1
|
Hu CQ, Hou T, Xiang R, Li X, Li J, Wang TT, Liu WJ, Hou S, Wang D, Zhao QH, Yu XX, Xu M, Liu XK, Chi YJ, Yang JC. PANX1-mediated ATP release confers FAM3A's suppression effects on hepatic gluconeogenesis and lipogenesis. Mil Med Res 2024; 11:41. [PMID: 38937853 PMCID: PMC11210080 DOI: 10.1186/s40779-024-00543-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 06/10/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Extracellular adenosine triphosphate (ATP) is an important signal molecule. In previous studies, intensive research had revealed the crucial roles of family with sequence similarity 3 member A (FAM3A) in controlling hepatic glucolipid metabolism, islet β cell function, adipocyte differentiation, blood pressure, and other biological and pathophysiological processes. Although mitochondrial protein FAM3A plays crucial roles in the regulation of glucolipid metabolism via stimulating ATP release to activate P2 receptor pathways, its mechanism in promoting ATP release in hepatocytes remains unrevealed. METHODS db/db, high-fat diet (HFD)-fed, and global pannexin 1 (PANX1) knockout mice, as well as liver sections of individuals, were used in this study. Adenoviruses and adeno-associated viruses were utilized for in vivo gene overexpression or inhibition. To evaluate the metabolic status in mice, oral glucose tolerance test (OGTT), pyruvate tolerance test (PTT), insulin tolerance test (ITT), and magnetic resonance imaging (MRI) were conducted. Protein-protein interactions were determined by coimmunoprecipitation with mass spectrometry (MS) assays. RESULTS In livers of individuals and mice with steatosis, the expression of ATP-permeable channel PANX1 was increased (P < 0.01). Hepatic PANX1 overexpression ameliorated the dysregulated glucolipid metabolism in obese mice. Mice with hepatic PANX1 knockdown or global PANX1 knockout exhibited disturbed glucolipid metabolism. Restoration of hepatic PANX1 rescued the metabolic disorders of PANX1-deficient mice (P < 0.05). Mechanistically, ATP release is mediated by the PANX1-activated protein kinase B-forkhead box protein O1 (Akt-FOXO1) pathway to inhibit gluconeogenesis via P2Y receptors in hepatocytes. PANX1-mediated ATP release also activated calmodulin (CaM) (P < 0.01), which interacted with c-Jun N-terminal kinase (JNK) to inhibit its activity, thereby deactivating the transcription factor activator protein-1 (AP1) and repressing fatty acid synthase (FAS) expression and lipid synthesis (P < 0.05). FAM3A stimulated the expression of PANX1 via heat shock factor 1 (HSF1) in hepatocytes (P < 0.05). Notably, FAM3A overexpression failed to promote ATP release, inhibit the expression of gluconeogenic and lipogenic genes, and suppress gluconeogenesis and lipid deposition in PANX1-deficient hepatocytes and livers. CONCLUSIONS PANX1-mediated release of ATP plays a crucial role in maintaining hepatic glucolipid homeostasis, and it confers FAM3A's suppressive effects on hepatic gluconeogenesis and lipogenesis.
Collapse
Affiliation(s)
- Cheng-Qing Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Obstetrics and Gynecology, Peking University Third Hospital/National Clinical Research Center for Obstetrics and Gynecology, Beijing, 100191, China
| | - Tao Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, 100020, China
| | - Tian-Tian Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Wen-Jun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China
| | - Qing-He Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China
| | - Xiao-Xing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital/Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing, 100191, China
| | - Xing-Kai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, the First Hospital of Jilin University, Changchun, 130061, China.
| | - Yu-Jing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing, 100044, China.
- Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Ji-Chun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences/State Key Laboratory of Vascular Homeostasis and Remodeling/Center for Non-Coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
2
|
Toktogulova N, Breidert M, Eschbach J, Kudaibergenova I, Omurzakova U, Uvaidillaeva F, Tagaeva B, Sultanalieva R, Eftekhari P. Energy Metabolism in Residents in the Low- and Moderate Altitude Regions of Central Asia with MAFLD and Type 2 Diabetes Mellitus. Horm Metab Res 2024; 56:294-299. [PMID: 38373717 DOI: 10.1055/a-2256-6358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
The knowledge about the features of energy metabolism in MAFLD in the population living at different climatic and geographic heights is lacking. The goal of this study is to explore the biochemical parameters of blood and erythrocyte energy consumption in patients with MAFLD with and without DM2 living in the low- and moderate-altitude regions of Central Asia. Our study was carried out on patients living in low-altitude mountains: Bishkek, altitude=750-800 m; n=67 (MAFLD with DM 2: n=24; MAFLD without DM2: n=25; control: n=18), and At-Bashy District, Naryn Region, altitude=2046-2300 m; n=58 (MAFLD with DM2: n=28; MAFLD without DM2: n=18; control: n=12). Non-alcoholic fatty liver disease was diagnosed according to history, laboratory tests, liver ultrasound, and exclusion of other liver diseases. The level of liver fibrosis was determined using the FIB-4 score. Blood adenosine 5'-triphosphate (ATP) was determined using the CellTiter-Glo method. Healthy residents living in moderate altitudes have significantly higher levels of cytosolic ATP in their blood (p+≤+0.05) than residents living in low mountains. MAFLD is characterized by an increase in the level of ATP concentration in their blood. ATP concentration decreased significantly in patients with MAFLD with DM2 living in moderate-altitude in comparison to those living in low-altitude mountains. The results suggest that chronic altitude hypoxia leads to a breakdown in adaptive mechanisms of energy metabolism of ATP in patients with MAFLD with type 2 DM.
