1
|
Gubin DG, Borisenkov MF, Kolomeichuk SN, Markov AA, Weinert D, Cornelissen G, Stefani O. Evaluating circadian light hygiene: Methodology and health implications. RUSSIAN OPEN MEDICAL JOURNAL 2024; 13. [DOI: 10.15275/rusomj.2024.0415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2025] Open
Abstract
Background — A growing body of research demonstrates that a substantial daily range of light exposure, characterized by ample daylight followed by darkness during sleep, is essential for human well-being. This encompasses crucial aspects like sleep quality, mood regulation, and cardiovascular and metabolic health. Objective — This study characterizes Circadian Light Hygiene (CLH) as an essential factor in maintaining health, well-being, and longevity in modern society. CLH involves adjusting the 24-hour light exposure dynamic range to support the natural sleep-wake cycle and circadian rhythms. Three major challenges to CLH negatively impacting human health are: 1) light pollution (light at night, or LAN), characterized by excessive evening and nighttime artificial light; 2) insufficient natural daylight; and 3) irregular light exposure patterns. These interacting challenges necessitate a systematic approach to measurement and analysis. Material and Methods — A systematic review of peer-reviewed literature published through October 30, 2024, examined the methodologies and health effects of circadian and seasonal aspects of light exposure. Conclusion — This review elucidates fundamental principles of circadian light hygiene, synthesizing existing literature and our research to assess the benefits of adequate daylight, the risks of light at night, and adverse outcomes stemming from diminished light exposure range, mistimed light exposure, and irregular patterns. Novel indices for quantifying and optimizing circadian light hygiene are introduced.
Collapse
Affiliation(s)
- Denis G. Gubin
- Tyumen State Medical University, Tyumen, Russia; Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Mikhail F. Borisenkov
- Tyumen State Medical University, Tyumen, Russia; Komi Scientific Center, Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Sergey N. Kolomeichuk
- Tyumen State Medical University, Tyumen Russia; Branch of the Federal Research Centre Karelian Science Centre of the Russian Academy of Science, Petrozavodsk, Russia
| | | | | | | | - Oliver Stefani
- Lucerne University of Applied Sciences and Arts, Horw, Switzerland
| |
Collapse
|
2
|
Zhang Y, Hu K, Tang Y, Feng Q, Jiang T, Chen L, Chen X, Shan C, Han C, Chu W, Ma N, Hu H, Gao H, Zhang Q. Interactive correlations between artificial light at night, health risk behaviors, and cardiovascular health among patients with diabetes: A cross-sectional study. J Diabetes 2024; 16:e70008. [PMID: 39397260 PMCID: PMC11471435 DOI: 10.1111/1753-0407.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/04/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024] Open
Abstract
BACKGROUND Artificial light at night (ALAN) is a common phenomenon and contributes to the severe light pollution suffered by more than 80% of the world's population. This study aimed to evaluate the relationship between outdoor ALAN exposure and cardiovascular health (CVH) in patients with diabetes and the influence of various modifiable factors. METHODS A survey method based on the China Diabetes and Risk Factor Monitoring System was adopted. Study data were extracted for 1765 individuals with diabetes in Anhui Province. Outdoor ALAN exposure (nW/cm2/sr) within 1000 m of each participant's residential address was obtained from satellite imagery data, with a resolution of ~1000 m. Health risk behaviors (HRBs) were measured via a standardized questionnaire. A linear regression model was employed to estimate the relationship between outdoor ALAN, HRBs, and CVH. RESULTS Participants' mean age was 59.10 ± 10.0 years. An association was observed between ALAN and CVH in patients with diabetes (β = 0.205) and exercise (β = -1.557), moderated by HRBs, or metabolic metrics. There was an association between ALAN, ALAN, vegetable intake, and CVH. CONCLUSIONS Exploring the relationship between ALAN exposure and cardiovascular and metabolic health provides policy data for improving light pollution strategies and reducing the risk of cardiovascular and metabolic disease in patients with diabetes.
