1
|
Tillett BJ, Dwiyanto J, Secombe KR, George T, Zhang V, Anderson D, Duggan E, Giri R, Loo D, Stoll T, Morrison M, Begun J, Hill MM, Gurzov EN, Bell KJ, Saad S, Barlow CK, Creek DJ, Chong CW, Mariño E, Hamilton-Williams EE. SCFA biotherapy delays diabetes in humanized gnotobiotic mice by remodeling mucosal homeostasis and metabolome. Nat Commun 2025; 16:2893. [PMID: 40133336 PMCID: PMC11937418 DOI: 10.1038/s41467-025-58319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 03/14/2025] [Indexed: 03/27/2025] Open
Abstract
Type 1 diabetes (T1D) is linked to an altered gut microbiota characterized by reduced short-chain fatty acid (SCFA) production. Oral delivery of a SCFA-yielding biotherapy in adults with T1D was followed by increased SCFAs, altered gut microbiota and immunoregulation, as well as delaying diabetes in preclinical models. Here, we show that SCFA-biotherapy in humans is accompanied by remodeling of the gut proteome and mucosal immune homeostasis. Metabolomics showed arginine, glutamate, nucleotide and tryptophan metabolism were enriched following the SCFA-biotherapy, and found metabolites that correlated with glycemic control. Fecal microbiota transfer demonstrated that the microbiota of SCFA-responders delayed diabetes progression in humanized gnotobiotic mice. The protected mice increased similar metabolite pathways to the humans including producing aryl-hydrocarbon receptor ligands and reducing inflammatory mucosal immunity and increasing IgA production in the gut. These data demonstrate that a potent SCFA immunomodulator promotes multiple beneficial pathways and supports targeting the microbiota as an approach against T1D. Trial registration: Australia New Zealand Clinical Trials Registry ACTRN12618001391268.
Collapse
Affiliation(s)
- Bree J Tillett
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Jacky Dwiyanto
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kate R Secombe
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Thomas George
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Vivian Zhang
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Dovile Anderson
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Emily Duggan
- Translational Research Institute, Brisbane, QLD, Australia
| | - Rabina Giri
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Dorothy Loo
- Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas Stoll
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Mark Morrison
- Frazer Institute, The University of Queensland, Brisbane, QLD, Australia
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Jakob Begun
- Mater Research Institute-The University of Queensland, Brisbane, QLD, Australia
| | - Michelle M Hill
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Esteban N Gurzov
- Signal Transduction and Metabolism Laboratory, Université libre de Bruxelles, Brussels, Belgium
| | - Kirstine J Bell
- Charles Perkins Centre, University of Sydney, Sydney, NSW, Australia
| | - Sonia Saad
- Department of Medicine, Kolling Institute, University of Sydney, Sydney, NSW, Australia
| | - Christopher K Barlow
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC, Australia
- Monash Proteomics and Metabolomics Platform, Monash University, MelbourneVIC, Australia
| | - Chun Wie Chong
- Monash University Microbiome Research Centre, School of Pharmacy, Monash University Malaysia, Selangor, Malaysia
| | - Eliana Mariño
- Department of Biochemistry, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.
- ImmunoBiota Therapeutics Pty Ltd, Melbourne, VIC, Australia.
| | | |
Collapse
|
2
|
Zhang G, Luo H, Lu X, Liu Y, Wang M, Li B, Lu H, Zheng Y. Machine learning-based identification and validation of amino acid metabolism related genes as novel biomarkers in chronic kidney disease. Heliyon 2025; 11:e41872. [PMID: 39897884 PMCID: PMC11786826 DOI: 10.1016/j.heliyon.2025.e41872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Objectives Chronic kidney disease (CKD) is a progressive illness with a high rate of morbidity and mortality with no proven therapy. Alterations of amino acid(AA) metabolism are associated with the incidence and progression of CKD. To characterize the potential value of AA metabolism related genes in the diagnosis and progression of CKD. Methods We filtered the key genes associated with AA metabolism based on the least absolute shrinkage and selection operator (LASSO) and SVM algorithm. Then, we constructed logistic regression models and evaluated the accuracy and specificity by nomogram analysis and DCA. Also, we mapped the ROC curves.Meanwhile, in order to determine the underlying mechanism and relevant biological features of CKD, we conducted differential analysis between high and low risk subgroups in CKD. Moreover,we employed ssGSEA algorithm to evaluate the infiltration abundance of immune cells and calculated the correlation among the immune cells with the key genes. Finally,we validated the expression and clinical relevance of amino acid metabolism key genes via cultured cells and clinical data. A total of six key genes related to amino acid metabolism were identified, including ALDH18A1, CENPF, CSAD, CTH, CYP27B1, HBB. Results All six genes exhibited promising diagnostic capabilities (AUC:0.7 to 0.9). Immune cells such as Activated CD4+ T cells, Regulatory T cells, Immature B cells and MDSC,etc.infiltrated differentially in the high and low risk groups of CKD. There were correlations between immune cells abundance and the expression of key genes. All key genes correlated significantly with markers of kidney injury, such as eGFR and serum creatinine. The expression of ALDH18A1, CENPF were increased while CSAD, CTH and CYP27B1 were decreased in HK-2 cells cultured with indole sulfate. Conclusions Our study identified key genes involved in amino acid metabolism associated with immune cells infiltration and renal function in CKD, which may be potential biomarkers for the diagnosis and prognosis of CKD.
Collapse
Affiliation(s)
- Guoqing Zhang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Hongyan Luo
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Xiaohua Lu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Yonghua Liu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Mei Wang
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Bo Li
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- Department of Nephrology Hospital, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Haixia Lu
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| | - Yali Zheng
- Department of Nephrology, Ningxia Medical University Affiliated People's Hospital of Autonomous Region, Yinchuan, China
- The Third Clinical Medical College, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
3
|
Ling EM, Lemos JRN, Hirani K, von Herrath M. Type 1 diabetes: immune pathology and novel therapeutic approaches. Diabetol Int 2024; 15:761-776. [PMID: 39469552 PMCID: PMC11512973 DOI: 10.1007/s13340-024-00748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/17/2024] [Indexed: 10/30/2024]
Abstract
Type 1 diabetes (T1D) is characterized by the progressive destruction of insulin-producing beta cells in the pancreas. Despite improvements in insulin monitoring techniques, there remains no cure for T1D. Individuals with T1D require lifelong insulin therapy and some develop life-threatening complications. T1D is a complex, multifactorial, autoimmune condition. Understanding why people get T1D and how it progresses has advanced our knowledge of the disease and led to the discovery of specific targets that can be therapeutically manipulated to halt or reverse the course of T1D. Scientists investigating the potential of immunotherapy treatment for the treatment have recently had some encouraging results. Teplizumab, an anti-CD3 monoclonal antibody that has been approved by the FDA, delays the onset of clinical T1D in patients ≥ 8 years of age with preclinical T1D and improves beta cell function. Therapies targeting beta cell health, vitality, and function are now thought to be an essential component of successful combination therapy for T1D. The idea that the beta cells themselves may influence their own destruction during the development of T1D is a notion that has recently been gaining acceptance in the field. Researchers have recently made remarkable strides in beta cell replacement therapy and beta cell regeneration techniques. This review offers a detailed exploration of the pathophysiological mechanisms of T1D. It discusses the intricate interplay of factors leading to T1D development and the innovative approaches being explored to discover new treatments and a cure for the millions of people living with T1D worldwide.
Collapse
Affiliation(s)
- Eleanor M. Ling
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
| | - Joana R. N. Lemos
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Khemraj Hirani
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL USA
- Division of Endocrine, Diabetes, and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| |
Collapse
|
4
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli RR, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Polystyrene or Mixed Polymer Microspheres and Metabolomic Analysis after Oral Exposure in Mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:47005. [PMID: 38598326 PMCID: PMC11005960 DOI: 10.1289/ehp13435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 01/05/2024] [Accepted: 02/23/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. OBJECTIVES This study aims to investigate the impacts of polymer microspheres on tissue metabolism in mice by assessing the microspheres ability to translocate across the gut barrier and enter into systemic circulation. Specifically, we wanted to examine microsphere accumulation in different organ systems, identify concentration-dependent metabolic changes, and evaluate the effects of mixed microsphere exposures on health outcomes. METHODS To investigate the impact of ingested microspheres on target metabolic pathways, mice were exposed to either polystyrene (5 μ m ) microspheres or a mixture of polymer microspheres consisting of polystyrene (5 μ m ), polyethylene (1 - 4 μ m ), and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid) (5 μ m ). Exposures were performed twice a week for 4 weeks at a concentration of either 0, 2, or 4 mg / week via oral gastric gavage. Tissues were collected to examine microsphere ingress and changes in metabolites. RESULTS In mice that ingested microspheres, we detected polystyrene microspheres in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolic differences that occurred in the colon, liver, and brain, which showed differential responses that were dependent on concentration and type of microsphere exposure. DISCUSSION This study uses a mouse model to provide critical insight into the potential health implications of the pervasive issue of plastic pollution. These findings demonstrate that orally consumed polystyrene or mixed polymer microspheres can accumulate in tissues such as the brain, liver, and kidney. Furthermore, this study highlights concentration-dependent and polymer type-specific metabolic changes in the colon, liver, and brain after plastic microsphere exposure. These results underline the mobility within and between biological tissues of MPs after exposure and emphasize the importance of understanding their metabolic impact. https://doi.org/10.1289/EHP13435.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
- University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jorge Gonzalez-Estrella
- School of Civil & Environmental Engineering, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, Florida, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, New Mexico, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Rama R. Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, New Mexico, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA
| |
Collapse
|
5
|
Hammad SM, Lopes-Virella MF. Circulating Sphingolipids in Insulin Resistance, Diabetes and Associated Complications. Int J Mol Sci 2023; 24:14015. [PMID: 37762318 PMCID: PMC10531201 DOI: 10.3390/ijms241814015] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Sphingolipids play an important role in the development of diabetes, both type 1 and type 2 diabetes, as well as in the development of both micro- and macro-vascular complications. Several reviews have been published concerning the role of sphingolipids in diabetes but most of the emphasis has been on the possible mechanisms by which sphingolipids, mainly ceramides, contribute to the development of diabetes. Research on circulating levels of the different classes of sphingolipids in serum and in lipoproteins and their importance as biomarkers to predict not only the development of diabetes but also of its complications has only recently emerged and it is still in its infancy. This review summarizes the previously published literature concerning sphingolipid-mediated mechanisms involved in the development of diabetes and its complications, focusing on how circulating plasma sphingolipid levels and the relative content carried by the different lipoproteins may impact their role as possible biomarkers both in the development of diabetes and mainly in the development of diabetic complications. Further studies in this field may open new therapeutic avenues to prevent or arrest/reduce both the development of diabetes and progression of its complications.