Collapse
Affiliation(s)
- Nurgul Toktogulova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | | | - Judith Eschbach
- Inoviem Scientific Research, Inoviem Scientific SAS, Illkirch, France
| | - Indira Kudaibergenova
- Kyrgyz State Medical Institute of Post-Graduate Training and Advanced Training named after S B Daniyarov, Bishkek, Kyrgyzstan
| | - Uulkan Omurzakova
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Feruzakhan Uvaidillaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Bermet Tagaeva
- Hospital Therapy, IK Akhunbaev Kyrgyz State Medical Academy Faculty of General Medicine, Bishkek, Kyrgyzstan
| | - Roza Sultanalieva
- Therapy1, Kyrgyz-Russian Slavic University named after B N Yeltsin, Bishkek, Kyrgyzstan
| | | |
Collapse
|
3
|
Lav Madsen P, Sejersen C, Nyberg M, Sørensen MH, Hellsten Y, Gaede P, Bojer AS. The cardiovascular changes underlying a low cardiac output with exercise in patients with type 2 diabetes mellitus. Front Physiol 2024; 15:1294369. [PMID: 38571722 PMCID: PMC10987967 DOI: 10.3389/fphys.2024.1294369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
The significant morbidity and premature mortality of type 2 diabetes mellitus (T2DM) is largely associated with its cardiovascular consequences. Focus has long been on the arterial atheromatosis of DM giving rise to early stroke and myocardial infarctions, whereas less attention has been given to its non-ischemic cardiovascular consequences. Irrespective of ischemic changes, T2DM is associated with heart failure (HF) most commonly with preserved ejection fraction (HFpEF). Largely due to increasing population ages, hypertension, obesity and T2DM, HFpEF is becoming the most prevalent form of heart failure. Unfortunately, randomized controlled trials of HFpEF have largely been futile, and it now seems logical to address the important different phenotypes of HFpEF to understand their underlying pathophysiology. In the early phases, HFpEF is associated with a significantly impaired ability to increase cardiac output with exercise. The lowered cardiac output with exercise results from both cardiac and peripheral causes. T2DM is associated with left ventricular (LV) diastolic dysfunction based on LV hypertrophy with myocardial disperse fibrosis and significantly impaired ability for myocardial blood flow increments with exercise. T2DM is also associated with impaired ability for skeletal muscle vasodilation during exercise, and as is the case in the myocardium, such changes may be related to vascular rarefaction. The present review discusses the underlying phenotypical changes of the heart and peripheral vascular system and their importance for an adequate increase in cardiac output. Since many of the described cardiovascular changes with T2DM must be considered difficult to change if fully developed, it is suggested that patients with T2DM are early evaluated with respect to their cardiovascular compromise.
Collapse
Affiliation(s)
- Per Lav Madsen
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Clinical Medicine, Copenhagen University, Copenhagen, Denmark
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Casper Sejersen
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
- Department of Anaesthesia, Rigshospitalet, Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Michael Nyberg
- Department Kidney and Vascular Biology, Global Drug Discovery, Novo Nordisk, Copenhagen, Denmark
| | | | - Ylva Hellsten
- The August Krogh Section for Human Physiology, Department Nutrition, Exercise and Sports, Copenhagen University, Copenhagen, Denmark
| | - Peter Gaede
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| | - Annemie Stege Bojer
- Department Cardiology, Herlev-Gentofte Hospital, Copenhagen University, Copenhagen, Denmark
- Department Endocrinology, Slagelse-Næstved Hospital, Copenhagen, Denmark
| |
Collapse
|
4
|
Belcik JT, Xie A, Muller M, Lindner JR. Influence of Atherosclerotic Risk Factors on the Effectiveness of Therapeutic Ultrasound Cavitation for Flow Augmentation. J Am Soc Echocardiogr 2024; 37:100-107. [PMID: 37678655 DOI: 10.1016/j.echo.2023.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Shear created by inertial cavitation of microbubbles by ultrasound augments limb and myocardial perfusion and can reverse tissue ischemia. Our aim was to determine whether this therapeutic bioeffect is attenuated by atherosclerotic risk factors that are known to impair shear-mediated vasodilation and adversely affect microvascular reactivity. METHODS In mice, lipid-stabilized decafluorobutane microbubbles (2 × 108) were administered intravenously while exposing a proximal hind limb to ultrasound (1.3 MHz, 1.3 mechanical index, pulsing interval 5 seconds) for 10 minutes. Murine strains included wild-type mice and severely hyperlipidemic mice at 15, 35, or 52 weeks of age as a model of aging and elevated cholesterol, and obese db/db mice (≈15 weeks) with severe insulin resistance. Quantitative contrast-enhanced ultrasound perfusion imaging was performed to assess microvascular perfusion in the control and ultrasound-exposed limb. An in situ electrochemical probe and in vivo biophotonic imaging were used to assess limb nitric oxide (NO) and adenosine triphosphosphate concentrations, respectively. RESULTS Microvascular perfusion was significantly increased by several fold in the cavitation-exposed limb versus control limb for all murine strains and ages (P < .001). In wild-type and hyperlipidemic mice, hyperemia from cavitation was attenuated in the 2 older age groups (P < .01). In young mice (15 weeks), perfusion in cavitation-exposed muscle was less in both the hyperlipidemic mice and the obese db/db mice compared with corresponding wild-type mice. Using young hyperlipidemic mice as a model for flow impairment, limb NO production after cavitation was reduced but adenosine triphosphosphate production was unaltered when compared with age-matched wild-type mice. CONCLUSIONS In mice, ultrasound cavitation of microbubbles increases limb perfusion by several fold even in the presence of traditional atherosclerotic risk factors. However, older age, hyperlipidemia, and insulin resistance modestly attenuate the degree of flow augmentation, which could impact the degree of flow response in current clinical trials in patients with critical limb ischemia.
