensates for Hepatic Lipotoxicity in Early Stages of MAFLD. Int J Mol Sci 2022; 23:ijms23126873. [PMID: 35743314 PMCID: PMC9224893 DOI: 10.3390/ijms23126873] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 12/10/2022] Open
Abstract
Alterations in mitochondrial function are an important control variable in the progression of metabolic dysfunction-associated fatty liver disease (MAFLD), while also noted by increased de novo lipogenesis (DNL) and hepatic insulin resistance. We hypothesized that the organization and function of a mitochondrial electron transport chain (ETC) in this pathologic condition is a consequence of shifted substrate availability. We addressed this question using a transgenic mouse model with increased hepatic insulin resistance and DNL due to constitutively active human SREBP-1c. The abundance of ETC complex subunits and components of key metabolic pathways are regulated in the liver of these animals. Further omics approaches combined with functional assays in isolated liver mitochondria and primary hepatocytes revealed that the SREBP-1c-forced fatty liver induced a substrate limitation for oxidative phosphorylation, inducing enhanced complex II activity. The observed increased expression of mitochondrial genes may have indicated a counteraction. In conclusion, a shift of available substrates directed toward activated DNL results in increased electron flows, mainly through complex II, to compensate for the increased energy demand of the cell. The reorganization of key compounds in energy metabolism observed in the SREBP-1c animal model might explain the initial increase in mitochondrial function observed in the early stages of human MAFLD.
Collapse
Affiliation(s)
- Pia Fahlbusch
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Aleksandra Nikolic
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sonja Hartwig
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Sylvia Jacob
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Ulrike Kettel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Cornelia Köllmer
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
| | - Hadi Al-Hasani
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Medical Faculty, Heinrich-Heine-University Düsseldorf, 40225 Düsseldorf, Germany
| | - Stefan Lehr
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| | - Dirk Müller-Wieland
- Clinical Research Centre, Department of Internal Medicine I, University Hospital Aachen, 52074 Aachen, Germany;
| | - Birgit Knebel
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
- Correspondence: ; Tel.: +49-211-3382-536
| | - Jörg Kotzka
- Institute of Clinical Biochemistry and Pathobiochemistry, German Diabetes Center at the Heinrich-Heine-University Duesseldorf, Leibniz Center for Diabetes Research, 40225 Duesseldorf, Germany; (P.F.); (A.N.); (S.H.); (S.J.); (U.K.); (C.K.); (H.A.-H.); (S.L.); (J.K.)
- German Center for Diabetes Research (DZD), Partner Duesseldorf, 40225 Duesseldorf, Germany
| |
Collapse
|
14
|
Liu L, Xu S, Li P, Li L. A novel adipokine WISP1 attenuates lipopolysaccharide-induced cell injury in 3T3-L1 adipocytes by regulating the PI3K/Akt pathway. Obes Res Clin Pract 2022; 16:122-129. [PMID: 35431155 DOI: 10.1016/j.orcp.2022.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 02/07/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND To study the effect of WISP1 on lipopolysaccharide (LPS)-induced cell injury in 3T3-L1 adipocytes. METHOD Lentivirus was transiently transfected into log phase 3T3-L1 adipocytes, which were then treated with LPS at a concentration of 10 μg/mL for 24 h. The cells were divided into the following groups: group A (control, untreated cells); group B (LPS-treated cells); group C (GFP), cells transfected with lentivirus-containing GFP; group D (GFP+LPS), group C treated with LPS;group E (WISP1OE), cells transfected with lentivirus, group F (shNC+LPS), cells transfected with lentivirus-containing nshRNA treated with LPS; group G (shWISP1 +LPS), cells transfected with lentivirus-containing shRNA treated with LPS; group H (WISP1OE+LPS), group E treated with LPS; group I (WISP1OE+LPS+LY294002), group E treated with LPS followed by LY294002 for 24 h. RESULTS WISP1 overexpression notably ameliorated cell apoptosis, accompanied with the increased expression of bcl-2, the decreased expressions of bax and cleaved-caspase-3, and promoted the release of inflammatory factors, such as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in LPS-treated 3T3-L1 adipocytes. WISP1 knockdown exhibited the opposite results. In addition, WISP1 stimulated Akt phosphorylation and reduced nuclear translocation of Fork head box protein O3 (FoxO3a) in 3T3-L1 adipocytes treated by LPS. The inhibition of the PI3K/Akt signaling pathway diminished the protective effect of WISP1. CONCLUSION WISP1 prevents 3T3-L1 adipocytes from being injured by LPS by regulating the PI3K/Akt pathway.