Collapse
Affiliation(s)
- Yi Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
- Department of Maternal, Child and Adolescent Health, School of Public HealthAnhui Medical UniversityHefeiChina
| | - Keyan Hu
- The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and TechnologyLuoyangChina
| | - Ying Tang
- School of NursingAnhui Medical UniversityHefeiChina
| | - Qing Feng
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Tian Jiang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Liwen Chen
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Xin Chen
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chunhan Shan
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Chen Han
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Wenhui Chu
- School of NursingAnhui Medical UniversityHefeiChina
| | - Nanzhen Ma
- Hospital of Anhui Medical UniversityHefeiChina
| | - Honglin Hu
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Hui Gao
- Department of PediatricsThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| | - Qiu Zhang
- Department of EndocrinologyThe First Affiliated Hospital of Anhui Medical UniversityHefeiChina
| |
Collapse
|
3
|
Speksnijder EM, Bisschop PH, Siegelaar SE, Stenvers DJ, Kalsbeek A. Circadian desynchrony and glucose metabolism. J Pineal Res 2024; 76:e12956. [PMID: 38695262 DOI: 10.1111/jpi.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/02/2024] [Accepted: 04/15/2024] [Indexed: 05/09/2024]
Abstract
The circadian timing system controls glucose metabolism in a time-of-day dependent manner. In mammals, the circadian timing system consists of the main central clock in the bilateral suprachiasmatic nucleus (SCN) of the anterior hypothalamus and subordinate clocks in peripheral tissues. The oscillations produced by these different clocks with a period of approximately 24-h are generated by the transcriptional-translational feedback loops of a set of core clock genes. Glucose homeostasis is one of the daily rhythms controlled by this circadian timing system. The central pacemaker in the SCN controls glucose homeostasis through its neural projections to hypothalamic hubs that are in control of feeding behavior and energy metabolism. Using hormones such as adrenal glucocorticoids and melatonin and the autonomic nervous system, the SCN modulates critical processes such as glucose production and insulin sensitivity. Peripheral clocks in tissues, such as the liver, muscle, and adipose tissue serve to enhance and sustain these SCN signals. In the optimal situation all these clocks are synchronized and aligned with behavior and the environmental light/dark cycle. A negative impact on glucose metabolism becomes apparent when the internal timing system becomes disturbed, also known as circadian desynchrony or circadian misalignment. Circadian desynchrony may occur at several levels, as the mistiming of light exposure or sleep will especially affect the central clock, whereas mistiming of food intake or physical activity will especially involve the peripheral clocks. In this review, we will summarize the literature investigating the impact of circadian desynchrony on glucose metabolism and how it may result in the development of insulin resistance. In addition, we will discuss potential strategies aimed at reinstating circadian synchrony to improve insulin sensitivity and contribute to the prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Esther M Speksnijder
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Peter H Bisschop
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Sarah E Siegelaar
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
| | - Dirk Jan Stenvers
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology and Metabolism (AGEM), Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Zhang L, Wang H, Zu P, Li X, Ma S, Zhu Y, Xie T, Tao F, Zhu DM, Zhu P. Association between exposure to outdoor artificial light at night during pregnancy and glucose homeostasis: A prospective cohort study. ENVIRONMENTAL RESEARCH 2024; 247:118178. [PMID: 38220082 DOI: 10.1016/j.envres.2024.118178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/26/2023] [Accepted: 01/09/2024] [Indexed: 01/16/2024]
Abstract
BACKGROUND Outdoor artificial light at night (ALAN) has been linked to an elevated risk of diabetes, but the available literature on the relationships between ALAN and glucose homeostasis in pregnancy is limited. METHODS A prospective cohort study of 6730 pregnant women was conducted in Hefei, China. Outdoor ALAN exposure was estimated using satellite data with individual addresses at a spatial resolution of approximately 1 km, and the average ALAN intensity was calculated. Gestational diabetes mellitus (GDM) was diagnosed based on a standard 75-g oral glucose tolerance test. Multivariable linear regression and logistic regression were used to estimate the relationships between ALAN and glucose homeostasis. RESULTS Outdoor ALAN was associated with elevated glucose homeostasis markers in the first trimester, but not GDM risk. An increase in the interquartile range of outdoor ALAN values was related to a 0.02 (95% confidence interval [CI]: 0.00, 0.03) mmol/L higher fasting plasma glucose, a 0.42 (95% CI: 0.30, 0.54) μU/mL increase in insulin and a 0.09 (95% CI: 0.07, 0.12) increase in homeostatic model assessment of insulin resistance (HOMA-IR) during the first trimester. Subgroup analyses showed that the associations between outdoor ALAN exposure and fasting plasma glucose, insulin, and HOMA-IR were more pronounced among pregnant women who conceived in summer and autumn. CONCLUSIONS The results provided evidence that brighter outdoor ALAN in the first trimester was related to elevated glucose intolerance in pregnancy, especially in pregnant women conceived in summer and autumn, and effective strategies are needed to prevent and manage light pollution.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Haixia Wang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Ping Zu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Xinyu Li
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Mental Health Center, Hefei, China
| | | | - Yuanyuan Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Tianqin Xie
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Mental Health Center, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China
| | - Dao-Min Zhu
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China; Department of Sleep Disorders, Affiliated Psychological Hospital of Anhui Medical University, Hefei, China; Hefei Fourth People's Hospital, Hefei, China; Anhui Mental Health Center, Hefei, China.