Collapse
Affiliation(s)
- J Todd Belcik
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Aris Xie
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia
| | - Matthew Muller
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, Oregon
| | - Jonathan R Lindner
- Division of Cardiovascular Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
5
|
Macedo ACPD, Schaan CW, Bock PM, Pinto MBD, Botton CE, Umpierre D, Schaan BD. Cardiorespiratory fitness in individuals with type 2 diabetes mellitus: a systematic review and meta-analysis. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2023; 67:e230040. [PMID: 37738467 PMCID: PMC10665050 DOI: 10.20945/2359-4292-2023-0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 05/30/2023] [Indexed: 09/24/2023]
Abstract
Objective To conduct a systematic review and meta-analysis assessing the cardiorespiratory fitness (CRF) among individuals with and without type 2 diabetes. Materials and methods The current review was registered in PROSPERO under the number CRD42018082718. MEDLINE, EMBASE, and Cochrane Library databases were searched from inception through February 2022. Eligibility criteria consisted of observational or interventional studies that evaluated CRF through cardiopulmonary exercise testing or six-minute walk test in individuals with type 2 diabetes compared with individuals without type 2 diabetes. For data extraction, we used baseline CRF assessments of randomized clinical trials or follow-up CRF assessments in observational studies. We performed a meta-analysis using maximal oxygen consumption (VO2 max), and distance walked in the 6MWT as primary outcomes. They were extracted and expressed as mean differences (MDs) and 95% CIs between treatment and comparator groups. The meta-analysis was conducted using Review Manager (RevMan) software. Results Out of 8,347 studies retrieved, 77 were included. Compared with individuals without type 2 diabetes, individuals with diabetes achieved a lower VO2 max (-5.84 mL.kg-1.min-1, 95% CI -6.93, -4.76 mL.kg-1.min-1, p = <0.0001; I2 = 91%, p for heterogeneity < 0.0001), and a smaller distance walked in 6MWT (-93.30 meters, 95% CI -141.2, -45.4 meters, p > 0.0001; I2: 94%, p for heterogeneity < 0.0001). Conclusion Type 2 diabetes was associated with lower cardiorespiratory fitness, as observed by lower VO2 max on maximal tests, and smaller distance walked in 6MWT, however the quality of studies was low.
Collapse
Affiliation(s)
- Aline Chagastelles Pinto de Macedo
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Camila Wohlgemuth Schaan
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Patricia Martins Bock
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil,
- Faculdades Integradas de Taquara, Taquara, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - Mariana Brutto de Pinto
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Cintia Ehlers Botton
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Ceará, Instituto de EducaçÃo Física e Esportes, Fortaleza, CE, Brasil
- Programa de Mestrado em Fisioterapia e Funcionalidade, Universidade Federal do Ceará, Fortaleza, CE, Brasil
| | - Daniel Umpierre
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| | - Beatriz D Schaan
- Universidade Federal do Rio Grande do Sul, Programa de Pós-graduaçÃo em Ciências Médicas: Endocrinologia, Porto Alegre, RS, Brasil
- Laboratório de Atividade Física, Diabetes e Doença Cardiovascular (LADD), Centro de Pesquisa Clínica, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
- Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
- Instituto de AvaliaçÃo de Tecnologia em Saúde (IATS) - CNPq/Brasil, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brasil
| |
Collapse
|
6
|
Li J, Yan H, Xiang R, Yang W, Ye J, Yin R, Yang J, Chi Y. ATP Secretion and Metabolism in Regulating Pancreatic Beta Cell Functions and Hepatic Glycolipid Metabolism. Front Physiol 2022; 13:918042. [PMID: 35800345 PMCID: PMC9253475 DOI: 10.3389/fphys.2022.918042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 05/30/2022] [Indexed: 11/13/2022] Open
Abstract
Diabetes (DM), especially type 2 diabetes (T2DM) has become one of the major diseases severely threatening public health worldwide. Islet beta cell dysfunctions and peripheral insulin resistance including liver and muscle metabolic disorder play decisive roles in the pathogenesis of T2DM. Particularly, increased hepatic gluconeogenesis due to insulin deficiency or resistance is the central event in the development of fasting hyperglycemia. To maintain or restore the functions of islet beta cells and suppress hepatic gluconeogenesis is crucial for delaying or even stopping the progression of T2DM and diabetic complications. As the key energy outcome of mitochondrial oxidative phosphorylation, adenosine triphosphate (ATP) plays vital roles in the process of almost all the biological activities including metabolic regulation. Cellular adenosine triphosphate participates intracellular energy transfer in all forms of life. Recently, it had also been revealed that ATP can be released by islet beta cells and hepatocytes, and the released ATP and its degraded products including ADP, AMP and adenosine act as important signaling molecules to regulate islet beta cell functions and hepatic glycolipid metabolism via the activation of P2 receptors (ATP receptors). In this review, the latest findings regarding the roles and mechanisms of intracellular and extracellular ATP in regulating islet functions and hepatic glycolipid metabolism would be briefly summarized and discussed.