Collapse
Affiliation(s)
- Samar M. Hammad
- Department of Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F. Lopes-Virella
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
- Ralph H. Johnson VA Medical Center, Charleston, SC 29425, USA
| |
Collapse
|
6
|
Ling ZN, Jiang YF, Ru JN, Lu JH, Ding B, Wu J. Amino acid metabolism in health and disease. Signal Transduct Target Ther 2023; 8:345. [PMID: 37699892 PMCID: PMC10497558 DOI: 10.1038/s41392-023-01569-3] [Citation(s) in RCA: 157] [Impact Index Per Article: 78.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/12/2023] [Accepted: 07/13/2023] [Indexed: 09/14/2023] Open
Abstract
Amino acids are the building blocks of protein synthesis. They are structural elements and energy sources of cells necessary for normal cell growth, differentiation and function. Amino acid metabolism disorders have been linked with a number of pathological conditions, including metabolic diseases, cardiovascular diseases, immune diseases, and cancer. In the case of tumors, alterations in amino acid metabolism can be used not only as clinical indicators of cancer progression but also as therapeutic strategies. Since the growth and development of tumors depend on the intake of foreign amino acids, more and more studies have targeted the metabolism of tumor-related amino acids to selectively kill tumor cells. Furthermore, immune-related studies have confirmed that amino acid metabolism regulates the function of effector T cells and regulatory T cells, affecting the function of immune cells. Therefore, studying amino acid metabolism associated with disease and identifying targets in amino acid metabolic pathways may be helpful for disease treatment. This article mainly focuses on the research of amino acid metabolism in tumor-oriented diseases, and reviews the research and clinical research progress of metabolic diseases, cardiovascular diseases and immune-related diseases related to amino acid metabolism, in order to provide theoretical basis for targeted therapy of amino acid metabolism.
Collapse
Affiliation(s)
- Zhe-Nan Ling
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Yi-Fan Jiang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jun-Nan Ru
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jia-Hua Lu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Bo Ding
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China
| | - Jian Wu
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou, Zhejiang Province, 310003, P.R. China.
- NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, Zhejiang Province, P.R. China.
- Key Laboratory of Organ Transplantation, Research Center for Diagnosis and Treatment of Hepatobiliary Diseases, Hangzhou, Zhejiang Province, P.R. China.
| |
Collapse
|
7
|
Lamichhane S, Sen P, Dickens AM, Kråkström M, Ilonen J, Lempainen J, Hyöty H, Lahesmaa R, Veijola R, Toppari J, Hyötyläinen T, Knip M, Orešič M. Circulating metabolic signatures of rapid and slow progression to type 1 diabetes in islet autoantibody-positive children. Front Endocrinol (Lausanne) 2023; 14:1211015. [PMID: 37745723 PMCID: PMC10516565 DOI: 10.3389/fendo.2023.1211015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/18/2023] [Indexed: 09/26/2023] Open
Abstract
Aims/hypothesis Appearance of multiple islet cell autoantibodies in early life is indicative of future progression to overt type 1 diabetes, however, at varying rates. Here, we aimed to study whether distinct metabolic patterns could be identified in rapid progressors (RP, disease manifestation within 18 months after the initial seroconversion to autoantibody positivity) vs. slow progressors (SP, disease manifestation at 60 months or later from the appearance of the first autoantibody). Methods Longitudinal samples were collected from RP (n=25) and SP (n=41) groups at the ages of 3, 6, 12, 18, 24, or ≥ 36 months. We performed a comprehensive metabolomics study, analyzing both polar metabolites and lipids. The sample series included a total of 239 samples for lipidomics and 213 for polar metabolites. Results We observed that metabolites mediated by gut microbiome, such as those involved in tryptophan metabolism, were the main discriminators between RP and SP. The study identified specific circulating molecules and pathways, including amino acid (threonine), sugar derivatives (hexose), and quinic acid that may define rapid vs. slow progression to type 1 diabetes. However, the circulating lipidome did not appear to play a major role in differentiating between RP and SP. Conclusion/interpretation Our study suggests that a distinct metabolic profile is linked with the type 1 diabetes progression. The identification of specific metabolites and pathways that differentiate RP from SP may have implications for early intervention strategies to delay the development of type 1 diabetes.
Collapse
Affiliation(s)
- Santosh Lamichhane
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Partho Sen
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Alex M Dickens
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- Department of Chemistry, University of Turku, University, Turku, Finland
| | - Matilda Kråkström
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Johanna Lempainen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Riitta Lahesmaa
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | - Jorma Toppari
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, and Centre for Population Health Research, University of Turku, Turku, Finland
| | | | - Mikael Knip
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
| | - Matej Orešič
- Turku Bioscience, University of Turku and Åbo Akademi University, Turku, Finland
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
8
|
Mujalli A, Farrash WF, Alghamdi KS, Obaid AA. Metabolite Alterations in Autoimmune Diseases: A Systematic Review of Metabolomics Studies. Metabolites 2023; 13:987. [PMID: 37755267 PMCID: PMC10537330 DOI: 10.3390/metabo13090987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/24/2023] [Accepted: 08/30/2023] [Indexed: 09/28/2023] Open
Abstract
Autoimmune diseases, characterized by the immune system's loss of self-tolerance, lack definitive diagnostic tests, necessitating the search for reliable biomarkers. This systematic review aims to identify common metabolite changes across multiple autoimmune diseases. Following PRISMA guidelines, we conducted a systematic literature review by searching MEDLINE, ScienceDirect, Google Scholar, PubMed, and Scopus (Elsevier) using keywords "Metabolomics", "Autoimmune diseases", and "Metabolic changes". Articles published in English up to March 2023 were included without a specific start date filter. Among 257 studies searched, 88 full-text articles met the inclusion criteria. The included articles were categorized based on analyzed biological fluids: 33 on serum, 21 on plasma, 15 on feces, 7 on urine, and 12 on other biological fluids. Each study presented different metabolites with indications of up-regulation or down-regulation when available. The current study's findings suggest that amino acid metabolism may serve as a diagnostic biomarker for autoimmune diseases, particularly in systemic lupus erythematosus (SLE), multiple sclerosis (MS), and Crohn's disease (CD). While other metabolic alterations were reported, it implies that autoimmune disorders trigger multi-metabolite changes rather than singular alterations. These shifts could be consequential outcomes of autoimmune disorders, representing a more complex interplay. Further studies are needed to validate the metabolomics findings associated with autoimmune diseases.