| | - Peng Zhu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China; MOE Key Laboratory of Population Health Across Life Cycle, Hefei, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China; Center for Big Data and Population Health of IHM, Anhui Medical University, Hefei, China; Anhui Provincial Key Laboratory of Environment and Population Health across the Life Course, Anhui Medical University, Hefei, China.
| |
Collapse
|
5
|
Regmi P, Young M, Minigo G, Milic N, Gyawali P. Photoperiod and metabolic health: evidence, mechanism, and implications. Metabolism 2024; 152:155770. [PMID: 38160935 DOI: 10.1016/j.metabol.2023.155770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/23/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Circadian rhythms are evolutionarily programmed biological rhythms that are primarily entrained by the light cycle. Disruption of circadian rhythms is an important risk factor for several metabolic disorders. Photoperiod is defined as total duration of light exposure in a day. With the extended use of indoor/outdoor light, smartphones, television, computers, and social jetlag people are exposed to excessive artificial light at night increasing their photoperiod. Importantly long photoperiod is not limited to any geographical region, season, age, or socioeconomic group, it is pervasive. Long photoperiod is an established disrupter of the circadian rhythm and can induce a range of chronic health conditions including adiposity, altered hormonal signaling and metabolism, premature ageing, and poor psychological health. This review discusses the impact of exposure to long photoperiod on circadian rhythms, metabolic and mental health, hormonal signaling, and ageing and provides a perspective on possible preventive and therapeutic approaches for this pervasive challenge.
Collapse
Affiliation(s)
- Prashant Regmi
- Faculty of Health, Charles Darwin University, Australia.
| | - Morag Young
- Cardiovascular Endocrinology Laboratory, Baker IDI Heart and Diabetes Institute, Australia
| | | | - Natalie Milic
- Faculty of Health, Charles Darwin University, Australia
| | - Prajwal Gyawali
- Centre of Health Research and School of Health and Medical Sciences, University of Southern Queensland, Australia
| |
Collapse
|
6
|
Fan Y, Yan Z, Li T, Li A, Fan X, Qi Z, Zhang J. Primordial Drivers of Diabetes Heart Disease: Comprehensive Insights into Insulin Resistance. Diabetes Metab J 2024; 48:19-36. [PMID: 38173376 PMCID: PMC10850268 DOI: 10.4093/dmj.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/28/2023] [Indexed: 01/05/2024] Open
Abstract
Insulin resistance has been regarded as a hallmark of diabetes heart disease (DHD). Numerous studies have shown that insulin resistance can affect blood circulation and myocardium, which indirectly cause cardiac hypertrophy and ventricular remodeling, participating in the pathogenesis of DHD. Meanwhile, hyperinsulinemia, hyperglycemia, and hyperlipidemia associated with insulin resistance can directly impair the metabolism and function of the heart. Targeting insulin resistance is a potential therapeutic strategy for the prevention of DHD. Currently, the role of insulin resistance in the pathogenic development of DHD is still under active research, as the pathological roles involved are complex and not yet fully understood, and the related therapeutic approaches are not well developed. In this review, we describe insulin resistance and add recent advances in the major pathological and physiological changes and underlying mechanisms by which insulin resistance leads to myocardial remodeling and dysfunction in the diabetic heart, including exosomal dysfunction, ferroptosis, and epigenetic factors. In addition, we discuss potential therapeutic approaches to improve insulin resistance and accelerate the development of cardiovascular protection drugs.