Collapse
Affiliation(s)
- Lichao Liu
- Department of Endocrinology, The Second Hospital of Dalian Medical University, Dalian 116027, Liaoning, China
| | - Shiting Xu
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China
| | - Ping Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| | - Ling Li
- Department of Endocrinology, Shengjing Hospital of China Medical University, Shenyang 110004, Liaoning, China.
| |
Collapse
|
15
|
Cheng JX, Yu K. New Discovered Adipokines Associated with the Pathogenesis of Obesity and Type 2 Diabetes. Diabetes Metab Syndr Obes 2022; 15:2381-2389. [PMID: 35966830 PMCID: PMC9371465 DOI: 10.2147/dmso.s376163] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/26/2022] [Indexed: 12/16/2022] Open
Abstract
Obesity is defined as abnormal or excessive accumulation of adipose tissue, closely associated with the increased risk of various comorbidities, especially type 2 diabetes mellitus (T2DM). Adipose tissue is a complex structure responsible for not only fat storage but also releasing adipokines which may play roles in the pathogenesis and could be developed into biomarkers for diagnosis, treatment and prognosis of obesity-related metabolic diseases. This review aims to summarize several adipokines discovered recently that have promising functions in obesity and T2DM. Among them, the levels of FSTL1, WISP1 and Asprosin in subjects with obesity or diabetes are commonly higher than in normal controls, suggesting that they may be pathogenic. Inversely, SFRP5, Metrnl, NRG4 and FAM19A5 may serve as the protective factors.
Collapse
Affiliation(s)
- Jia-Xue Cheng
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ke Yu
- Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Ke Yu, Center for Endocrine Metabolism and Immune Diseases, Beijing Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing, People’s Republic of China, Tel +86 13811657618, Email
| |
Collapse
|
16
|
Wei C, Liu Y, Xing E, Ding Z, Tian Y, Zhao Z, Fan W, Sun L. Association Between Novel Pro- and Anti- Inflammatory Adipocytokines in Patients with Acute Coronary Syndrome. Clin Appl Thromb Hemost 2022; 28:10760296221128021. [PMID: 36128744 PMCID: PMC9500265 DOI: 10.1177/10760296221128021] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background and aims Novel pro- and anti-inflammatory adipocytokines affect inflammation, energy metabolism, and insulin signaling. However, their role in acute coronary syndrome (ACS) development is unclear. We evaluated the diagnostic and risk predictive value of such adipocytokines for ACS. Methods We enrolled 168 consecutive inpatients with suspected ACS and detected serum PLIN1, PLIN2, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, FAM19A5, TNF-α, and adiponectin levels. Multivariate logistic regression analysis and Spearman's test were used to assess risk factors for ACS and correlations between serum adipocytokines and continuous variables, respectively. Results Serum levels of the adipocytokines differed between ACS and Non-ACS groups (p < 0.05). After adjusting for confounding factors, serum PLIN1, PLIN2, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, and FAM19A5 levels were independently associated with ACS (p < 0.05). Increasing tertiles of serum PLIN1, PLIN2, CTRP7, CTRP11, and WISP1 levels increased the ACS risk, which decreased gradually with increasing PLIN5 and CTRP6 tertiles (p for trend <0.05). Serum PLIN1, PLIN5, CTRP6, CTRP7, CTRP11, WISP1, and FAM19A5 levels correlated with ACS severity. Conclusions PLIN1, PLIN2, CTRP7, CTRP11, and WISP1 were identified as independent ACS risk factors, whereas PLIN5, CTRP6, and FAM19A5 were independent protective factors for ACS. These serum adipocytokines are novel potential clinical biomarkers of ACS.
Collapse
Affiliation(s)
- Chen Wei
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Yixiang Liu
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Enhong Xing
- Central Laboratory of Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Zhenjiang Ding
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Yanan Tian
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Zhuoyan Zhao
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Wenjun Fan
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| | - Lixian Sun
- Department of Cardiology, 117914Chengde Medical University Affiliated Hospital, Chengde, Hebei, China
| |
Collapse
|
17
|
Ren Y, Zhao H, Yin C, Lan X, Wu L, Du X, Griffiths HR, Gao D. Adipokines, Hepatokines and Myokines: Focus on Their Role and Molecular Mechanisms in Adipose Tissue Inflammation. Front Endocrinol (Lausanne) 2022; 13:873699. [PMID: 35909571 PMCID: PMC9329830 DOI: 10.3389/fendo.2022.873699] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/17/2022] [Indexed: 11/18/2022] Open
Abstract
Chronic low-grade inflammation in adipose tissue (AT) is a hallmark of obesity and contributes to various metabolic disorders, such as type 2 diabetes and cardiovascular diseases. Inflammation in ATs is characterized by macrophage infiltration and the activation of inflammatory pathways mediated by NF-κB, JNK, and NLRP3 inflammasomes. Adipokines, hepatokines and myokines - proteins secreted from AT, the liver and skeletal muscle play regulatory roles in AT inflammation via endocrine, paracrine, and autocrine pathways. For example, obesity is associated with elevated levels of pro-inflammatory adipokines (e.g., leptin, resistin, chemerin, progranulin, RBP4, WISP1, FABP4, PAI-1, Follistatin-like1, MCP-1, SPARC, SPARCL1, and SAA) and reduced levels of anti-inflammatory adipokines such as adiponectin, omentin, ZAG, SFRP5, CTRP3, vaspin, and IL-10. Moreover, some hepatokines (Fetuin A, DPP4, FGF21, GDF15, and MANF) and myokines (irisin, IL-6, and DEL-1) also play pro- or anti-inflammatory roles in AT inflammation. This review aims to provide an updated understanding of these organokines and their role in AT inflammation and related metabolic abnormalities. It serves to highlight the molecular mechanisms underlying the effects of these organokines and their clinical significance. Insights into the roles and mechanisms of these organokines could provide novel and potential therapeutic targets for obesity-induced inflammation.