Collapse
Affiliation(s)
- Abdulrahman Mujalli
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (W.F.F.); (A.A.O.)
| | - Wesam F. Farrash
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (W.F.F.); (A.A.O.)
| | - Kawthar S. Alghamdi
- Department of Biology, College of Science, University of Hafr Al Batin, Hafar Al-Batin 39511, Saudi Arabia;
| | - Ahmad A. Obaid
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah 24381, Saudi Arabia; (W.F.F.); (A.A.O.)
| |
Collapse
|
9
|
Liu Y, Dong G, Huang K, Hong Y, Chen X, Zhu M, Hao X, Ni Y, Fu J. Metabolomics and Lipidomics Studies in Pediatric Type 1 Diabetes: Biomarker Discovery for the Early Diagnosis and Prognosis. Pediatr Diabetes 2023; 2023:6003102. [PMID: 40303249 PMCID: PMC12016713 DOI: 10.1155/2023/6003102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 05/02/2025] Open
Abstract
Aim Type 1 diabetes (T1D) is an autoimmune disease with heterogeneous risk factors. Metabolic perturbations in the pathogenesis of the disease are remarkable to illuminate the interaction between genetic and environmental factors and how islet immunity and overt diabetes develop. This review aimed to integrate the metabolic changes of T1D to identify potential biomarkers for predicting disease progression based on recent metabolomics and lipidomics studies with parallel methodologies. Methods A total of 18 metabolomics and lipidomics studies of childhood T1D during the last 15 years were reviewed. The metabolic fingerprints consisting of 41 lipids and/or metabolite classes of subjects with islet autoantibodies, progressors of T1D, and T1D children were mapped in four-time dimensions based on a tentative effect-score rule. Results From birth, high-risk T1D subjects had decreased unsaturated triacylglycerols, unsaturated phosphatidylcholines (PCs), sphingomyelins (SMs), amino acids, and metabolites in the tricarboxylic acid (TCA) cycle. On the contrary, lysophosphatidylcholines (LPCs) and monosaccharides increased. And LPCs and branched-chain amino acids (BCAAs) were elevated before the appearance of islet autoantibodies but were lowered after seroconversion. Choline-related lipids (including PCs, SMs, and LPCs), BCAAs, and metabolites involved in the TCA cycle were identified as consensus biomarkers potentially predicting the development of islet autoimmunity and T1D. Decreased LPCs and amino acids indicated poor glycemic control of T1D, while elevated lysophosphatidylethanolamines and saturated PCs implied good glycemic control. Further pathway analysis revealed that biosynthesis of aminoacyl-tRNA, BCAAs, and alanine, aspartate, and glutamate metabolism were significantly enriched. Moreover, established cohort studies and predictive statistical models of pediatric T1D were also summarized. Conclusion The metabolic profile of high-risk T1D subjects and patients demonstrated significant changes compared with healthy controls. This integrated analysis provides a comprehensive overview of metabolic features and potential biomarkers in the pathogenesis and progression of T1D.
Collapse
Affiliation(s)
- Yaru Liu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Guanping Dong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ke Huang
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Ye Hong
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xuefeng Chen
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Mingqiang Zhu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Xiaoqiang Hao
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Yan Ni
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| | - Junfen Fu
- Department of Endocrinology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, National Children's Regional Medical Center, Hangzhou 310052, China
| |
Collapse
|
10
|
Aleidi SM, Al Fahmawi H, Masoud A, Rahman AA. Metabolomics in diabetes mellitus: clinical insight. Expert Rev Proteomics 2023; 20:451-467. [PMID: 38108261 DOI: 10.1080/14789450.2023.2295866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/13/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Diabetes Mellitus (DM) is a chronic heterogeneous metabolic disorder characterized by hyperglycemia due to the destruction of insulin-producing pancreatic β cells and/or insulin resistance. It is now considered a global epidemic disease associated with serious threats to a patient's life. Understanding the metabolic pathways involved in disease pathogenesis and progression is important and would improve prevention and management strategies. Metabolomics is an emerging field of research that offers valuable insights into the metabolic perturbation associated with metabolic diseases, including DM. AREA COVERED Herein, we discussed the metabolomics in type 1 and 2 DM research, including its contribution to understanding disease pathogenesis and identifying potential novel biomarkers clinically useful for disease screening, monitoring, and prognosis. In addition, we highlighted the metabolic changes associated with treatment effects, including insulin and different anti-diabetic medications. EXPERT OPINION By analyzing the metabolome, the metabolic disturbances involved in T1DM and T2DM can be explored, enhancing our understanding of the disease progression and potentially leading to novel clinical diagnostic and effective new therapeutic approaches. In addition, identifying specific metabolites would be potential clinical biomarkers for predicting the disease and thus preventing and managing hyperglycemia and its complications.
Collapse
Affiliation(s)
- Shereen M Aleidi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Hiba Al Fahmawi
- Department of Biopharmaceutics and Clinical Pharmacy, School of Pharmacy, The University of Jordan, Amman, Jordan
| | - Afshan Masoud
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh, Saudi Arabia
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
- Department of Chemistry, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada
| |
Collapse
|
11
|
Mokhtari P, Jambal P, Metos JM, Shankar K, Anandh Babu PV. Microbial taxonomic and functional shifts in adolescents with type 1 diabetes are associated with clinical and dietary factors. EBioMedicine 2023; 93:104641. [PMID: 37290262 PMCID: PMC10272319 DOI: 10.1016/j.ebiom.2023.104641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 04/21/2023] [Accepted: 05/22/2023] [Indexed: 06/10/2023] Open
Abstract
BACKGROUND Evidence indicates a link between the pathogenesis of type 1 diabetes (T1D) and the gut microbiome. However, the regulation of microbial metabolic pathways and the associations of bacterial species with dietary factors in T1D are largely unknown. We investigated whether microbial metagenomic signatures in adolescents with T1D are associated with clinical/dietary factors. METHODS Adolescents with T1D (case) and healthy adolescents (control) were recruited, and microbiome profiling in participants' stool samples was performed using shotgun metagenomic sequencing. The bioBakery3 pipeline (Kneaddata, Metaphlan 4 and HUMAnN) was used to assign taxonomy and functional annotations. Clinical (HbA1c) and dietary information (3-day food record) were collected for conducting association analysis using Spearman's correlation. FINDINGS Adolescents with T1D exhibited modest changes in taxonomic composition of gut microbiome. Nineteen microbial metabolic pathways were altered in T1D, including downregulation of biosynthesis of vitamins (B2/flavin, B7/biotin and B9/folate), enzyme cofactors (NAD+ and s-adenosyl methionine) and amino acids (aspartate, asparagine and lysine) with an upregulation in the fermentation pathways. Furthermore, bacterial species associated with dietary and clinical factors differed between healthy adolescents and adolescents with T1D. Supervised models modeling identified taxa predictive of T1D status, and the top features included Coprococcus and Streptococcus. INTERPRETATION Our study provides new insight into the alteration of microbial and metabolic signatures in adolescents with T1D, suggesting that microbial biosynthesis of vitamins, enzyme cofactors and amino acids may be potentially altered in T1D. FUNDING Research grants from NIH/NCCIH: R01AT010247 and USDA/NIFA: 2019-67017-29253; and Larry & Gail Miller Family Foundation Assistantship.
Collapse
Affiliation(s)
- Pari Mokhtari
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Puujee Jambal
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Julie M Metos
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA
| | - Kartik Shankar
- Section of Nutrition, Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Pon Velayutham Anandh Babu
- Department of Nutrition and Integrative Physiology, College of Health, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
12
|
Garcia MM, Romero AS, Merkley SD, Meyer-Hagen JL, Forbes C, Hayek EE, Sciezka DP, Templeton R, Gonzalez-Estrella J, Jin Y, Gu H, Benavidez A, Hunter RP, Lucas S, Herbert G, Kim KJ, Cui JY, Gullapalli R, In JG, Campen MJ, Castillo EF. In Vivo Tissue Distribution of Microplastics and Systemic Metabolomic Alterations After Gastrointestinal Exposure. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.542598. [PMID: 37398080 PMCID: PMC10312509 DOI: 10.1101/2023.06.02.542598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Global plastic use has consistently increased over the past century with several different types of plastics now being produced. Much of these plastics end up in oceans or landfills leading to a substantial accumulation of plastics in the environment. Plastic debris slowly degrades into microplastics (MPs) that can ultimately be inhaled or ingested by both animals and humans. A growing body of evidence indicates that MPs can cross the gut barrier and enter into the lymphatic and systemic circulation leading to accumulation in tissues such as the lungs, liver, kidney, and brain. The impacts of mixed MPs exposure on tissue function through metabolism remains largely unexplored. To investigate the impact of ingested MPs on target metabolomic pathways, mice were subjected to either polystyrene microspheres or a mixed plastics (5 µm) exposure consisting of polystyrene, polyethylene and the biodegradability and biocompatible plastic, poly-(lactic-co-glycolic acid). Exposures were performed twice a week for four weeks at a dose of either 0, 2, or 4 mg/week via oral gastric gavage. Our findings demonstrate that, in mice, ingested MPs can pass through the gut barrier, be translocated through the systemic circulation, and accumulate in distant tissues including the brain, liver, and kidney. Additionally, we report on the metabolomic changes that occur in the colon, liver and brain which show differential responses that are dependent on dose and type of MPs exposure. Lastly, our study provides proof of concept for identifying metabolomic alterations associated with MPs exposure and adds insight into the potential health risks that mixed MPs contamination may pose to humans.