Collapse
Affiliation(s)
- Yajie Fan
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Department of Cardiovascular, National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, China
| | - Zhipeng Yan
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tingting Li
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Aolin Li
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinbiao Fan
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Zhongwen Qi
- Institute of Gerontology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Junping Zhang
- Department of Cardiovascular, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Gubin D, Danilenko K, Stefani O, Kolomeichuk S, Markov A, Petrov I, Voronin K, Mezhakova M, Borisenkov M, Shigabaeva A, Yuzhakova N, Lobkina S, Weinert D, Cornelissen G. Blue Light and Temperature Actigraphy Measures Predicting Metabolic Health Are Linked to Melatonin Receptor Polymorphism. BIOLOGY 2023; 13:22. [PMID: 38248453 PMCID: PMC10813279 DOI: 10.3390/biology13010022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/29/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
This study explores the relationship between the light features of the Arctic spring equinox and circadian rhythms, sleep and metabolic health. Residents (N = 62) provided week-long actigraphy measures, including light exposure, which were related to body mass index (BMI), leptin and cortisol. Lower wrist temperature (wT) and higher evening blue light exposure (BLE), expressed as a novel index, the nocturnal excess index (NEIbl), were the most sensitive actigraphy measures associated with BMI. A higher BMI was linked to nocturnal BLE within distinct time windows. These associations were present specifically in carriers of the MTNR1B rs10830963 G-allele. A larger wake-after-sleep onset (WASO), smaller 24 h amplitude and earlier phase of the activity rhythm were associated with higher leptin. Higher cortisol was associated with an earlier M10 onset of BLE and with our other novel index, the Daylight Deficit Index of blue light, DDIbl. We also found sex-, age- and population-dependent differences in the parametric and non-parametric indices of BLE, wT and physical activity, while there were no differences in any sleep characteristics. Overall, this study determined sensitive actigraphy markers of light exposure and wT predictive of metabolic health and showed that these markers are linked to melatonin receptor polymorphism.
Collapse
Affiliation(s)
- Denis Gubin
- Department of Biology, Tyumen Medical University, 625023 Tyumen, Russia
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Tyumen Cardiology Research Center, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Konstantin Danilenko
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
- Institute of Neurosciences and Medicine, 630117 Novosibirsk, Russia
| | - Oliver Stefani
- Department Engineering and Architecture, Institute of Building Technology and Energy, Lucerne University of Applied Sciences and Arts, 6048 Horw, Switzerland;
| | - Sergey Kolomeichuk
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
- Laboratory of Genetics, Institute of Biology of the Karelian Science Center, Russian Academy of Sciences, 185910 Petrozavodsk, Russia
| | - Alexander Markov
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Ivan Petrov
- Department of Biological & Medical Physics UNESCO, Medical University, 625023 Tyumen, Russia
| | - Kirill Voronin
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Marina Mezhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Mikhail Borisenkov
- Department of Molecular Immunology and Biotechnology, Institute of Physiology of the Federal Research Centre Komi Science Centre, Ural Branch of the Russian Academy of Sciences, 167982 Syktyvkar, Russia;
| | - Aislu Shigabaeva
- Laboratory for Chronobiology and Chronomedicine, Research Institute of Biomedicine and Biomedical Technologies, Tyumen Medical University, 625023 Tyumen, Russia; (K.D.); (A.S.)
| | - Natalya Yuzhakova
- Laboratory for Genomics, Proteomics, and Metabolomics, Research Institute of Biomedicine and Biomedical Technologies, Medical University, 625023 Tyumen, Russia; (S.K.); (A.M.); (K.V.); (N.Y.)