Collapse
Affiliation(s)
- Yakun Ren
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
| | - Hao Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Chunyan Yin
- Department of Pediatrics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xi Lan
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Litao Wu
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Xiaojuan Du
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
| | - Helen R. Griffiths
- Swansea University Medical School, Swansea University, Swansea, United Kingdom
| | - Dan Gao
- Institute of Molecular and Translational Medicine, Xian Jiaotong University Health Science Center, Xi’an, China
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Center, Xi’an, China
- *Correspondence: Dan Gao,
| |
Collapse
|
18
|
Porro S, Genchi VA, Cignarelli A, Natalicchio A, Laviola L, Giorgino F, Perrini S. Dysmetabolic adipose tissue in obesity: morphological and functional characteristics of adipose stem cells and mature adipocytes in healthy and unhealthy obese subjects. J Endocrinol Invest 2021; 44:921-941. [PMID: 33145726 DOI: 10.1007/s40618-020-01446-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2020] [Indexed: 12/11/2022]
Abstract
The way by which subcutaneous adipose tissue (SAT) expands and undergoes remodeling by storing excess lipids through expansion of adipocytes (hypertrophy) or recruitment of new precursor cells (hyperplasia) impacts the risk of developing cardiometabolic and respiratory diseases. In unhealthy obese subjects, insulin resistance, type 2 diabetes, hypertension, and obstructive sleep apnoea are typically associated with pathologic SAT remodeling characterized by adipocyte hypertrophy, as well as chronic inflammation, hypoxia, increased visceral adipose tissue (VAT), and fatty liver. In contrast, metabolically healthy obese individuals are generally associated with SAT development characterized by the presence of smaller and numerous mature adipocytes, and a lower degree of VAT inflammation and ectopic fat accumulation. The remodeling of SAT and VAT is under genetic regulation and influenced by inherent depot-specific differences of adipose tissue-derived stem cells (ASCs). ASCs have multiple functions such as cell renewal, adipogenic capacity, and angiogenic properties, and secrete a variety of bioactive molecules involved in vascular and extracellular matrix remodeling. Understanding the mechanisms regulating the proliferative and adipogenic capacity of ASCs from SAT and VAT in response to excess calorie intake has become a focus of interest over recent decades. Here, we summarize current knowledge about the biological mechanisms able to foster or impair the recruitment and adipogenic differentiation of ASCs during SAT and VAT development, which regulate body fat distribution and favorable or unfavorable metabolic responses.
Collapse
Affiliation(s)
- S Porro
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - V A Genchi
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Cignarelli
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - A Natalicchio
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - L Laviola
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| | - F Giorgino
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy.
| | - S Perrini
- Section of Internal Medicine, Endocrinology, Andrology and Metabolic Diseases, Department of Emergency and Organ Transplantation, University of Bari Aldo Moro, Piazza Giulio Cesare, 11, 70124, Bari, Italy
| |
Collapse
|
19
|
Cheng Y, Du X, Zhang B, Zhang J. Increased Serum WISP1 Levels are Associated with Lower Extremity Atherosclerotic Disease in Patients with type 2 Diabetes Mellitus. Exp Clin Endocrinol Diabetes 2021; 130:248-253. [PMID: 33930896 DOI: 10.1055/a-1474-8220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND Serum wnt1-induced signaling pathway protein 1 (WISP1) levels are increased with obesity, which is a common complication associated with lower extremity atherosclerotic disease (LEAD). However, to date, the relationship between elevated WISP1 levels and the incidence of lower extremity atherosclerotic disease (LEAD) in type 2 diabetes mellitus (T2DM) remains unclear. METHODS 174 newly diagnosed type 2 diabetic patients were enrolled in our study. Patients were divided into two groups, LEAD group (n=100) and control group (n=74). Anthropometric parameters, blood pressure and some biochemical parameters were obtained. Body composition was detected by bioelectrical impedance analysis (BIA). Levels of serum insulin were determined by radioimmunoassay. Serum WISP1 and interleukin 6 (IL-6) levels were determined using an enzyme-linked immunosorbent assay. RESULTS It was shown that serum WISP1 levels in diabetic patients with LEAD were higher than those without LEAD (P<0.001). Serum WISP1 levels were positively related with waist circumference (r=0.237, P=0.003), waist-hip ratio (r=0.22, P=0.006), visceral fat area (r=0.354, P<0.001), serum creatinine (r=0.192, P=0.012), interleukin 6 (r=0.182, P=0.032), c-reactive protein (r=0.681, P<0.001), triglycerides (r=0.119, P<0.001), fasting glucose (r=0.196, P=0.011), glycated hemoglobin (r=0.284, P<0.001), and HOMA-IR (r=0.285, P<0.026). Compared with the lowest tertile, the odds ratio of the middle tertile for LEAD incidence was 3.27 (95% CI, 1.24-8.64) and 4.46 (95% CI, 1.62-12.29) for the highest tertile after adjusting confounding factors. CONCLUSION The results suggest that increased serum WISP1 levels independently contribute to the incidence of LEAD in patients with newly diagnosed T2DM.