Collapse
Affiliation(s)
- Marcus M. Garcia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Aaron S. Romero
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seth D. Merkley
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Jewel L. Meyer-Hagen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Charles Forbes
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Eliane El Hayek
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - David P. Sciezka
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Rachel Templeton
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Yan Jin
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Haiwei Gu
- Center for Translational Science, Florida International University, Port St. Lucie, FL, USA
| | - Angelica Benavidez
- Center for Micro-Engineered Materials, University of New Mexico, Albuquerque, NM, USA
| | - Russell P. Hunter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Selita Lucas
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Guy Herbert
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Kyle Joohyung Kim
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Julia Yue Cui
- Department of Environmental & Occupational Health Sciences, University of Washington, Seattle WA, USA
| | - Rama Gullapalli
- Department of Pathology, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Julie G. In
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Matthew J. Campen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New Mexico Health Sciences, Albuquerque, NM, USA
| | - Eliseo F. Castillo
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| |
Collapse
|
13
|
Vehik K, Boulware D, Killian M, Rewers M, McIndoe R, Toppari J, Lernmark Å, Akolkar B, Ziegler AG, Rodriguez H, Schatz DA, Krischer JP, Hagopian W. Rising Hemoglobin A1c in the Nondiabetic Range Predicts Progression of Type 1 Diabetes As Well As Oral Glucose Tolerance Tests. Diabetes Care 2022; 45:2342-2349. [PMID: 36150054 PMCID: PMC9587339 DOI: 10.2337/dc22-0828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 07/15/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Biomarkers predicting risk of type 1 diabetes (stage 3) among children with islet autoantibodies are greatly needed to prevent diabetic ketoacidosis and facilitate prevention therapies. RESEARCH DESIGN AND METHODS Children in the prospective The Environmental Determinants of Diabetes in the Young (TEDDY) study (n = 707) with confirmed diabetes-associated autoantibodies (GAD antibody, IA-2A, and/or insulin autoantibody) and two or more HbA1c measurements were followed to diabetes or median age 11.1 years. Once confirmed autoantibody positive, HbA1c was measured quarterly. Cox models and receiver operative characteristic curve analyses revealed the prognostic utility for risk of stage 3 on a relative HbA1c increase from the baseline visit or an oral glucose tolerance test (OGTT) 2-h plasma glucose (2-hPG). This HbA1c approach was then validated in the Type 1 Diabetes TrialNet Pathway to Prevention Study (TrialNet) (n = 1,190). RESULTS A 10% relative HbA1c increase from baseline best marked the increased risk of stage 3 in TEDDY (74% sensitive; 88% specific). Significant predictors of risk for HbA1c change were age and HbA1c at the baseline test, genetic sex, maximum number of autoantibodies, and maximum rate of HbA1c increase by time of change. The multivariable model featuring a HbA1c ≥10% increase and these additional factors revealed increased risk of stage 3 in TEDDY (hazard ratio [HR] 12.74, 95% CI 8.7-18.6, P < 0.0001) and TrialNet (HR 5.09, 95% CI 3.3-7.9, P < 0.0001). Furthermore, the composite model using HbA1c ≥10% increase performed similarly to an OGTT 2-hPG composite model (TEDDY area under the curve [AUC] 0.88 and 0.85, respectively) and to the HbA1c model in TrialNet (AUC 0.82). CONCLUSIONS An increase of ≥10% in HbA1c from baseline is as informative as OGTT 2-hPG in predicting risk of stage 3 in youth with genetic risk and diabetes-associated autoantibodies.
Collapse
Affiliation(s)
- Kendra Vehik
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - David Boulware
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | | | - Marian Rewers
- Barbara Davis Center for Childhood Diabetes, University of Colorado, Aurora, CO
| | - Richard McIndoe
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Georgia Regents University, Augusta, GA
| | - Jorma Toppari
- Research Centre for Integrative Physiology and Pharmacology, Institute of Biomedicine, University of Turku, and Department of Pediatrics, Turku University Hospital, Turku, Finland
| | - Åke Lernmark
- Department of Clinical Sciences, Lund University/Clinical Research Centre, Skane University Hospital, Malmö, Sweden
| | - Beena Akolkar
- National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD
| | - Anette-G. Ziegler
- Institute of Diabetes Research, Helmholtz Zentrum München, and Klinikum rechts der Isar, Technische Universität München, and Forschergruppe Diabetes e.V. Neuherberg, Germany
| | - Henry Rodriguez
- USF Diabetes and Endocrinology Center, Morsani College of Medicine, University of South Florida, Tampa, FL
| | - Desmond A. Schatz
- Diabetes Center of Excellence, University of Florida, Gainesville, FL
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL
| | | |
Collapse
|
14
|
Zhu H, Bai M, Xie X, Wang J, Weng C, Dai H, Chen J, Han F, Lin W. Impaired Amino Acid Metabolism and Its Correlation with Diabetic Kidney Disease Progression in Type 2 Diabetes Mellitus. Nutrients 2022; 14:nu14163345. [PMID: 36014850 PMCID: PMC9415588 DOI: 10.3390/nu14163345] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/11/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Metabolomics is useful in elucidating the progression of diabetes; however, the follow-up changes in metabolomics among health, diabetes mellitus, and diabetic kidney disease (DKD) have not been reported. This study was aimed to reveal metabolomic signatures in diabetes development and progression. Methods: In this cross-sectional study, we compared healthy (n = 30), type 2 diabetes mellitus (T2DM) (n = 30), and DKD (n = 30) subjects with the goal of identifying gradual altering metabolites. Then, a prospective study was performed in T2DM patients to evaluate these altered metabolites in the onset of DKD. Logistic regression was conducted to predict rapid eGFR decline in T2DM subjects using altered metabolites. The prospective association of metabolites with the risk of developing DKD was examined using logistic regression and restricted cubic spline regression models. Results: In this cross-sectional study, impaired amino acid metabolism was the main metabolic signature in the onset and development of diabetes, which was characterized by increased N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and L-methionine levels in both the T2DM and DKD groups. These candidate metabolites could distinguish the DKD group from the T2DM group. In the follow-up study, higher baseline levels of L-valine and isoleucine were significantly associated with an increased risk of rapid eGFR decline in T2DM patients. Of these, L-valine and isoleucine were independent risk factors for the development of DKD. Notably, nonlinear associations were also observed for higher baseline levels of L-valine and isoleucine, with an increased risk of DKD among patients with T2DM. Conclusion: Amino acid metabolism was disturbed in diabetes, and N-acetylaspartic acid, L-valine, isoleucine, asparagine, betaine, and L-methionine could be biomarkers for the onset and progression of diabetes. Furthermore, high levels of L-valine and isoleucine may be risk factors for DKD development.
Collapse
Affiliation(s)
- Huanhuan Zhu
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Mengqiu Bai
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Xishao Xie
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Junni Wang
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Chunhua Weng
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Huifen Dai
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua 322000, China
| | - Jianghua Chen
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
| | - Fei Han
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
- Correspondence: (F.H.); (W.L.); Tel.: +86-571-86971990 (W.L.)
| | - Weiqiang Lin
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
- Key Laboratory of Kidney Disease Prevention and Control Technology, Institute of Nephrology, Zhejiang University, Hangzhou 310003, China
- The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Jinhua 322000, China
- Correspondence: (F.H.); (W.L.); Tel.: +86-571-86971990 (W.L.)
| |
Collapse
|
15
|
Niinistö S, Miettinen ME, Cuthbertson D, Honkanen J, Hakola L, Autio R, Erlund I, Arohonka P, Vuorela A, Härkönen T, Hyöty H, Krischer JP, Vaarala O, Knip M, Virtanen SM, TRIGR Investigators. Associations Between Serum Fatty Acids and Immunological Markers in Children Developing Islet Autoimmunity-The TRIGR Nested Case-Control Study. Front Immunol 2022; 13:858875. [PMID: 35693790 PMCID: PMC9175567 DOI: 10.3389/fimmu.2022.858875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/27/2022] [Indexed: 12/03/2022] Open
Abstract
Aims Altered immune functions as well as fatty acid intake and status have been associated with the development of type 1 diabetes. We aimed to study the relationship between fatty acids and immunological markers in young children with increased genetic risk for type 1 diabetes in order to define putative mechanisms related to development of islet autoimmunity. Methods Serum samples for fatty acid and immunological marker measurements were obtained in the Trial to Reduce IDDM in the Genetically at Risk (TRIGR) ancillary study (Divia) from children born between 2002 and 2007 in 15 countries. Case children (n = 95) were defined as having repeated positivity for at least two out of four diabetes-associated autoantibodies. For each case child, control children were selected matched for country and date of birth (n = 173). Serum fatty acids and immunological markers were measured from cord serum and at the age of 6 and 12 months. Spearman correlation coefficients were calculated between fatty acids and immunological markers. Results Correlations between circulating fatty acids and immunological markers were different in case children who developed islet autoimmunity than in control children already at birth continuing across the first year of life. In case children, saturated fatty acids (SFAs) showed stronger correlations with immunological markers, while in controls, polyunsaturated fatty acids (PUFAs) showed stronger correlations. Conclusions In cases, SFAs were associated with several immunological markers (CXCL10, IL-6, IL-9, IL-17, and CM-CSF) previously linked to the type 1 diabetes disease process. Findings indicate that fatty acids could have immunomodulatory potential in the early phase of the disease development, although causality between fatty acids and the immunological pathways remains to be explored. Trial registry number NCT00179777.