| | - Svetlana Lobkina
- Healthcare Institution of Yamalo-Nenets Autonomous Okrug “Tarko-Sale Central District Hospital”, 629850 Urengoy, Russia;
| | - Dietmar Weinert
- Institute of Biology/Zoology, Martin Luther University, 06108 Halle-Wittenberg, Germany;
| | - Germaine Cornelissen
- Department of Integrated Biology and Physiology, University of Minnesota, Minneapolis, MN 55455, USA;
| |
Collapse
|
8
|
Meléndez-Fernández OH, Walton JC, DeVries AC, Nelson RJ. The role of daylight exposure on body mass in male mice. Physiol Behav 2023; 266:114186. [PMID: 37028499 PMCID: PMC10225047 DOI: 10.1016/j.physbeh.2023.114186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/25/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Physiology and behavior are synchronized to the external environment by endogenous circadian rhythms that are set to precisely 24 h by exposure to bright light early in the day. Exposure to artificial light outside of the typical solar day, such as during the night, may impair aspects of physiology and behavior in human and non-human animals. Both the intensity and the wavelength of light are important in mediating these effects. The present report is the result of an unplanned change in our vivarium lighting conditions, which led to the observation that dim light during the daytime affects body mass similarly to dim nighttime light exposure in male Swiss Webster mice. Mice exposed to bright days (≥125 lux) with dark nights (0 lux) gained significantly less weight than those exposed to bright days with dim light at night (5 lux) or dim days (≤60 lux) with either dark nights or dim light at night. Notably, among the mice exposed to dim daytime light, no weight gain differences were observed between dark nights and dim light at night exposure; however dim light at night exposure shifted food intake to the inactive phase as previously reported. The mechanisms mediating these effects remain unspecified, but it appears that dimly illuminated days may have similar adverse metabolic effects as exposure to artificial light at night.
Collapse
Affiliation(s)
| | - James C Walton
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA
| | - A Courtney DeVries
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA; Department of Medicine, Division of Oncology/Hematology, Morgantown, WV 26505 USA; West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26505, USA
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, Morgantown, WV 26505 USA
| |
Collapse
|
9
|
Martin RA, Viggars MR, Esser KA. Metabolism and exercise: the skeletal muscle clock takes centre stage. Nat Rev Endocrinol 2023; 19:272-284. [PMID: 36726017 PMCID: PMC11783692 DOI: 10.1038/s41574-023-00805-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/03/2023]
Abstract
Circadian rhythms that influence mammalian homeostasis and overall health have received increasing interest over the past two decades. The molecular clock, which is present in almost every cell, drives circadian rhythms while being a cornerstone of physiological outcomes. The skeletal muscle clock has emerged as a primary contributor to metabolic health, as the coordinated expression of the core clock factors BMAL1 and CLOCK with the muscle-specific transcription factor MYOD1 facilitates the circadian and metabolic programme that supports skeletal muscle physiology. The phase of the skeletal muscle clock is sensitive to the time of exercise, which provides a rationale for exploring the interactions between the skeletal muscle clock, exercise and metabolic health. Here, we review the underlying mechanisms of the skeletal muscle clock that drive muscle physiology, with a particular focus on metabolic health. Additionally, we highlight the interaction between exercise and the skeletal muscle clock as a means of reinforcing metabolic health and discuss the possible implications of the time of exercise as a chronotherapeutic approach.
Collapse
Affiliation(s)
- Ryan A Martin
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Mark R Viggars
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Karyn A Esser
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA.
- Myology Institute, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
10
|
Ishihara A, Courville AB, Chen KY. The Complex Effects of Light on Metabolism in Humans. Nutrients 2023; 15:nu15061391. [PMID: 36986120 PMCID: PMC10056135 DOI: 10.3390/nu15061391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Light is an essential part of many life forms. The natural light–dark cycle has been the dominant stimulus for circadian rhythms throughout human evolution. Artificial light has restructured human activity and provided opportunities to extend the day without reliance on natural day–night cycles. The increase in light exposure at unwanted times or a reduced dynamic range of light between the daytime and nighttime has introduced negative consequences for human health. Light exposure is closely linked to sleep–wake regulation, activity and eating patterns, body temperature, and energy metabolism. Disruptions to these areas due to light are linked to metabolic abnormalities such as an increased risk of obesity and diabetes. Research has revealed that various properties of light influence metabolism. This review will highlight the complex role of light in human physiology, with a specific emphasis on metabolic regulation from the perspective of four main properties of light (intensity, duration, timing of exposure, and wavelength). We also discuss the potential influence of the key circadian hormone melatonin on sleep and metabolic physiology. We explore the relationship between light and metabolism through circadian physiology in various populations to understand the optimal use of light to mitigate short and long-term health consequences.