Collapse
Affiliation(s)
- Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Han Yan
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Rui Xiang
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Weili Yang
- Beijing Key Laboratory of Diabetes Research and Care, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Jingjing Ye
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- Key Laboratory of Trauma and Neural Regeneration (Peking University), National Center for Trauma Medicine, Trauma Medicine Center, Peking University People’s Hospital, Beijing, China
| | - Ruili Yin
- Beijing Key Laboratory of Diabetes Prevention and Research, Center for Endocrine Metabolic and Immune Disease, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Jichun Yang
- Key Laboratory of Cardiovascular Science of the Ministry of Education, Center for Non-coding RNA Medicine, Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
- *Correspondence: Jichun Yang, ; Yujing Chi,
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People’s Hospital, Beijing, China
- *Correspondence: Jichun Yang, ; Yujing Chi,
| |
Collapse
|
7
|
Young BE, Padilla J, Finsen SH, Fadel PJ, Mortensen SP. Role of Endothelin-1 Receptors in Limiting Leg Blood Flow and Glucose Uptake During Hyperinsulinemia in Type 2 Diabetes. Endocrinology 2022; 163:6515918. [PMID: 35084435 PMCID: PMC8852254 DOI: 10.1210/endocr/bqac008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/29/2023]
Abstract
Skeletal muscle insulin resistance is a hallmark of individuals with type 2 diabetes mellitus (T2D). In healthy individuals insulin stimulates vasodilation, which is markedly blunted in T2D; however, the mechanism(s) remain incompletely understood. Investigations in rodents indicate augmented endothelin-1 (ET-1) action as a major contributor. Human studies have been limited to young obese participants and focused exclusively on the ET-1 A (ETA) receptor. Herein, we have hypothesized that ETA receptor antagonism would improve insulin-stimulated vasodilation and glucose uptake in T2D, with further improvements observed during concurrent ETA + ET-1 B (ETB) antagonism. Arterial pressure (arterial line), leg blood flow (LBF; Doppler), and leg glucose uptake (LGU) were measured at rest, during hyperinsulinemia alone, and hyperinsulinemia with (1) femoral artery infusion of BQ-123, the selective ETA receptor antagonist (n = 10 control, n = 9 T2D) and then (2) addition of BQ-788 (selective ETB antagonist) for blockade of ETA and ETB receptors (n = 7 each). The LBF responses to hyperinsulinemia alone tended to be lower in T2D (controls: ∆161 ± 160 mL/minute; T2D: ∆58 ± 43 mL/minute, P = .08). BQ-123 during hyperinsulinemia augmented LBF to a greater extent in T2D (% change: controls: 14 ± 23%; T2D: 38 ± 21%, P = .029). LGU following BQ-123 increased similarly between groups (P = .85). Concurrent ETA + ETB antagonism did not further increase LBF or LGU in either group. Collectively, these findings suggest that during hyperinsulinemia ETA receptor activation restrains vasodilation more in T2D than controls while limiting glucose uptake similarly in both groups, with no further effect of ETB receptors (NCT04907838).
Collapse
Affiliation(s)
- Benjamin E Young
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
- Correspondence: Benjamin E. Young, PhD, Department of Kinesiology, College of Nursing and Health Innovation, University of Texas at Arlington, 411 S. Nedderman Dr., Pickard Hall, room 504, Arlington, TX 76019, USA.