Collapse
Affiliation(s)
- Sari Niinistö
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Maija E. Miettinen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - David Cuthbertson
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Jarno Honkanen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Leena Hakola
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
| | - Reija Autio
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
| | - Iris Erlund
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Petra Arohonka
- Department of Government Services, Finnish Institute for Health and Welfare, Helsinki, Finland
| | - Arja Vuorela
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Taina Härkönen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | - Jeffrey P. Krischer
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Outi Vaarala
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Mikael Knip
- Pediatric Research Center, Children’s Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki, Helsinki, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | - Suvi M. Virtanen
- Department of Public Health and Welfare, Finnish Institute for Health and Welfare, Helsinki, Finland
- Unit of Health Sciences, Faculty of Social Sciences, Tampere University, Tampere, Finland
- Tampere University Hospital, Research, Development and Innovation Center, Tampere, Finland
- Center for Child Health Research, Tampere University and Tampere University Hospital, Tampere, Finland
| | | |
Collapse
|
16
|
Chai J, Sun Z, Xu J. A Contemporary Insight of Metabolomics Approach for Type 1 Diabetes: Potential for Novel Diagnostic Targets. Diabetes Metab Syndr Obes 2022; 15:1605-1625. [PMID: 35642181 PMCID: PMC9148614 DOI: 10.2147/dmso.s357007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/08/2022] [Indexed: 11/23/2022] Open
Abstract
High-throughput omics has been widely applied in metabolic disease, type 1 diabetes (T1D) was one of the most typical diseases. Effective prevention and early diagnosis are very important because of infancy and persistent characteristics of T1D. The occurrence and development of T1D is a chronic and continuous process, in which the production of autoantibodies (ie serum transformation) occupies the central position. Metabolomics can evaluate the metabolic characteristics of serum before seroconversion, the changes with age and T1D complications. And the addition of natural drug metabolomics is more conducive to the systematic and comprehensive diagnosis and treatment of T1D. This paper reviewed the metabolic changes and main pathogenesis from pre-diagnosis to treatment in T1D. The metabolic spectrum of significant abnormal energy and glucose-related metabolic pathway, down-regulation of lipid metabolism and up-regulation of some antioxidant pathways has appeared before seroconversion, indicating that the body has been in the dual state of disease progression and disease resistance before T1D onset. Some metabolites (such as methionine) are closely related to age, and the types of autoantibodies produced are age-specific. Some metabolites may jointly predict DN with eGFR, and metabolomics can further contribute to the pathogenesis based on the correlation between DN and DR. Many natural drug components have been proved to act on abnormal metabolic pathways of T1D and have a positive impact on some metabolic levels, which is very important for further finding therapeutic targets and developing new drugs with small side effects. Metabolomics can provide auxiliary value for the diagnosis of T1D and provide a new direction to reveal the pathogenesis of T1D and find new therapeutic targets. The development of T1D metabolomics shows that high-throughput research methods are expected to be introduced into clinical practice.
Collapse
Affiliation(s)
- Jiatong Chai
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Zeyu Sun
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| | - Jiancheng Xu
- Department of Laboratory Medicine, The First Hospital of Jilin University, Changchun, People’s Republic of China
| |
Collapse
|
17
|
Zheng SJ, Luo Y, Xiao JH. The Impact of Intestinal Microorganisms and Their Metabolites on Type 1 Diabetes Mellitus. Diabetes Metab Syndr Obes 2022; 15:1123-1139. [PMID: 35431564 PMCID: PMC9012311 DOI: 10.2147/dmso.s355749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Type 1 diabetes mellitus (T1DM) is an autoimmune disease with a complex etiology comprising numerous genetic and environmental factors; however, many of the mechanisms underlying disease development remain unclear. Nevertheless, a critical role has recently been assigned to intestinal microorganisms in T1DM disease pathogenesis. In particular, a decrease in intestinal microbial diversity, increase in intestinal permeability, and the translocation of intestinal bacteria to the pancreas have been reported in patients and animal models with T1DM. Moreover, intestinal microbial metabolites differ between healthy individuals and patients with T1DM. Specifically, short-chain fatty acid (SCFA) production, which contributes to intestinal barrier integrity and immune response regulation, is significantly reduced in patients with T1DM. Considering this correlation between intestinal microorganisms and T1DM, many studies have investigated the potential of intestinal microbiota in preventive and therapeutic strategies for T1DM. OBJECTIVE The aim of this review is to provide further support for the notion that intestinal microbiota contributes to the regulation of T1DM occurrence and development. In particular, this article reviews the involvement of the intestinal microbiota and the associated metabolites in T1DM pathogenesis, as well as recent studies on the involvement of the intestinal microbiota in T1DM prevention and treatment. CONCLUSION Intestinal microbes and their metabolites contribute to T1DM occurrence and development and may become a potential target for novel therapeutics.
Collapse
Affiliation(s)
- Shu-Juan Zheng
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yi Luo
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Jian-Hui Xiao
- Zunyi Municipal Key Laboratory of Medicinal Biotechnology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Guizhou Provincial Research Center for Translational Medicine, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| |
Collapse
|
18
|
Zhang F, Li DX, Lu DY, Lu YF, Zhang R, Zhao LL, Ji S, Guo MZ, Du Y, Tang DQ. Analysis of plasma free amino acids in diabetic rat and the intervention of Ginkgo biloba leaves extract using hydrophilic interaction liquid chromatography coupled with tandem mass-spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1196:123230. [PMID: 35349934 DOI: 10.1016/j.jchromb.2022.123230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/10/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
Abstract
Amino acids (AAs) are important metabolites that are related with diabetes. However, their roles in the initiation and development of diabetes mellitus (DM), especially in the treatment of Ginkgo biloba leaves extract (GBE) have not been fully explored. Thus, we investigated the roles that AAs played in the progression and GBE supplementation of DM rat induced by streptozotocin. The rats were randomly divided into a normal control group treated with drug-free solution, a normal control group treated with GBE, a DM group treated with drug-free solution, and DM group treated with GBE; and maintained on this protocol for 9 weeks. Rat plasma was collected from the sixth week to the ninth week and then analyzed with the optimized hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry method. A total of 17 AAs with differential levels were monitored to indicate dysfunction of AAs metabolism to confirm the occurrence and development of DM. Treatment with GBE partially reversed the changes seen in seven AAs including leucine, isoleucine, tyrosine, glutamic acid, asparagines, lysine and alanine in DM rats, indicating that GBE could prevent the occurrence and development of DM by acting on AAs metabolism. The improvement of those AAs metabolism disorders may play a considerable role in the treatment of GBE on the occurrence and development of DM. Those findings potentially promote the understanding of the pathogenic progression of DM and reveal the therapeutic mechanism of GBE against DM.
Collapse
Affiliation(s)
- Fan Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Ding-Xiang Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dong-Yu Lu
- Department of Pharmacy, Suining People's Hospital, Suining, China
| | - Yi-Fan Lu
- The Second Clinical College, Xuzhou Medical University, Xuzhou, China
| | - Ran Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Lin-Lin Zhao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Shuai Ji
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Meng-Zhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China
| | - Yan Du
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Dao-Quan Tang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China; Department of Pharmacy, Suining People's Hospital, Suining, China; Department of Pharmaceutical Analysis, Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
19
|
Izundegui DG, Nayor M. Metabolomics of Type 1 and Type 2 Diabetes: Insights into Risk Prediction and Mechanisms. Curr Diab Rep 2022; 22:65-76. [PMID: 35113332 PMCID: PMC8934149 DOI: 10.1007/s11892-022-01449-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE OF REVIEW Metabolomics enables rapid interrogation of widespread metabolic processes making it well suited for studying diabetes. Here, we review the current status of metabolomic investigation in diabetes, highlighting its applications for improving risk prediction and mechanistic understanding. RECENT FINDINGS Findings of metabolite associations with type 2 diabetes risk have confirmed experimental observations (e.g., branched-chain amino acids) and also pinpointed novel pathways of diabetes risk (e.g., dimethylguanidino valeric acid). In type 1 diabetes, abnormal metabolite patterns are observed prior to the development of autoantibodies and hyperglycemia. Diabetes complications display specific metabolite signatures that are distinct from the metabolic derangements of diabetes and differ across vascular beds. Lastly, metabolites respond acutely to pharmacologic treatment, providing opportunities to understand inter-individual treatment responses. Metabolomic studies have elucidated biological mechanisms underlying diabetes development, complications, and therapeutic response. While not yet ready for clinical translation, metabolomics is a powerful and promising precision medicine tool.
Collapse
Affiliation(s)
| | - Matthew Nayor
- Sections of Cardiology and Preventive Medicine and Epidemiology, Department of Medicine, Boston University School of Medicine, 72 E Concord Street, Suite L-516, Boston, MA, 02118, USA.
| |
Collapse
|
20
|
Gurgul-Convey E. To Be or Not to Be: The Divergent Action and Metabolism of Sphingosine-1 Phosphate in Pancreatic Beta-Cells in Response to Cytokines and Fatty Acids. Int J Mol Sci 2022; 23:ijms23031638. [PMID: 35163559 PMCID: PMC8835924 DOI: 10.3390/ijms23031638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 01/02/2023] Open
Abstract
Sphingosine-1 phosphate (S1P) is a bioactive sphingolipid with multiple functions conveyed by the activation of cell surface receptors and/or intracellular mediators. A growing body of evidence indicates its important role in pancreatic insulin-secreting beta-cells that are necessary for maintenance of glucose homeostasis. The dysfunction and/or death of beta-cells lead to diabetes development. Diabetes is a serious public health burden with incidence growing rapidly in recent decades. The two major types of diabetes are the autoimmune-mediated type 1 diabetes (T1DM) and the metabolic stress-related type 2 diabetes (T2DM). Despite many differences in the development, both types of diabetes are characterized by chronic hyperglycemia and inflammation. The inflammatory component of diabetes remains under-characterized. Recent years have brought new insights into the possible mechanism involved in the increased inflammatory response, suggesting that environmental factors such as a westernized diet may participate in this process. Dietary lipids, particularly palmitate, are substrates for the biosynthesis of bioactive sphingolipids. Disturbed serum sphingolipid profiles were observed in both T1DM and T2DM patients. Many polymorphisms were identified in genes encoding enzymes of the sphingolipid pathway, including sphingosine kinase 2 (SK2), the S1P generating enzyme which is highly expressed in beta-cells. Proinflammatory cytokines and free fatty acids have been shown to modulate the expression and activity of S1P-generating and S1P-catabolizing enzymes. In this review, the similarities and differences in the action of extracellular and intracellular S1P in beta-cells exposed to cytokines or free fatty acids will be identified and the outlook for future research will be discussed.