Collapse
|
11
|
Chaput JP, McHill AW, Cox RC, Broussard JL, Dutil C, da Costa BGG, Sampasa-Kanyinga H, Wright KP. The role of insufficient sleep and circadian misalignment in obesity. Nat Rev Endocrinol 2023; 19:82-97. [PMID: 36280789 PMCID: PMC9590398 DOI: 10.1038/s41574-022-00747-7] [Citation(s) in RCA: 234] [Impact Index Per Article: 117.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/30/2022] [Indexed: 01/21/2023]
Abstract
Traditional risk factors for obesity and the metabolic syndrome, such as excess energy intake and lack of physical activity, cannot fully explain the high prevalence of these conditions. Insufficient sleep and circadian misalignment predispose individuals to poor metabolic health and promote weight gain and have received increased research attention in the past 10 years. Insufficient sleep is defined as sleeping less than recommended for health benefits, whereas circadian misalignment is defined as wakefulness and food intake occurring when the internal circadian system is promoting sleep. This Review discusses the impact of insufficient sleep and circadian misalignment in humans on appetite hormones (focusing on ghrelin, leptin and peptide-YY), energy expenditure, food intake and choice, and risk of obesity. Some potential strategies to reduce the adverse effects of sleep disruption on metabolic health are provided and future research priorities are highlighted. Millions of individuals worldwide do not obtain sufficient sleep for healthy metabolic functions. Furthermore, modern working patterns, lifestyles and technologies are often not conducive to adequate sleep at times when the internal physiological clock is promoting it (for example, late-night screen time, shift work and nocturnal social activities). Efforts are needed to highlight the importance of optimal sleep and circadian health in the maintenance of metabolic health and body weight regulation.
Collapse
Affiliation(s)
- Jean-Philippe Chaput
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada.
- Department of Paediatrics, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.
| | - Andrew W McHill
- Sleep, Chronobiology, and Health Laboratory, School of Nursing, Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR, USA
| | - Rebecca C Cox
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
| | - Josiane L Broussard
- Sleep and Metabolism Laboratory, Department of Health and Exercise Science, Colorado State University, Fort Collins, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Caroline Dutil
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Human Kinetics, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Bruno G G da Costa
- Research Center in Physical Activity and Health, Department of Physical Education, School of Sports, Federal University of Santa Catarina, Florianopolis, Brazil
| | - Hugues Sampasa-Kanyinga
- Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa, ON, Canada
- School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON, Canada
| | - Kenneth P Wright
- Sleep and Chronobiology Laboratory, Department of Integrative Physiology, University of Colorado Boulder, Boulder, CO, USA
- Division of Endocrinology, Metabolism and Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
12
|
Krentz AJ. Complex metabolic–endocrine syndromes: associations with cardiovascular disease. CARDIOVASCULAR ENDOCRINOLOGY AND METABOLISM 2023:39-81. [DOI: 10.1016/b978-0-323-99991-5.00010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
13
|
Chan K, Wong FS, Pearson JA. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne) 2022; 13:920261. [PMID: 36034454 PMCID: PMC9399605 DOI: 10.3389/fendo.2022.920261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more prevalent worldwide and will present an increasingly challenging burden on healthcare systems. These interlinked metabolic abnormalities predispose affected individuals to a plethora of complications and comorbidities. Furthermore, diabetes is estimated by the World Health Organization to have caused 1.5 million deaths in 2019, with this figure projected to rise in coming years. This highlights the need for further research into the management of metabolic diseases and their complications. Studies on circadian rhythms, referring to physiological and behavioral changes which repeat approximately every 24 hours, may provide important insight into managing metabolic disease. Epidemiological studies show that populations who are at risk of circadian disruption such as night shift workers and regular long-haul flyers are also at an elevated risk of metabolic abnormalities such as insulin resistance and obesity. Aberrant expression of circadian genes appears to contribute to the dysregulation of metabolic functions such as insulin secretion, glucose homeostasis and energy expenditure. The potential clinical implications of these findings have been highlighted in animal studies and pilot studies in humans giving rise to the development of circadian interventions strategies including chronotherapy (time-specific therapy), time-restricted feeding, and circadian molecule stabilizers/analogues. Research into these areas will provide insights into the future of circadian medicine in metabolic diseases. In this review, we discuss the physiology of metabolism and the role of circadian timing in regulating these metabolic functions. Also, we review the clinical aspects of circadian physiology and the impact that ongoing and future research may have on the management of metabolic disease.
Collapse
Affiliation(s)
- Karl Chan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
14
|
Wie der natürliche Hell-Dunkel-Zyklus den Stoffwechsel beeinflusst. DIABETOL STOFFWECHS 2022. [DOI: 10.1055/a-1732-9344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|