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, MO 65211, USA
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO 65211, USA
| | - Stine H Finsen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| | - Paul J Fadel
- Department of Kinesiology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Stefan P Mortensen
- Department of Cardiovascular and Renal Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
8
|
Yang S, Li Y, Liu C, Wu Y, Wan Z, Shen D. Pathogenesis and treatment of wound healing in patients with diabetes after tooth extraction. Front Endocrinol (Lausanne) 2022; 13:949535. [PMID: 36213270 PMCID: PMC9538860 DOI: 10.3389/fendo.2022.949535] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
Diabetes mellitus is a common systematic chronic disease amongst dental patients. The elevated glucose microenvironment can prolong the healing of tooth extraction sockets. Therefore, the promotion of healing up tooth extraction sockets is of great clinical importance to the patients with diabetes mellitus. The current evidence indicates the mechanism of the recovery period of extraction sockets in hyperglycaemia conditions from physiological, inflammation, immune, endocrine and neural aspects. New advancements have been made in varied curative approaches and drugs in the management of wound healing of tooth extraction sockets in diabetes. However, most of the interventions are still in the stage of animal experiments, and whether it can be put into clinical application still needs further explorations. Specifically, our work showed topical administration of plasma-rich growth factor, advanced platelet-rich fibrin, leukocyte- and platelet-rich fibrin and hyaluronic acid as well as maxillary immediate complete denture is regarded as a promising approach for clinical management of diabetic patients requiring extractions. Overall, recent studies present a blueprint for new advances in novel and effective approaches for this worldwide health ailment and tooth extraction sockets healing.
Collapse
|
9
|
Zheng J, Sorensen C, Li R, An H, Hildebolt CF, Zayed MA, Mueller MJ, Hastings MK. Deteriorated regional calf microcirculation measured by contrast-free MRI in patients with diabetes mellitus and relation with physical activity. Diab Vasc Dis Res 2021; 18:14791641211029002. [PMID: 34313140 PMCID: PMC8481746 DOI: 10.1177/14791641211029002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE To evaluate regional calf muscle microcirculation in people with diabetes mellitus (DM) with and without foot ulcers, compared to healthy control people without DM, using contrast-free magnetic resonance imaging methods. METHODS Three groups of subjects were recruited: non-DM controls, DM, and DM with foot ulcers (DM + ulcer), all with ankle brachial index (ABI) > 0.9. Skeletal muscle blood flow (SMBF) and oxygen extraction fraction (SMOEF) in calf muscle were measured at rest and during a 5-min isometric ankle plantarflexion exercise. Subjects completed the Yale physical activity survey. RESULTS The exercise SMBF (ml/min/100 g) of the medial gastrocnemius muscle were progressively impaired: 63.7 ± 18.9 for controls, 42.9 ± 6.7 for DM, and 36.2 ± 6.2 for DM + ulcer, p < 0.001. Corresponding exercise SMOEF was the lowest in DM + ulcers (0.48 ± 0.09). Exercise SMBF in the soleus muscle was correlated moderately with the Yale physical activity survey (r = 0.39, p < 0.01). CONCLUSIONS Contrast-free MR imaging identified progressively impaired regional microcirculation in medial gastrocnemius muscles of people with DM with and without foot ulcers. Exercise SMBF in the medial gastrocnemius muscle was the most sensitive index and was associated with HbA1c. Lower exercise SMBF in the soleus muscle was associated with lower Yale score.
Collapse
Affiliation(s)
- Jie Zheng
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
- Jie Zheng, Mallinckrodt Institute of Radiology, Washington University School of Medicine, 4525 Scott Ave, Room 3114, St. Louis, MO 63130-4899, USA.
| | - Christopher Sorensen
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Ran Li
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Hongyu An
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Charles F Hildebolt
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohamed A Zayed
- Department of Surgery, Section of Vascular Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael J Mueller
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| | - Mary K Hastings
- The Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
10
|
Trollet C, Cheng AJ, Sylow L, Batista ML, Pillon NJ. Editorial: Skeletal Muscle Immunometabolism. Front Physiol 2021; 12:683088. [PMID: 33995133 PMCID: PMC8113810 DOI: 10.3389/fphys.2021.683088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 03/29/2021] [Indexed: 11/13/2022] Open
Affiliation(s)
- Capucine Trollet
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, Paris, France
| | - Arthur J Cheng
- Muscle Health Research Centre, Faculty of Health, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| | - Lykke Sylow
- Department of Nutrition, Exercise and Sports, Faculty of Science, University of Copenhagen, Copenhagen, Denmark
| | - Miguel L Batista
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
| | - Nicolas J Pillon
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Grotle AK, Kaur J, Stone AJ, Fadel PJ. Neurovascular Dysregulation During Exercise in Type 2 Diabetes. Front Physiol 2021; 12:628840. [PMID: 33927637 PMCID: PMC8076798 DOI: 10.3389/fphys.2021.628840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 03/05/2021] [Indexed: 12/12/2022] Open
Abstract
Emerging evidence suggests that type 2 diabetes (T2D) may impair the ability to properly adjust the circulation during exercise with augmented blood pressure (BP) and an attenuated contracting skeletal muscle blood flow (BF) response being reported. This review provides a brief overview of the current understanding of these altered exercise responses in T2D and the potential underlying mechanisms, with an emphasis on the sympathetic nervous system and its regulation during exercise. The research presented support augmented sympathetic activation, heightened BP, reduced skeletal muscle BF, and impairment in the ability to attenuate sympathetically mediated vasoconstriction (i.e., functional sympatholysis) as potential drivers of neurovascular dysregulation during exercise in T2D. Furthermore, emerging evidence supporting a contribution of the exercise pressor reflex and central command is discussed along with proposed future directions for studies in this important area of research.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| | - Jasdeep Kaur