Collapse
Affiliation(s)
- Yangyang Cheng
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Xiaohui Du
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Bilin Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| | - Junxia Zhang
- Department of Endocrinology, Central Theater Command General Hospital of the Chinese People's Liberation Army, Wuhan, 430070, Hubei, China
| |
Collapse
|
20
|
Pivovarova-Ramich O, Loske J, Hornemann S, Markova M, Seebeck N, Rosenthal A, Klauschen F, Castro JP, Buschow R, Grune T, Lange V, Rudovich N, Ouwens DM. Hepatic Wnt1 Inducible Signaling Pathway Protein 1 (WISP-1/CCN4) Associates with Markers of Liver Fibrosis in Severe Obesity. Cells 2021; 10:cells10051048. [PMID: 33946738 PMCID: PMC8146455 DOI: 10.3390/cells10051048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/14/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Liver fibrosis is a critical complication of obesity-induced fatty liver disease. Wnt1 inducible signaling pathway protein 1 (WISP1/CCN4), a novel adipokine associated with visceral obesity and insulin resistance, also contributes to lung and kidney fibrosis. The aim of the present study was to investigate the role of CCN4 in liver fibrosis in severe obesity. For this, human liver biopsies were collected from 35 severely obese humans (BMI 42.5 ± 0.7 kg/m2, age 46.7 ± 1.8 y, 25.7% males) during bariatric surgery and examined for the expression of CCN4, fibrosis, and inflammation markers. Hepatic stellate LX-2 cells were treated with human recombinant CCN4 alone or in combination with LPS or transforming growth factor beta (TGF-β) and examined for fibrosis and inflammation markers. CCN4 mRNA expression in the liver positively correlated with BMI and expression of fibrosis markers COL1A1, COL3A1, COL6A1, αSMA, TGFB1, extracellular matrix turnover enzymes TIMP1 and MMP9, and the inflammatory marker ITGAX/CD11c. In LX-2 cells, the exposure to recombinant CCN4 caused dose-dependent induction of MMP9 and MCP1. CCN4 potentiated the TGF-β-mediated induction of COL3A1, TIMP1, and MCP1 but showed no interaction with LPS treatment. Our results suggest a potential contribution of CCN4 to the early pathogenesis of obesity-associated liver fibrosis.
Collapse
Affiliation(s)
- Olga Pivovarova-Ramich
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Correspondence:
| | - Jennifer Loske
- Research Group Molecular Nutritional Medicine, Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany;
| | - Silke Hornemann
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
| | | | - Frederick Klauschen
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Campus Mitte, 10117 Berlin, Germany;
- German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - José Pedro Castro
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, USA;
- Aging and Aneuploidy Laboratory, IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- i3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - René Buschow
- Department of Microscopy & Cryo-Electron Microscopy, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
| | - Tilman Grune
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Institute of Nutritional Science, University of Potsdam, 14558 Nuthetal, Germany
- Department of Molecular Toxicology, German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), 14558 Nuthetal, Germany
- German Center for Cardiovascular Research (DZHK), 13347 Berlin, Germany
| | - Volker Lange
- Centre for Obesity and Metabolic Surgery, Vivantes Hospital, 13509 Berlin, Germany;
- Helios Klinikum Berlin-Buch, 13125 Berlin, Germany
| | - Natalia Rudovich
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), 14558 Nuthetal, Germany; (S.H.); (M.M.); (N.S.); (N.R.)
- Department of Endocrinology, Diabetes and Nutrition, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, 12203 Berlin, Germany
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- Division of Endocrinology and Diabetology, Department of Internal Medicine, Spital Bülach, 8180 Bülach, Switzerland
| | - D. Margriet Ouwens
- German Center for Diabetes Research (DZD), 85764 Munich-Neuherberg, Germany; (T.G.); (D.M.O.)
- German Diabetes Center, 40225 Duesseldorf, Germany
- Department of Endocrinology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
21
|
An Update to the WISP-1/CCN4 Role in Obesity, Insulin Resistance and Diabetes. ACTA ACUST UNITED AC 2021; 57:medicina57020100. [PMID: 33498604 PMCID: PMC7911315 DOI: 10.3390/medicina57020100] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 01/20/2021] [Indexed: 01/22/2023]
Abstract
Insulin resistance refers to the diminished response of peripheral tissues to insulin and is considered the major risk factor for type 2 diabetes. Although many possible mechanisms have been reported to develop insulin resistance, the exact underlying processes remain unclear. In recent years, the role of adipose tissue as a highly active metabolic and endocrine organ, producing proteins called adipokines and their multidirectional activities has gained interest. The physiological effects of adipokines include energy homeostasis and insulin sensitivity regulation. In addition, an excess of adipose tissue is followed by proinflammatory state which results in dysregulation of secreted cytokines contributing to insulin resistance. Wingless-type (Wnt) inducible signalling pathway protein-1 (WISP-1), also known as CCN4, has recently been described as a novel adipokine, whose circulating levels are elevated in obese and insulin resistant individuals. Growing evidence suggests that WISP-1 may participate in the impaired glucose homeostasis. In this review, we characterize WISP-1 and summarize the latest reports on the role of WISP-1 in obesity, insulin resistance and type 2 diabetes.