Collapse
Affiliation(s)
- Ewa Gurgul-Convey
- Institute of Clinical Biochemistry, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany
| |
Collapse
|
21
|
Zhang J, Wu W, Huang K, Dong G, Chen X, Xu C, Ni Y, Fu J. Untargeted metabolomics reveals gender- and age- independent metabolic changes of type 1 diabetes in Chinese children. Front Endocrinol (Lausanne) 2022; 13:1037289. [PMID: 36619558 PMCID: PMC9813493 DOI: 10.3389/fendo.2022.1037289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
INTRODUCTION Type 1 diabetes (T1D) is a chronic condition associated with multiple complications that substantially affect both the quality of life and the life-span of children. Untargeted Metabolomics has provided new insights into disease pathogenesis and risk assessment. METHODS In this study, we characterized the serum metabolic profiles of 76 children with T1D and 65 gender- and age- matched healthy controls using gas chromatography coupled with timeof-flight mass spectrometry. In parallel, we comprehensively evaluated the clinical phenome of T1D patients, including routine blood and urine tests, and concentrations of cytokines, hormones, proteins, and trace elements. RESULTS A total of 70 differential metabolites covering 11 metabolic pathways associated with T1D were identified, which were mainly carbohydrates, indoles, unsaturated fatty acids, amino acids, and organic acids. Subgroup analysis revealed that the metabolic changes were consistent among pediatric patients at different ages or gender but were closely associated with the duration of the disease. DISCUSSION Carbohydrate metabolism, unsaturated fatty acid biosynthesis, and gut microbial metabolism were identified as distinct metabolic features of pediatric T1D. These metabolic changes were also associated with T1D, which may provide important insights into the pathogenesis of the complications associated with diabetes.
Collapse
Affiliation(s)
- Jianwei Zhang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- Department of Paediatrics, Shaoxing Women and Children Hospital, Shaoxing, China
| | - Wei Wu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Ke Huang
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Guanping Dong
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xuefeng Chen
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Cuifang Xu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Yan Ni
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| | - Junfen Fu
- Department of Endocrinology, The Children’s Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
- *Correspondence: Yan Ni, ; Junfen Fu,
| |
Collapse
|
22
|
Purdel C, Ungurianu A, Margina D. Metabolic and Metabolomic Insights Regarding the Omega-3 PUFAs Intake in Type 1 Diabetes Mellitus. Front Mol Biosci 2021; 8:783065. [PMID: 34926582 PMCID: PMC8678113 DOI: 10.3389/fmolb.2021.783065] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
Type 1 diabetes mellitus (T1DM) is currently considered an autoimmune disease characterized by the destruction of pancreatic β-cells, insulin deficiency, and dysglycemia. Dietary factors, including omega-3 polyunsaturated fatty acids (ω-3 PUFAs), were reported to influence T1DM. Therefore, a better understanding of the potential role of ω-3 PUFAs in the development and progression of T1DM will help to improve the clinical management of the disease. In this review, we explored the current understanding of molecular mechanisms and signaling pathways induced by ω-3 PUFAs and the beneficial effects of ω-3 PUFAs intake in the prevention and treatment of T1DM, as well as the underlying possible metabolomic (lipidomics) changes.
Collapse
Affiliation(s)
- Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Denisa Margina
- Department of Biochemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
23
|
Zhang X, Wang D, Zheng Y, Tu Y, Xu Q, Jiang H, Li C, Zhao L, Li Y, Zheng H, Gao H. Sex-dependent effects on the gut microbiota and host metabolome in type 1 diabetic mice. Biochim Biophys Acta Mol Basis Dis 2021; 1867:166266. [PMID: 34481869 DOI: 10.1016/j.bbadis.2021.166266] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/29/2021] [Accepted: 08/31/2021] [Indexed: 01/04/2023]
Abstract
Sexual dimorphism exists in the onset and development of type 1 diabetes (T1D), but its potential pathological mechanism is poorly understood. In the present study, we examined sex-specific changes in the gut microbiome and host metabolome of T1D mice via 16S rRNA gene sequencing and nuclear magnetic resonance (NMR)-based metabolomics approach, and aimed to investigate potential mechanism of the gut microbiota-host metabolic interaction in the sexual dimorphism of T1D. Our results demonstrate that female mice had a greater shift in the gut microbiota than male mice during the development of T1D; however, host metabolome was more susceptible to T1D in male mice. The correlation network analysis indicates that T1D-induced host metabolic changes may be regulated by the gut microbiota in a sex-specific manner, mainly involving short-chain fatty acids (SCFAs) metabolism, energy metabolism, amino acid metabolism, and choline metabolism. Therefore, our study suggests that sex-dependent "gut microbiota-host metabolism axis" may be implicated in the sexual dimorphism of T1D, and the link between microbes and metabolites might contribute to the prevention and treatment of T1D.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yafei Zheng
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yingxin Tu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Qingqing Xu
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Haowei Jiang
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuping Li
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China
| | - Hong Zheng
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325015, China; Institute of Metabonomics & Medical NMR, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
24
|
O'Kell AL, Wasserfall C, Guingab-Cagmat J, Webb-Roberston BJM, Atkinson MA, Garrett TJ. Targeted metabolomic analysis identifies increased serum levels of GABA and branched chain amino acids in canine diabetes. Metabolomics 2021; 17:100. [PMID: 34775536 PMCID: PMC8693811 DOI: 10.1007/s11306-021-01850-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 10/29/2021] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Dogs with naturally occurring diabetes mellitus represent a potential model for human type 1 diabetes, yet significant knowledge voids exist in terms of the pathogenic mechanisms underlying the canine disorder. Untargeted metabolomic studies from a limited number of diabetic dogs identified similarities to humans with the disease. OBJECTIVE To expand and validate earlier metabolomic studies, identify metabolites that differ consistently between diabetic and healthy dogs, and address whether certain metabolites might serve as disease biomarkers. METHODS Untargeted metabolomic analysis via liquid chromatography-mass spectrometry was performed on serum from diabetic (n = 15) and control (n = 15) dogs. Results were combined with those of our previously published studies using identical methods (12 diabetic and 12 control dogs) to identify metabolites consistently different between the groups in all 54 dogs. Thirty-two candidate biomarkers were quantified using targeted metabolomics. Biomarker concentrations were compared between the groups using multiple linear regression (corrected P < 0.0051 considered significant). RESULTS Untargeted metabolomics identified multiple persistent differences in serum metabolites in diabetic dogs compared with previous studies. Targeted metabolomics showed increases in gamma amino butyric acid, valine, leucine, isoleucine, citramalate, and 2-hydroxyisobutyric acid in diabetic versus control dogs while indoxyl sulfate, N-acetyl-L-aspartic acid, kynurenine, anthranilic acid, tyrosine, glutamine, and tauroursodeoxycholic acid were decreased. CONCLUSION Several of these findings parallel metabolomic studies in both human diabetes and other animal models of this disease. Given recent studies on the role of GABA and branched chain amino acids in human diabetes, the increase in serum concentrations in canine diabetes warrants further study of these metabolites as potential biomarkers, and to identify similarity in mechanisms underlying this disease in humans and dogs.
Collapse
Affiliation(s)
- Allison L O'Kell
- Department of Small Animal Clinical Sciences, College of Veterinary Medicine, The University of Florida, 2015 SW 16th Ave, Box 100116, Gainesville, FL, 32608, USA.
| | - Clive Wasserfall
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Joy Guingab-Cagmat
- Southeast Center for Integrated Metabolomics, Clinical and Translational Science Institute, The University of Florida, Gainesville, FL, USA
| | - Bobbie-Jo M Webb-Roberston
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| | - Timothy J Garrett
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida, Gainesville, FL, USA
| |
Collapse
|
25
|
Immunoreactive Trypsinogen and Free Carnitine Changes on Newborn Screening after Birth in Patients Who Develop Type 1 Diabetes. Nutrients 2021; 13:nu13103669. [PMID: 34684667 PMCID: PMC8538382 DOI: 10.3390/nu13103669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Revised: 10/13/2021] [Accepted: 10/15/2021] [Indexed: 11/16/2022] Open
Abstract
Are free carnitine concentrations on newborn screening (NBS) 48–72 h after birth lower in patients who develop type 1 diabetes than in controls? A retrospective case-control study of patients with type 1 diabetes was conducted. NBS results of patients from a Sydney hospital were compared against matched controls from the same hospital (1:5). Multiple imputation was performed for estimating missing data (gestational age) using gender and birthweight. Conditional logistic regression was used to control for confounding and to generate parameter estimates (α = 0.05). The Hommel approach was used for post-hoc analyses. Results are reported as medians and interquartile ranges. A total of 159 patients were eligible (80 females). Antibodies were detectable in 86. Median age at diagnosis was 8 years. Free carnitine concentrations were lower in patients than controls (25.50 µmol/L;18.98–33.61 vs. 27.26; 21.22–34.86 respectively) (p = 0.018). Immunoreactive trypsinogen was higher in this group (20.24 µg/L;16.15–29–52 vs. 18.71; 13.96–26.92) (p = 0.045), which did not persist in the post-hoc analysis. Carnitine levels are lower and immunoreactive trypsinogen might be higher, within 2–3 days of birth and years before development of type 1 diabetes as compared to controls, although the differences were well within reference ranges and provide insight into the pathogenesis into neonatal onset of type 1 diabetes development rather than use as a diagnostic tool. Given trypsinogen’s use for evaluation of new-onset type 1 diabetes, larger studies are warranted.