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Audrey J. Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States
| | - Paul J. Fadel
- Department of Kinesiology, The University of Texas at Arlington, Arlington, TX, United States
| |
Collapse
|
12
|
Hu Y, Li J, Chang AK, Li Y, Tao X, Liu W, Wang Z, Su W, Li Z, Liang X. Screening and tissue distribution of protein tyrosine phosphatase 1B inhibitors in mice following oral administration of Garcinia mangostana L. ethanolic extract. Food Chem 2021; 357:129759. [PMID: 33878587 DOI: 10.1016/j.foodchem.2021.129759] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 03/21/2021] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Garcinia mangostana L. (mangosteen) is a tropical fruit that is rich in xanthones and is thought to have an anti-diabetic effect. In this study, we screened for the xanthones in mangosteen that could inhibit the activity of protein tyrosine phosphatase 1B (PTP1B), an enzyme that is targeted by diabetic drugs. Mice were orally administered mangosteen extract and blood samples were screened for the presence of PTP1B-interacting xanthones. Six such compounds (1-6) were identified by UF-HPLC-QTOF-MS and their inhibition against PTP1B was confirmed by activity assay. Among them, garcinone E (5) was found to be the most effective PTP1B inhibitor (IC50 = 0.43 μM). Tissue distribution analysis showed that the six compounds were distributed in eleven tissues, including the liver, muscle, fat, stomach, large intestine, small intestine, brain, kidney, heart, lung, and spleen. The results demonstrated that mangosteen might be a promising source of natural compounds with high PTP1B-inhibitory activity.
Collapse
Affiliation(s)
- Yu Hu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Jianxin Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; College of Chemistry, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Alan K Chang
- College of Life and Environmental Sciences, Wenzhou University, Wenzhou 325035, Zhejiang Province, PR China
| | - Yanan Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xia Tao
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Wenbao Liu
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zhina Wang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Weiping Su
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Zehao Li
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China
| | - Xiao Liang
- College of Pharmacy, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China; Academy of Forensic Science, Liaoning University, 66 Chongshan Road, Shenyang 110036, Liaoning Province, PR China.
| |
Collapse
|
13
|
Metabolomics reveals the impact of Type 2 diabetes on local muscle and vascular responses to ischemic stress. Clin Sci (Lond) 2021; 134:2369-2379. [PMID: 32880388 DOI: 10.1042/cs20191227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/24/2020] [Accepted: 09/03/2020] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Type 2 diabetes mellitus (T2DM) reduces exercise capacity, but the mechanisms are incompletely understood. We probed the impact of ischemic stress on skeletal muscle metabolite signatures and T2DM-related vascular dysfunction. METHODS we recruited 38 subjects (18 healthy, 20 T2DM), placed an antecubital intravenous catheter, and performed ipsilateral brachial artery reactivity testing. Blood samples for plasma metabolite profiling were obtained at baseline and immediately upon cuff release after 5 min of ischemia. Brachial artery diameter was measured at baseline and 1 min after cuff release. RESULTS as expected, flow-mediated vasodilation was attenuated in subjects with T2DM (P<0.01). We confirmed known T2DM-associated baseline differences in plasma metabolites, including homocysteine, dimethylguanidino valeric acid and β-alanine (all P<0.05). Ischemia-induced metabolite changes that differed between groups included 5-hydroxyindoleacetic acid (healthy: -27%; DM +14%), orotic acid (healthy: +5%; DM -7%), trimethylamine-N-oxide (healthy: -51%; DM +0.2%), and glyoxylic acid (healthy: +19%; DM -6%) (all P<0.05). Levels of serine, betaine, β-aminoisobutyric acid and anthranilic acid were associated with vessel diameter at baseline, but only in T2DM (all P<0.05). Metabolite responses to ischemia were significantly associated with vasodilation extent, but primarily observed in T2DM, and included enrichment in phospholipid metabolism (P<0.05). CONCLUSIONS our study highlights impairments in muscle and vascular signaling at rest and during ischemic stress in T2DM. While metabolites change in both healthy and T2DM subjects in response to ischemia, the relationship between muscle metabolism and vascular function is modified in T2DM, suggesting that dysregulated muscle metabolism in T2DM may have direct effects on vascular function.
Collapse
|
14
|
Ralevic V. Purinergic signalling in the cardiovascular system-a tribute to Geoffrey Burnstock. Purinergic Signal 2020; 17:63-69. [PMID: 33151503 PMCID: PMC7954917 DOI: 10.1007/s11302-020-09734-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/13/2020] [Indexed: 01/02/2023] Open
Abstract
Geoffrey Burnstock made groundbreaking discoveries on the physiological roles of purinergic receptors and led on P2 purinergic receptor classification. His knowledge, vision and leadership inspired and influenced the international scientific community. I had the privilege of spending over 10 years (from 1985) with Geoff at the Department of Anatomy and Developmental Biology, initially as a PhD student and then as a postdoctoral research fellow. I regarded him with enormous admiration and affection. This review on purinergic signalling in the cardiovascular system is a tribute to Geoff. It includes some personal recollections of Geoff.