Collapse
|
22
|
Wisp1 is a circulating factor that stimulates proliferation of adult mouse and human beta cells. Nat Commun 2020; 11:5982. [PMID: 33239617 PMCID: PMC7689468 DOI: 10.1038/s41467-020-19657-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Expanding the mass of pancreatic insulin-producing beta cells through re-activation of beta cell replication has been proposed as a therapy to prevent or delay the appearance of diabetes. Pancreatic beta cells exhibit an age-dependent decrease in their proliferative activity, partly related to changes in the systemic environment. Here we report the identification of CCN4/Wisp1 as a circulating factor more abundant in pre-weaning than in adult mice. We show that Wisp1 promotes endogenous and transplanted adult beta cell proliferation in vivo. We validate these findings using isolated mouse and human islets and find that the beta cell trophic effect of Wisp1 is dependent on Akt signaling. In summary, our study reveals the role of Wisp1 as an inducer of beta cell replication, supporting the idea that the use of young blood factors may be a useful strategy to expand adult beta cell mass. The proliferation of pancreatic beta cells decreases with age, partly due to systemic changes. Here the authors identify Wisp1 as a circulating factor enriched in young serum that induces adult beta cell proliferation, supporting the idea that young blood factors may be useful to expand beta cell mass.
Collapse
|
23
|
Karasek D, Krystynik O, Goldmannova D, Cibickova L, Schovanek J. Circulating levels of selected adipokines in women with gestational diabetes and type 2 diabetes. J Appl Biomed 2020; 18:54-60. [PMID: 34907726 DOI: 10.32725/jab.2020.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 03/30/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUNDS Adiponectin, adipocyte-fatty acid binding protein (A-FABP), and Wnt1 inducible signaling pathway protein-1 (WISP-1) are adipokines closely associated with insulin resistance. The aim of the study was to compare their levels in women with gestational diabetes (GDM), type 2 diabetes mellitus (T2DM) and healthy controls and determine their relation to metabolic parameters. METHODS Women with GDM, T2DM and healthy women were included in this cross-sectional study. In addition to adipokines, anthropometric, lipid parameters, markers of insulin resistance and glucose control were assessed in all participants. RESULTS Compared to healthy controls (n = 35) significantly lower levels of adiponectin were detected in women with GDM (n = 50), whereas in women with T2DM (n = 50) higher levels of A-FABP and WISP-1 and lower levels of adiponectin were found. Women with T2DM had also lower levels of adiponectin and higher levels of A-FABP compared to women with GDM. A-FABP and adiponectin were independently associated with levels of triglycerides, HDL-cholesterol and C-peptide insulin resistance index. WISP-1 correlated only with waist circumference. CONCLUSIONS Adverse adipokines production reflecting dysfunctional fat tissue is less presented in women with GDM than in women with T2DM, but more expressed compared to healthy women.
Collapse
Affiliation(s)
| | - Ondrej Krystynik
- University Hospital and Palacky University, Faculty of Medicine and Dentistry, Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, Olomouc, Czech Republic
| | - Dominika Goldmannova
- University Hospital and Palacky University, Faculty of Medicine and Dentistry, Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, Olomouc, Czech Republic
| | - Lubica Cibickova
- University Hospital and Palacky University, Faculty of Medicine and Dentistry, Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, Olomouc, Czech Republic
| | - Jan Schovanek
- University Hospital and Palacky University, Faculty of Medicine and Dentistry, Third Department of Internal Medicine - Nephrology, Rheumatology and Endocrinology, Olomouc, Czech Republic
| |
Collapse
|
24
|
Exercise intervention lowers aberrant serum WISP-1 levels with insulin resistance in breast cancer survivors: a randomized controlled trial. Sci Rep 2020; 10:10898. [PMID: 32616883 PMCID: PMC7331642 DOI: 10.1038/s41598-020-67794-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 06/11/2020] [Indexed: 12/17/2022] Open
Abstract
Insulin resistance is associated with increased risk for and recurrence of breast cancer. Recently, Wnt1-inducible signaling pathway protein-1 (WISP-1) was reported to impair glucose metabolism and insulin sensitivity. In various cancer tissues, Wnt signaling is upregulated and induces further oncogenic and metastatic activity. However, the effects of exercise on serum levels of WISP-1 and its upstream β-catenin have not been studied in cancer patients. We investigated the effects of exercise training on Wnt signaling and insulin sensitivity in breast cancer survivors (BCS). This single-center trial randomized 46 BCS into either 12-week exercise or control groups (1:1), and included an additional 12 age-matched healthy women. Kinanthropometric parameters, serum Wnt signaling markers, and gluco-lipid profiles were evaluated before and after the intervention. Serum β-catenin and WISP-1 concentrations were significantly higher in BCS than in healthy subjects. There was a positive correlation between β-catenin and WISP-1 levels.
Exercise training in BCS significantly reduced body fat and waist circumference and enhanced aerobic and muscular fitness. Exercise decreased β-catenin and WISP-1 levels and improved gluco-lipid profiles. There was a notable correlation between changes in HOMA-IR indexes and serum WISP-1, but not with β-catenin during the exercise intervention. In conclusion, a 12-week community-based exercise intervention resulted in significant reductions in serum β-catenin and WISP-1 levels, accompanied by favorable improvements in body composition, physical fitness, and biochemical parameters in BCS.