Collapse
|
26
|
Tapia G, Suvitaival T, Ahonen L, Lund-Blix NA, Njølstad PR, Joner G, Skrivarhaug T, Legido-Quigley C, Størdal K, Stene LC. Prediction of Type 1 Diabetes at Birth: Cord Blood Metabolites vs Genetic Risk Score in the Norwegian Mother, Father, and Child Cohort. J Clin Endocrinol Metab 2021; 106:e4062-e4071. [PMID: 34086903 PMCID: PMC8475222 DOI: 10.1210/clinem/dgab400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIM Genetic markers are established as predictive of type 1 diabetes, but unknown early life environment is believed to be involved. Umbilical cord blood may reflect perinatal metabolism and exposures. We studied whether selected polar metabolites in cord blood contribute to prediction of type 1 diabetes. METHODS Using a targeted UHPLC-QQQ-MS platform, we quantified 27 low-molecular-weight metabolites (including amino acids, small organic acids, and bile acids) in 166 children, who later developed type 1 diabetes, and 177 random control children in the Norwegian Mother, Father, and Child cohort. We analyzed the data using logistic regression (estimating odds ratios per SD [adjusted odds ratio (aOR)]), area under the receiver operating characteristic curve (AUC), and k-means clustering. Metabolites were compared to a genetic risk score based on 51 established non-HLA single-nucleotide polymorphisms, and a 4-category HLA risk group. RESULTS The strongest associations for metabolites were aminoadipic acid (aOR = 1.23; 95% CI, 0.97-1.55), indoxyl sulfate (aOR = 1.15; 95% CI, 0.87-1.51), and tryptophan (aOR = 0.84; 95% CI, 0.65-1.10), with other aORs close to 1.0, and none significantly associated with type 1 diabetes. K-means clustering identified 6 clusters, none of which were associated with type 1 diabetes. Cross-validated AUC showed no predictive value of metabolites (AUC 0.49), whereas the non-HLA genetic risk score AUC was 0.56 and the HLA risk group AUC was 0.78. CONCLUSIONS In this large study, we found no support of a predictive role of cord blood concentrations of selected bile acids and other small polar metabolites in the development of type 1 diabetes.
Collapse
Affiliation(s)
- German Tapia
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| | | | - Linda Ahonen
- Steno Diabetes Center Copenhagen, Gentofte, Denmark
- Biosyntia ApS, Copenhagen, Denmark
| | - Nicolai A Lund-Blix
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål R Njølstad
- Department of Pediatric and Adolescent Medicine, Haukeland University Hospital, Bergen, Norway
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Geir Joner
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Torild Skrivarhaug
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | | | - Ketil Størdal
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
- Division of Pediatric and Adolescent Medicine, Oslo University Hospital, Oslo, Norway
- Pediatric Research Institute, Institute of Clinical Medicine University of Oslo, Oslo, Norway
| | - Lars C Stene
- Department of Chronic Diseases and Ageing, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
27
|
Sarandi E, Kruger Krasagakis S, Tsoukalas D, Rudofsky G, Tsatsakis A. A Clinical Trial for the Identification of Metabolic Biomarkers in Hashimoto's Thyroiditis and in Psoriasis: Study Protocol. PATHOPHYSIOLOGY 2021; 28:291-306. [PMID: 35366263 PMCID: PMC8830459 DOI: 10.3390/pathophysiology28020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Hashimoto's thyroiditis and psoriasis are inflammatory disorders that significantly impact patients' quality of life, stressing the need for novel biomarkers of early diagnosis. This randomized clinical trial (NCT04693936) aims to identify Hashimoto's thyroiditis' and psoriasis' metabolic biomarkers and to investigate the effect of environmental factors on the disease-related metabolic imprint and quality of life. Patients with Hashimoto's thyroiditis, patients with psoriasis, and healthy individuals aged 18-60 will be recruited, enrolled according to eligibility criteria (medical history, clinical thyroid markers and the PASI score) and randomized to two groups. The intervention group will receive a combination of nutraceuticals for 6 months as part of a Mediterranean diet, and the control group will follow their usual diet. Data will be collected at baseline and the end of the study, including metabolite levels, lifestyle and anthropometric measurements, adherence to the Mediterranean diet (through the Mediterranean Diet Score) and disease-specific quality of life (through the Thyroid Patient Report Outcome for Hashimoto's group, and the Dermatology Life Quality Index for the psoriasis group). This study will investigate metabolic biomarkers and related changes in Hashimoto's thyroiditis and psoriasis and evaluate the association of metabolic changes with dietary factors and quality of life.
Collapse
Affiliation(s)
- Evangelia Sarandi
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece;
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece;
| | | | - Dimitris Tsoukalas
- Metabolomic Medicine, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece;
- European Institute of Nutritional Medicine, 00198 Rome, Italy
| | - Gottfried Rudofsky
- Clinic of Endocrinology and Metabolic Disorders, Cantonal Hospital Olten, Baslerstrasse 150, 4600 Olten, Switzerland;
| | - Aristides Tsatsakis
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece;
| |
Collapse
|
28
|
Seyedsadjadi N, Grant R. The Potential Benefit of Monitoring Oxidative Stress and Inflammation in the Prevention of Non-Communicable Diseases (NCDs). Antioxidants (Basel) 2020; 10:E15. [PMID: 33375428 PMCID: PMC7824370 DOI: 10.3390/antiox10010015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/21/2020] [Accepted: 12/22/2020] [Indexed: 12/12/2022] Open
Abstract
The significant increase in worldwide morbidity and mortality from non-communicable diseases (NCDs) indicates that the efficacy of existing strategies addressing this crisis may need improvement. Early identification of the metabolic irregularities associated with the disease process may be a key to developing early intervention strategies. Unhealthy lifestyle behaviours are well established drivers of the development of several NCDs, but the impact of such behaviours on health can vary considerably between individuals. How can it be determined if an individual's unique set of lifestyle behaviours is producing disease? Accumulating evidence suggests that lifestyle-associated activation of oxidative and inflammatory processes is primary driver of the cell and tissue damage which underpins the development of NCDs. However, the benefit of monitoring subclinical inflammation and oxidative activity has not yet been established. After reviewing relevant studies in this context, we suggest that quantification of oxidative stress and inflammatory biomarkers during the disease-free prodromal stage of NCD development may have clinical relevance as a timely indicator of the presence of subclinical metabolic changes, in the individual, portending the development of disease. Monitoring markers of oxidative and inflammatory activity may therefore enable earlier and more efficient strategies to both prevent NCD development and/or monitor the effectiveness of treatment.
Collapse
Affiliation(s)
- Neda Seyedsadjadi
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- School of Biotechnology and Biomolecular Sciences, Faculty of Science, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ross Grant
- Australasian Research Institute, Sydney Adventist Hospital, Sydney, NSW 2076, Australia;
- Department of Pharmacology, School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, NSW 2052, Australia
- Sydney Adventist Hospital Clinical School, University of Sydney, Sydney, NSW 2076, Australia
| |
Collapse
|
29
|
Sphingolipids in Type 1 Diabetes: Focus on Beta-Cells. Cells 2020; 9:cells9081835. [PMID: 32759843 PMCID: PMC7465050 DOI: 10.3390/cells9081835] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/01/2020] [Accepted: 08/03/2020] [Indexed: 12/28/2022] Open
Abstract
Type 1 diabetes (T1DM) is a chronic autoimmune disease, with a strong genetic background, leading to a gradual loss of pancreatic beta-cells, which secrete insulin and control glucose homeostasis. Patients with T1DM require life-long substitution with insulin and are at high risk for development of severe secondary complications. The incidence of T1DM has been continuously growing in the last decades, indicating an important contribution of environmental factors. Accumulating data indicates that sphingolipids may be crucially involved in T1DM development. The serum lipidome of T1DM patients is characterized by significantly altered sphingolipid composition compared to nondiabetic, healthy probands. Recently, several polymorphisms in the genes encoding the enzymatic machinery for sphingolipid production have been identified in T1DM individuals. Evidence gained from studies in rodent islets and beta-cells exposed to cytokines indicates dysregulation of the sphingolipid biosynthetic pathway and impaired function of several sphingolipids. Moreover, a number of glycosphingolipids have been suggested to act as beta-cell autoantigens. Studies in animal models of autoimmune diabetes, such as the Non Obese Diabetic (NOD) mouse and the LEW.1AR1-iddm (IDDM) rat, indicate a crucial role of sphingolipids in immune cell trafficking, islet infiltration and diabetes development. In this review, the up-to-date status on the findings about sphingolipids in T1DM will be provided, the under-investigated research areas will be identified and perspectives for future studies will be given.