Collapse
Affiliation(s)
- Vera Ralevic
- School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, NG7 2UH, UK.
| |
Collapse
|
15
|
Evidence of Mitochondrial Dysfunction in Fibromyalgia: Deviating Muscle Energy Metabolism Detected Using Microdialysis and Magnetic Resonance. J Clin Med 2020; 9:jcm9113527. [PMID: 33142767 PMCID: PMC7693920 DOI: 10.3390/jcm9113527] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 10/28/2020] [Accepted: 10/30/2020] [Indexed: 12/14/2022] Open
Abstract
In fibromyalgia (FM) muscle metabolism, studies are sparse and conflicting associations have been found between muscle metabolism and pain aspects. This study compared alterations in metabolic substances and blood flow in erector spinae and trapezius of FM patients and healthy controls. FM patients (n = 33) and healthy controls (n = 31) underwent a clinical examination that included pressure pain thresholds and physical tests, completion of a health questionnaire, participation in microdialysis investigations of the etrapezius and erector spinae muscles, and also underwent phosphorus-31 magnetic resonance spectroscopy of the erector spinae muscle. At the baseline, FM had significantly higher levels of pyruvate in both muscles. Significantly lower concentrations of phosphocreatine (PCr) and nucleotide triphosphate (mainly adenosine triphosphate) in erector spinae were found in FM. Blood flow in erector spinae was significantly lower in FM. Significant associations between metabolic variables and pain aspects (pain intensity and pressure pain threshold PPT) were found in FM. Our results suggest that FM has mitochondrial dysfunction, although it is unclear whether inactivity, obesity, aging, and pain are causes of, the results of, or coincidental to the mitochondrial dysfunction. The significant regressions of pain intensity and PPT in FM agree with other studies reporting associations between peripheral biological factors and pain aspects.
Collapse
|
16
|
Bock JM, Hughes WE, Ueda K, Feider AJ, Hanada S, Kruse NT, Iwamoto E, Casey DP. Greater α1-adrenergic-mediated vasoconstriction in contracting skeletal muscle of patients with type 2 diabetes. Am J Physiol Heart Circ Physiol 2020; 319:H797-H807. [DOI: 10.1152/ajpheart.00532.2020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Findings presented in this article are the first to show patients with type 2 diabetes mellitus have blunted hyperemic and vasodilatory responses to dynamic handgrip exercise. Moreover, we illustrate greater α1-adrenergic-mediated vasoconstriction may contribute to our initial observations. Collectively, these data suggest patients with type 2 diabetes may have impaired functional sympatholysis, which can contribute to their reduced exercise capacity.
Collapse
Affiliation(s)
- Joshua M. Bock
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - William E. Hughes
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Kenichi Ueda
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Andrew J. Feider
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Satoshi Hanada
- Department of Anesthesia, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Nicholas T. Kruse
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Erika Iwamoto
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- School of Health Sciences, Sapporo Medical University, Sapporo, Japan
| | - Darren P. Casey
- Department of Physical Therapy and Rehabilitation Science, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Abboud Cardiovascular Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
- Fraternal Order of Eagles Diabetes Research Center, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
17
|
Nesti L, Pugliese NR, Sciuto P, Natali A. Type 2 diabetes and reduced exercise tolerance: a review of the literature through an integrated physiology approach. Cardiovasc Diabetol 2020; 19:134. [PMID: 32891175 PMCID: PMC7487838 DOI: 10.1186/s12933-020-01109-1] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 08/29/2020] [Indexed: 12/14/2022] Open
Abstract
The association between type 2 diabetes mellitus (T2DM) and heart failure (HF) is well established. Early in the course of the diabetic disease, some degree of impaired exercise capacity (a powerful marker of health status with prognostic value) can be frequently highlighted in otherwise asymptomatic T2DM subjects. However, the literature is quite heterogeneous, and the underlying pathophysiologic mechanisms are far from clear. Imaging-cardiopulmonary exercise testing (CPET) is a non-invasive, provocative test providing a multi-variable assessment of pulmonary, cardiovascular, muscular, and cellular oxidative systems during exercise, capable of offering unique integrated pathophysiological information. With this review we aimed at defying the cardiorespiratory alterations revealed through imaging-CPET that appear specific of T2DM subjects without overt cardiovascular or pulmonary disease. In synthesis, there is compelling evidence indicating a reduction of peak workload, peak oxygen assumption, oxygen pulse, as well as ventilatory efficiency. On the contrary, evidence remains inconclusive about reduced peripheral oxygen extraction, impaired heart rate adjustment, and lower anaerobic threshold, compared to non-diabetic subjects. Based on the multiparametric evaluation provided by imaging-CPET, a dissection and a hierarchy of the underlying mechanisms can be obtained. Here we propose four possible integrated pathophysiological mechanisms, namely myocardiogenic, myogenic, vasculogenic and neurogenic. While each hypothesis alone can potentially explain the majority of the CPET alterations observed, seemingly different combinations exist in any given subject. Finally, a discussion on the effects -and on the physiological mechanisms-of physical activity and exercise training on oxygen uptake in T2DM subjects is also offered. The understanding of the early alterations in the cardiopulmonary response that are specific of T2DM would allow the early identification of those at a higher risk of developing HF and possibly help to understand the pathophysiological link between T2DM and HF.