We also highlight that this is the first report concerning effects of exercise on circulating β-catenin and WISP-1 levels and correlations between WISP-1 and insulin sensitivity, which could be important for determining prognoses for BCS.
Collapse
|
25
|
Banerjee A, Singh J. Remodeling adipose tissue inflammasome for type 2 diabetes mellitus treatment: Current perspective and translational strategies. Bioeng Transl Med 2020; 5:e10150. [PMID: 32440558 PMCID: PMC7237149 DOI: 10.1002/btm2.10150] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/07/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Obesity-associated type 2 diabetes mellitus (T2DM) is characterized by low-grade chronic systemic inflammation that arises primarily from the white adipose tissue. The interplay between various adipose tissue-derived chemokines drives insulin resistance in T2DM and has therefore become a subject of rigorous investigation. The adipocytokines strongly associated with glucose homeostasis include tumor necrosis factor-α, various interleukins, monocyte chemoattractant protein-1, adiponectin, and leptin, among others. Remodeling the adipose tissue inflammasome in obesity-associated T2DM is likely to treat the underlying cause of the disease and bring significant therapeutic benefit. Various strategies have been adopted or are being investigated to modulate the serum/tissue levels of pro- and anti-inflammatory adipocytokines to improve glucose homeostasis in T2DM. These include use of small molecule agonists/inhibitors, mimetics, antibodies, gene therapy, and other novel formulations. Here, we discuss adipocytokines that are strongly associated with insulin activity and therapies that are under investigation for modulation of their levels in the treatment of T2DM.
Collapse
Affiliation(s)
- Amrita Banerjee
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| | - Jagdish Singh
- Department of Pharmaceutical SciencesNorth Dakota State UniversityFargoNorth Dakota
| |
Collapse
|
26
|
Wu W, Ji M, Xu K, Zhang D, Yin Y, Huang X, Peng Y, Zhang J. Knockdown of CTRP6 reduces the deposition of intramuscular and subcutaneous fat in pigs via different signaling pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158729. [PMID: 32360289 DOI: 10.1016/j.bbalip.2020.158729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/14/2022]
Abstract
The regulation of porcine subcutaneous (SC) and intramuscular (IM) fat deposition significantly affects pork quality and the lean meat percentage of the carcass, respectively. The adipokine C1q/tumor necrosis factor-related protein 6 (CTRP6), plays a significant role in regulating animal fat deposition. The purpose of this study was to understand the effects of CTRP6 gene knockdown in IM and SC adipocytes by RNA-seq analysis. A total of 1830 and 2936 differentially expressed genes (DEGs) were identified in SC and IM adipocytes, respectively. 844 were down- and 2092 were upregulated in SC adipocytes, while 648 were down- and 1182 were upregulated in IM adipocytes. Furthermore, 1778 DEGs were detected only in SC adipocytes, 672 DEGs only in IM adipocytes, and 1158 DEGs in both types of adipocytes. GO analysis indicated that DEGs involved in adipocyte differentiation were significantly enriched in both SC and IM adipocytes following treatment with CTRP6-siRNA. Moreover, KEGG pathway enrichment analysis revealed differences of metabolic regulation between IM and SC adipocytes. With CTRP6-silencing, the signaling pathways related to Ras and arachidonic acid metabolism were significantly enriched in IM adipocytes, while four other signaling pathways, encompassing the TNF, MAPK, p53 and adipokine pathway were specifically enriched in SC adipocytes. Interestingly, the effect of CTRP6-siRNA treatment was attenuated by the specific Ras activator ML-097 in IM adipocytes, while the specific p53 activator SJ-172550 had the corresponding effect in SC adipocytes. Altogether, we suggest that CTRP6 may be a differential regulator of the development and metabolism of IM and SC adipose tissues.
Collapse
Affiliation(s)
- Wenjing Wu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Miao Ji
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Ke Xu
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Dawei Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Yajun Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Xin Huang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China; College of Agronomy and Biotechnology, Hebei Normal University of Science and Technology, Qin Huangdao, Hebei 066000, China
| | - Yongjia Peng
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jin Zhang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| |
Collapse
|
27
|
Liu L, Hu J, Yang L, Wang N, Liu Y, Wei X, Gao M, Wang Y, Ma Y, Wen D. Association of WISP1/CCN4 with Risk of Overweight and Gestational Diabetes Mellitus in Chinese Pregnant Women. DISEASE MARKERS 2020; 2020:4934206. [PMID: 32377270 PMCID: PMC7180395 DOI: 10.1155/2020/4934206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/30/2020] [Accepted: 01/17/2020] [Indexed: 01/19/2023]
Abstract
BACKGROUND Obese women with gestational diabetes mellitus (GDM) have a higher risk of adverse outcomes than women with obesity or GDM alone. Our study is aimed at investigating the discriminatory power of circulatory Wnt1-inducible signaling pathway protein-1 (WISP1), a novel adipocytokine, on the copresence of prepregnancy overweight/obesity and GDM and at clarifying the relationship between the WISP1 level and clinical cardiometabolic parameters. METHODS A total of 313 participants were screened from a multicenter prospective prebirth cohort: Born in Shenyang Cohort Study (BISCS). Subjects were examined with a 2 × 2 factorial design for body mass index (BMI) ≥ 24 and GDM. Between 24 and 28 weeks of pregnancy, follow-up individuals underwent an OGTT and blood sampling for cardiometabolic characterization. RESULTS We observed that the WISP1 levels were elevated in prepregnancy overweight/obesity patients with GDM, compared with nonoverweight subjects with normal blood glucose (3.45 ± 0.89 vs. 2.91 ± 0.75 ng/mL). Multilogistic regression analyses after adjustments for potential confounding factors revealed that WISP1 was a strong and independent risk factor for prepregnancy overweight/obesity with GDM (all ORs > 1). In addition, the results of the ROC analysis indicated that WISP1 exhibited the capability to identify individuals with prepregnancy overweight/obesity and GDM (all AUC > 0.5). Finally, univariate and multivariate linear regression showed that WISP1 level was positively and independently correlated with fasting blood glucose, systolic blood pressure, and aspartate aminotransferase and was negatively correlated with HDL-C and complement C1q. CONCLUSIONS WISP1 may be critical for the prediction, diagnosis, and therapeutic strategies against obesity and GDM in pregnant women.