Collapse
|
30
|
Margină D, Ungurianu A, Purdel C, Tsoukalas D, Sarandi E, Thanasoula M, Tekos F, Mesnage R, Kouretas D, Tsatsakis A. Chronic Inflammation in the Context of Everyday Life: Dietary Changes as Mitigating Factors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:E4135. [PMID: 32531935 PMCID: PMC7312944 DOI: 10.3390/ijerph17114135] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 06/03/2020] [Accepted: 06/05/2020] [Indexed: 02/07/2023]
Abstract
The lifestyle adopted by most people in Western societies has an important impact on the propensity to metabolic disorders (e.g., diabetes, cancer, cardiovascular disease, neurodegenerative diseases). This is often accompanied by chronic low-grade inflammation, driven by the activation of various molecular pathways such as STAT3 (signal transducer and activator of transcription 3), IKK (IκB kinase), MMP9 (matrix metallopeptidase 9), MAPK (mitogen-activated protein kinases), COX2 (cyclooxigenase 2), and NF-Kβ (nuclear factor kappa-light-chain-enhancer of activated B cells). Multiple intervention studies have demonstrated that lifestyle changes can lead to reduced inflammation and improved health. This can be linked to the concept of real-life risk simulation, since humans are continuously exposed to dietary factors in small doses and complex combinations (e.g., polyphenols, fibers, polyunsaturated fatty acids, etc.). Inflammation biomarkers improve in patients who consume a certain amount of fiber per day; some even losing weight. Fasting in combination with calorie restriction modulates molecular mechanisms such as m-TOR, FOXO, NRF2, AMPK, and sirtuins, ultimately leads to significantly reduced inflammatory marker levels, as well as improved metabolic markers. Moving toward healthier dietary habits at the individual level and in publicly-funded institutions, such as schools or hospitals, could help improving public health, reducing healthcare costs and improving community resilience to epidemics (such as COVID-19), which predominantly affects individuals with metabolic diseases.
Collapse
Affiliation(s)
- Denisa Margină
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Anca Ungurianu
- Department of Biochemistry, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Carmen Purdel
- Department of Toxicology, Faculty of Pharmacy, "Carol Davila" University of Medicine and Pharmacy, Traian Vuia 6, 020956 Bucharest, Romania
| | - Dimitris Tsoukalas
- European Institute of Nutritional Medicine EINuM, 00198 Rome , Italy
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Evangelia Sarandi
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
- Laboratory of Toxicology and Forensic Sciences, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Maria Thanasoula
- Metabolomic Medicine Clinic, Health Clinics for Autoimmune and Chronic Diseases, 10674 Athens, Greece
| | - Fotios Tekos
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences and Medicine, Department of Medical and Molecular Genetics, 8th Floor, Tower Wing, Guy's Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Demetrios Kouretas
- Department of Biochemistry-Biotechnology, School of Health Sciences, 41500 Larisa, Greece
| | - Aristidis Tsatsakis
- Department Forensic Sciences and Toxicology, University of Crete, Faculty of Medicine, 71003 Heraklion, Greece
| |
Collapse
|
31
|
Sen P, Dickens AM, López-Bascón MA, Lindeman T, Kemppainen E, Lamichhane S, Rönkkö T, Ilonen J, Toppari J, Veijola R, Hyöty H, Hyötyläinen T, Knip M, Orešič M. Metabolic alterations in immune cells associate with progression to type 1 diabetes. Diabetologia 2020; 63:1017-1031. [PMID: 32043185 PMCID: PMC7145788 DOI: 10.1007/s00125-020-05107-6] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
AIMS/HYPOTHESIS Previous metabolomics studies suggest that type 1 diabetes is preceded by specific metabolic disturbances. The aim of this study was to investigate whether distinct metabolic patterns occur in peripheral blood mononuclear cells (PBMCs) of children who later develop pancreatic beta cell autoimmunity or overt type 1 diabetes. METHODS In a longitudinal cohort setting, PBMC metabolomic analysis was applied in children who (1) progressed to type 1 diabetes (PT1D, n = 34), (2) seroconverted to ≥1 islet autoantibody without progressing to type 1 diabetes (P1Ab, n = 27) or (3) remained autoantibody negative during follow-up (CTRL, n = 10). RESULTS During the first year of life, levels of most lipids and polar metabolites were lower in the PT1D and P1Ab groups compared with the CTRL group. Pathway over-representation analysis suggested alanine, aspartate, glutamate, glycerophospholipid and sphingolipid metabolism were over-represented in PT1D. Genome-scale metabolic models of PBMCs during type 1 diabetes progression were developed by using publicly available transcriptomics data and constrained with metabolomics data from our study. Metabolic modelling confirmed altered ceramide pathways, known to play an important role in immune regulation, as specifically associated with type 1 diabetes progression. CONCLUSIONS/INTERPRETATION Our data suggest that systemic dysregulation of lipid metabolism, as observed in plasma, may impact the metabolism and function of immune cells during progression to overt type 1 diabetes. DATA AVAILABILITY The GEMs for PBMCs have been submitted to BioModels (www.ebi.ac.uk/biomodels/), under accession number MODEL1905270001. The metabolomics datasets and the clinical metadata generated in this study were submitted to MetaboLights (https://www.ebi.ac.uk/metabolights/), under accession number MTBLS1015.
Collapse
Affiliation(s)
- Partho Sen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
| | - Alex M Dickens
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - María Asunción López-Bascón
- Department of Analytical Chemistry, University of Córdoba, Córdoba, Spain
- Department of Chemistry, Örebro University, Örebro, Sweden
| | - Tuomas Lindeman
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Esko Kemppainen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Santosh Lamichhane
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Tuukka Rönkkö
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland
| | - Jorma Ilonen
- Immunogenetics Laboratory, Institute of Biomedicine, University of Turku, Turku, Finland
- Clinical Microbiology, Turku University Hospital, Turku, Finland
| | - Jorma Toppari
- Department of Pediatrics and Adolescent Medicine, Turku University Hospital, Turku, Finland
- Institute of Biomedicine, Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Riitta Veijola
- Department of Pediatrics, PEDEGO Research Unit, Medical Research Centre, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Heikki Hyöty
- Faculty of Medicine and Life Sciences, University of Tampere, Tampere, Finland
- Fimlab Laboratories, Pirkanmaa Hospital District, Tampere, Finland
| | | | - Mikael Knip
- Children's Hospital, University of Helsinki and Helsinki University Hospital, 00290, Helsinki, Finland.
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
- Tampere Centre for Child Health Research, Tampere University Hospital, Tampere, Finland.
| | - Matej Orešič
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, FI-20520, Turku, Finland.
- School of Medical Sciences, Örebro University, Örebro, Sweden.
| |
Collapse
|
32
|
Li L, Krznar P, Erban A, Agazzi A, Martin-Levilain J, Supale S, Kopka J, Zamboni N, Maechler P. Metabolomics Identifies a Biomarker Revealing In Vivo Loss of Functional β-Cell Mass Before Diabetes Onset. Diabetes 2019; 68:2272-2286. [PMID: 31537525 DOI: 10.2337/db19-0131] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 09/10/2019] [Indexed: 11/13/2022]
Abstract
Identification of individuals with decreased functional β-cell mass is essential for the prevention of diabetes. However, in vivo detection of early asymptomatic β-cell defect remains unsuccessful. Metabolomics has emerged as a powerful tool in providing readouts of early disease states before clinical manifestation. We aimed at identifying novel plasma biomarkers for loss of functional β-cell mass in the asymptomatic prediabetes stage. Nontargeted and targeted metabolomics were applied in both lean β-Phb2-/- (β-cell-specific prohibitin-2 knockout) mice and obese db/db (leptin receptor mutant) mice, two distinct mouse models requiring neither chemical nor dietary treatments to induce spontaneous decline of functional β-cell mass promoting progressive diabetes development. Nontargeted metabolomics on β-Phb2-/- mice identified 48 and 82 significantly affected metabolites in liver and plasma, respectively. Machine learning analysis pointed to deoxyhexose sugars consistently reduced at the asymptomatic prediabetes stage, including in db/db mice, showing strong correlation with the gradual loss of β-cells. Further targeted metabolomics by gas chromatography-mass spectrometry uncovered the identity of the deoxyhexose, with 1,5-anhydroglucitol displaying the most substantial changes. In conclusion, this study identified 1,5-anhydroglucitol as associated with the loss of functional β-cell mass and uncovered metabolic similarities between liver and plasma, providing insights into the systemic effects caused by early decline in β-cells.
Collapse
Affiliation(s)
- Lingzi Li
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Petra Krznar
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
- PhD Program in Systems Biology, Life Science Zurich Graduate School, Zurich, Switzerland
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Andrea Agazzi
- Theoretical Physics Department, University of Geneva, Geneva, Switzerland
| | - Juliette Martin-Levilain
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Sachin Supale
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Nicola Zamboni
- Institute of Molecular Systems Biology, ETH Zurich, Zurich, Switzerland
| | - Pierre Maechler
- Department of Cell Physiology and Metabolism, University of Geneva Medical Centre, Geneva, Switzerland
- Faculty Diabetes Centre, University of Geneva Medical Centre, Geneva, Switzerland
| |
Collapse
|