Collapse
Affiliation(s)
- Lorenzo Nesti
- Metabolism, Nutrition and Atherosclerosis Lab, Dietologia Universitaria, Pisa, Italy. .,Cardiopulmonary Test Lab, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy.
| | - Nicola Riccardo Pugliese
- Cardiopulmonary Test Lab, Department of Clinical and Experimental Medicine, University of Pisa, Via Savi 10, 56126, Pisa, Italy
| | - Paolo Sciuto
- Metabolism, Nutrition and Atherosclerosis Lab, Dietologia Universitaria, Pisa, Italy
| | - Andrea Natali
- Metabolism, Nutrition and Atherosclerosis Lab, Dietologia Universitaria, Pisa, Italy
| |
Collapse
|
18
|
Grotle AK, Macefield VG, Farquhar WB, O'Leary DS, Stone AJ. Recent advances in exercise pressor reflex function in health and disease. Auton Neurosci 2020; 228:102698. [PMID: 32861944 DOI: 10.1016/j.autneu.2020.102698] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 01/11/2023]
Abstract
Autonomic alterations at the onset of exercise are critical to redistribute cardiac output towards the contracting muscles while preventing a fall in arterial pressure due to excessive vasodilation within the contracting muscles. Neural mechanisms responsible for these adjustments include central command, the exercise pressor reflex, and arterial and cardiopulmonary baroreflexes. The exercise pressor reflex evokes reflex increases in sympathetic activity to the heart and systemic vessels and decreases in parasympathetic activity to the heart, which increases blood pressure (BP), heart rate, and total peripheral resistance through vasoconstriction of systemic vessels. In this review, we discuss recent advancements in our understanding of exercise pressor reflex function in health and disease. Specifically, we discuss emerging evidence suggesting that sympathetic vasoconstrictor drive to the contracting and non-contracting skeletal muscle is differentially controlled by central command and the metaboreflex in healthy conditions. Further, we discuss evidence from animal and human studies showing that cardiovascular diseases, including hypertension, diabetes, and heart failure, lead to an altered exercise pressor reflex function. We also provide an update on the mechanisms thought to underlie this altered exercise pressor reflex function in each of these diseases. Although these mechanisms are complex, multifactorial, and dependent on the etiology of the disease, there is a clear consensus that several mechanisms are involved. Ultimately, approaches targeting these mechanisms are clinically significant as they provide alternative therapeutic strategies to prevent adverse cardiovascular events while also reducing symptoms of exercise intolerance.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America
| | | | - William B Farquhar
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, United States of America
| | - Donal S O'Leary
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX, United States of America.
| |
Collapse
|
19
|
Grotle AK, Stone AJ. Exaggerated exercise pressor reflex in type 2 diabetes: Potential role of oxidative stress. Auton Neurosci 2019; 222:102591. [PMID: 31669797 PMCID: PMC6858935 DOI: 10.1016/j.autneu.2019.102591] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 10/08/2019] [Accepted: 10/08/2019] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes mellitus (T2DM) leads to exaggerated cardiovascular responses to exercise, in part due to an exaggerated exercise pressor reflex. Accumulating data suggest excessive oxidative stress contributes to an exaggerated exercise pressor reflex in cardiovascular-related diseases. Excessive oxidative stress is also a primary underlying mechanism for the development and progression of T2DM. However, whether oxidative stress plays a role in mediating the exaggerated exercise pressor reflex in T2DM is not known. Therefore, this review explores the potential role of oxidative stress leading to increased activation of the afferent arm of the exercise pressor reflex. Several lines of evidence support direct and indirect effects of oxidative stress on the exercise pressor reflex. For example, intramuscular ROS may directly and indirectly (by attenuating contracting muscle blood flow) increase group III and IV afferent activity. Oxidative stress is a primary underlying mechanism for the development of neuropathic pain, which in turn is associated with increased group III and IV afferent activity. These are the same type of afferents that evoke muscle pain and the exercise pressor reflex. Furthermore, oxidative stress-induced release of inflammatory mediators may modulate afferent activity. Collectively, these alterations may result in a positive feedback loop that further amplifies the exercise pressor reflex. An exaggerated reflex increases the risk of adverse cardiovascular events. Thus, identifying the contribution of oxidative stress could provide a potential therapeutic target to reduce this risk in T2DM.
Collapse
Affiliation(s)
- Ann-Katrin Grotle
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America
| | - Audrey J Stone
- Department of Kinesiology and Health Education, The University of Texas at Austin, Austin, TX 78712, United States of America.
| |
Collapse
|