Collapse
Affiliation(s)
- Lei Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Jiajin Hu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Liu Yang
- Department of Obstetrics and Gynecology, Shenyang Maternity and Child Health Hospital, Shenyang, Liaoning Province 110122, China
| | - Ningning Wang
- School of Public Health, Dalian Medical University, Dalian, Liaoning Province 116044, China
| | - Yang Liu
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Xiaotong Wei
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Ming Gao
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yinuo Wang
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Yanan Ma
- School of Public Health, China Medical University, Shenyang, Liaoning Province 110122, China
| | - Deliang Wen
- Institute of Health Sciences, China Medical University, Shenyang, Liaoning Province 110122, China
- Research Center of China Medical University Birth Cohort, China Medical University, Shenyang, Liaoning Province 110122, China
| |
Collapse
|
28
|
Circulating Wnt1-inducible signaling pathway protein-1 (WISP-1/CCN4) is a novel biomarker of adiposity in subjects with type 2 diabetes. J Cell Commun Signal 2019; 14:101-109. [PMID: 31782053 DOI: 10.1007/s12079-019-00536-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Wnt1-inducible signaling pathway protein 1, or cellular communication network factor 4 (CCN4), a member of CCN family of secreted, extracellular matrix associated signaling proteins, recently was validated as a novel adipose tissue derived cytokine. OBJECTIVE To assess the relationships between circulating CCN4, adipose tissue distribution and function, and chronic low-grade inflammation in subjects with type 2 diabetes. METHODS We observed 156 patients with type 2 diabetes and 24 healthy controls. Serum levels of CCN4, hsCRP and alpha1-acid glycoprotein (alpha1-AGP) were measured by ELISA. Serum concentrations of leptin, resistin, visfatin, adipsin, adiponectin, IL-6, IL-8, IL-18 and TNF-alpha were determined by multiplex analysis. Fat mass and distribution was assessed by DEXA. Mean diameter of adipocytes was estimated in samples of subcutaneous adipose tissue. RESULTS Patients with diabetes had higher levels of circulating CCN4, leptin, resistin, adipsin, visfatin, hsCRP, alpha1-AGP, and IL-6 (all p < 0.02). The CCN4 concentration correlated positively with percentage of fat mass in central abdominal area, as well as with leptin, resistin and visfatin levels; negative correlation was found between CCN4 and mean adipocyte diameter. In multiple regression analysis fat mass in central abdominal area was independent predictor for CCN4 concentration. CONCLUSION In subjects with type 2 diabetes serum levels of CCN4 are associated with central abdominal fat mass and adipose tissue dysfunction.
Collapse
|
29
|
Hörbelt T, Knebel B, Fahlbusch P, Barbosa D, de Wiza DH, Van de Velde F, Van Nieuwenhove Y, Lapauw B, Thoresen GH, Al-Hasani H, Müller-Wieland D, Ouwens DM, Kotzka J. The adipokine sFRP4 induces insulin resistance and lipogenesis in the liver. Biochim Biophys Acta Mol Basis Dis 2019; 1865:2671-2684. [DOI: 10.1016/j.bbadis.2019.07.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 06/19/2019] [Accepted: 07/18/2019] [Indexed: 01/04/2023]
|
30
|
Insulin Sensitivity Is Associated with Lipoprotein Lipase ( LPL) and Catenin Delta 2 ( CTNND2) DNA Methylation in Peripheral White Blood Cells in Non-Diabetic Young Women. Int J Mol Sci 2019; 20:ijms20122928. [PMID: 31208038 PMCID: PMC6627674 DOI: 10.3390/ijms20122928] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/03/2019] [Accepted: 06/12/2019] [Indexed: 12/20/2022] Open
Abstract
Hyperglycaemia and type 2 diabetes (T2D) are associated with impaired insulin secretion and/or insulin action. Since few studies have addressed the relation between DNA methylation patterns with elaborated surrogates of insulin secretion/sensitivity based on the intravenous glucose tolerance test (IVGTT), the aim of this study was to evaluate the association between DNA methylation and an insulin sensitivity index based on IVGTT (calculated insulin sensitivity index (CSi)) in peripheral white blood cells from 57 non-diabetic female volunteers. The CSi and acute insulin response (AIR) indexes, as well as the disposition index (DI = CSi × AIR), were estimated from abbreviated IVGTT in 49 apparently healthy Chilean women. Methylation levels were assessed using the Illumina Infinium Human Methylation 450k BeadChip. After a statistical probe filtering, the two top CpGs whose methylation was associated with CSi were cg04615668 and cg07263235, located in the catenin delta 2 (CTNND2) and lipoprotein lipase (LPL) genes, respectively. Both CpGs conjointly predicted insulin sensitivity status with an area under the curve of 0.90. Additionally, cg04615668 correlated with homeostasis model assessment insulin-sensitivity (HOMA-S) and AIR, whereas cg07263235 was associated with plasma creatinine and DI. These results add further insights into the epigenetic regulation of insulin sensitivity and associated complications, pointing the CTNND2 and LPL genes as potential underlying epigenetic biomarkers for future risk of insulin-related diseases.
Collapse
|
31
|
Yaribeygi H, Atkin SL, Sahebkar A. Wingless-type inducible signaling pathway protein-1 (WISP1) adipokine and glucose homeostasis. J Cell Physiol 2019; 234:16966-16970. [PMID: 30807659 DOI: 10.1002/jcp.28412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/14/2019] [Indexed: 01/11/2023]
Abstract
Whilst the growing global prevalence of diabetes mellitus is a major healthcare problem, the exact pathophysiology of insulin resistance leading to diabetes mellitus remains unclear. Studies have confirmed that increased adiposity is linked to lower insulin sensitivity through the expression and release of adipocyte-derived proteins such as adipokines. Wingless-type (Wnt) inducible signaling pathway protein-1 (WISP1) is a newly identified adipokine that has important roles in many molecular pathways and cellular events, with the suggestion that WISP1 adipokine is closely correlated to the progression of insulin resistance. Studies have shown that circulatory levels of WISP adipokine are higher in obese patients accompanied with increased insulin resistance. However, the exact role of WISP1 adipokine in the induction of insulin resistance is not completely understood. In this review, we detail the latest evidence showing that the WIPS1 adipokine impairs glucose homeostasis and induces diabetes mellitus.
Collapse
Affiliation(s)
- Habib Yaribeygi
- Chronic Kidney Disease Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
32
|
Zhang N, Zhou Y, Yuan Q, Gao Y, Wang Y, Wang X, Cui X, Xu P, Ji C, Guo X, You L, Gu N, Zeng Y. Dynamic transcriptome profile in db/db skeletal muscle reveal critical roles for long noncoding RNA regulator. Int J Biochem Cell Biol 2018; 104:14-24. [PMID: 30179676 DOI: 10.1016/j.biocel.2018.08.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 08/04/2018] [Accepted: 08/23/2018] [Indexed: 02/06/2023]
Abstract
T2DM is a global health problem that seriously lowers the quality of life and insulin resistance makes a considerable contribution to the pathophysiology of T2DM. Long noncoding RNAs (lncRNAs) have emerged as important regulators in glucose and lipid metabolism. However, comprehensive analysis of lncRNAs in db/db mice skeletal muscle and their potential roles involved in skeletal muscle insulin resistance (IR) remains poorly characterized. Here, we identified 331 lncRNAs, 172 upregulated and 159 downregulated (|fold change|>2, q<0.05), differentially expressed in db/db mice skeletal muscle. Gene Ontology analysis, Pathway analysis and Gene Set Enrichment Analysis of network gene expression revealed the potential functions of dysregulated lncRNAs may involve skeletal muscle function, fatty acid metabolism and the PPAR signaling pathway. In addition, differentially expressed lncRNAs were verified in skeletal muscle from the widely known IR mouse models (db/db and ob/ob mice). Further validation of lncRNAs in C2C12 myotubes exposed with various concentrations of palmitate uncovered that lncRNAs were responsive to palmitate exposure at the high concentrations (0.5mM and 0.75mM). Coexpression analysis revealed the key lncRNA-mRNA interactions and indicated a potential regulatory role of lncRNAs. Moreover, we characterized two candidate lncRNAs Gm15441 and 3110045C21Rik by a comprehensive examination of their genomic context and validated their expression with neighboring genes (Txnip and Ddr2) by the Spearman correlation analysis. Collectively, these findings improve our understanding of lncRNAs that mediate skeletal muscle insulin resistance in diabetes and represent potential molecular therapeutic targets to improve insulin sensitivity and associated metabolic diseases.
Collapse
Affiliation(s)
- Na Zhang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China; The First People's Hospital of Lianyungang, Xu Zhou Medical University Affiliated Hospital of LianYun Gang, The First Affiliated Hospital of KangDa College of Nanjing Medical University, LianYun Gang, 222000, China
| | - Yahui Zhou
- Department ofPediatrics, Jingjiang People's Hospital, Yangzhou University, Jingjiang, 214500, China
| | - Qingxin Yuan
- Department of Endocrinology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yao Gao
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Yan Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xingyun Wang
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xianwei Cui
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Pengfei Xu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Chenbo Ji
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Xirong Guo
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| | - Lianghui You
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Nan Gu
- The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China.
| | - Yu Zeng
- Department of Clinical Laboratory, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, 210004, China
| |
Collapse
|