1
|
Rodriguez-Calvo T, Laiho JE, Oikarinen M, Akhbari P, Flaxman C, Worthington T, Apaolaza P, Kaddis JS, Kusmartseva I, Tauriainen S, Campbell-Thompson M, Atkinson MA, von Herrath M, Hyöty H, Morgan NG, Pugliese A, Richardson SJ. Enterovirus VP1 protein and HLA class I hyperexpression in pancreatic islet cells of organ donors with type 1 diabetes. Diabetologia 2025; 68:1197-1210. [PMID: 40090995 PMCID: PMC12069150 DOI: 10.1007/s00125-025-06384-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 11/19/2024] [Indexed: 03/19/2025]
Abstract
AIMS/HYPOTHESIS Earlier studies of pancreases from donors with type 1 diabetes demonstrated enteroviral capsid protein VP1 in beta cells. In the context of a multidisciplinary approach undertaken by the nPOD-Virus group, we assessed VP1 positivity in pancreas and other tissues (spleen, duodenum and pancreatic lymph nodes) from 188 organ donors, including donors with type 1 diabetes and donors expressing autoantibody risk markers. We also investigated whether VP1 positivity is linked to the hyperexpression of HLA class I (HLA-I) molecules in islet cells. METHODS Organ donor tissues were collected by the Network for Pancreatic Organ Donors with Diabetes (nPOD) from donors without diabetes (ND, n=76), donors expressing a single or multiple diabetes-associated autoantibodies (AAb+, n=20; AAb++, n=9) and donors with type 1 diabetes with residual insulin-containing islets (T1D-ICIs, n=41) or only insulin-deficient islets (T1D-IDIs, n=42). VP1 was assessed using immunohistochemistry (IHC) and HLA-I using IHC and immunofluorescence, in two independent laboratories. We determined assay concordance across laboratories and overall occurrence of positive assays, on a case-by-case basis and between donor groups. RESULTS Islet cell VP1 positivity was detected in most T1D-ICI donors (77.5%) vs only 38.2% of ND donors (p<0.001). VP1 positivity was associated with HLA-I hyperexpression. Of those donors assessed for HLA-I and VP1, 73.7% had both VP1 immunopositivity and HLA-I hyperexpression (p<0.001 vs ND). Moreover, VP1+ cells were detected at higher frequency in donors with HLA-I hyperexpression (p<0.001 vs normal HLA-I). Among VP1+ donors, the proportion with HLA-I hyperexpression was significantly higher in the AAb++ and T1D-ICI groups (94.9%, p<0.001 vs ND); this was not restricted to individuals with recent-onset diabetes. Critically, for all donor groups combined, HLA-I hyperexpression occurred more frequently in VP1+ compared with VP1- donors (45.8% vs 16%, p<0.001). CONCLUSIONS/INTERPRETATION We report the most extensive analysis to date of VP1 and HLA-I in pancreases from donors with preclinical and diagnosed type 1 diabetes. We find an association of VP1 with residual beta cells after diagnosis and demonstrate VP1 positivity during the autoantibody-positive preclinical stage. For the first time, we show that VP1 positivity and HLA-I hyperexpression in islet cells are both present during the preclinical stage. While the study of tissues does not allow us to demonstrate causality, our data support the hypothesis that enterovirus infections may occur throughout the natural history of type 1 diabetes and may be one of multiple mechanisms driving islet cell HLA-I hyperexpression.
Collapse
Affiliation(s)
- Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany.
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Maarit Oikarinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Pouria Akhbari
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Christine Flaxman
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Thomas Worthington
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Paola Apaolaza
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | | | - Martha Campbell-Thompson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Mark A Atkinson
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Matthias von Herrath
- Diabetes Research Institute (DRI), University of Miami Miller School of Medicine, Miami, FL, USA
- Division of Endocrine, Diabetes and Metabolism, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, USA
- Global Chief Medical Office, Novo Nordisk A/S, Søborg, Denmark
| | - Heikki Hyöty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Department of Pediatrics, Tampere University Hospital, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Sarah J Richardson
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK.
| |
Collapse
|
2
|
Richardson SJ, Rodriguez-Calvo T, Laiho JE, Kaddis JS, Nyalwidhe JO, Kusmartseva I, Morfopoulou S, Petrosino JF, Plagnol V, Maedler K, Morris MA, Nadler JL, Atkinson MA, von Herrath M, Lloyd RE, Hyoty H, Morgan NG, Pugliese A. Joint analysis of the nPOD-Virus Group data: the association of enterovirus with type 1 diabetes is supported by multiple markers of infection in pancreas tissue. Diabetologia 2025; 68:1226-1241. [PMID: 40090994 PMCID: PMC12069141 DOI: 10.1007/s00125-025-06401-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/03/2024] [Indexed: 03/19/2025]
Abstract
AIMS/HYPOTHESIS Previous pathology studies have associated enterovirus infections with type 1 diabetes by examining the enterovirus capsid protein 1 (VP1) in autopsy pancreases obtained near diabetes diagnosis. The Network for Pancreatic Organ Donors with Diabetes (nPOD) has since obtained pancreases from organ donors with type 1 diabetes (with broad age and disease duration) and donors with disease-associated autoantibodies (AAbs), the latter representing preclinical disease. Two accompanying manuscripts from the nPOD-Virus Group report primary data from a coordinated analysis of multiple enterovirus indices. We aimed to comprehensively assess the association of multiple enterovirus markers with type 1 diabetes. METHODS The nPOD-Virus Group examined pancreases from 197 donors, recovered between 2007 and 2019, classified into five groups: donors with type 1 diabetes, with residual insulin-containing islets (T1D-ICI group, n=41) or with only insulin-deficient islets (T1D-IDI, n=42); donors without diabetes who are AAb-negative (ND, n=83); and rare donors without diabetes expressing a single AAb (AAb+, n=22) or multiple AAbs (AAb++, n=9). We assessed the overall association of multiple indicators of enterovirus infection, case-by-case and between donor groups, as well as assay agreement and reproducibility, using various statistical methods. We examined data from 645 assays performed across 197 nPOD donors. RESULTS Detection of enterovirus indices by independent laboratories had high reproducibility, using both enterovirus-targeted and unbiased methods. T1D-ICI donors had significantly higher (p<0.001) proportions of positive assay outcomes (58.4%) vs T1D-IDI (10.3%), ND (17.8%) and AAb-positive donors (AAb+ 24.6%; AAb++ 35.0%). Head-to-head comparisons revealed increased proportions of donors positive in two independent assays among T1D-ICI vs ND donors (VP1/HLA class I [HLA-I], p<0.0001; VP1/enterovirus-specific RT-PCR (EV-PCR), p=0.076; EV-PCR/HLA-I, p=0.016; proteomics/HLA-I, p<0.0001; VP1/proteomics, p=0.06). Among 110 donors examined for three markers (VP1, EV-PCR and HLA-I), 83.3% of T1D-ICI donors were positive in two or more assays vs 0% of ND (p<0.001), 26.7% of AAb+ (p=0.006), 28.6% of AAb++ (p=0.023) and 0% of T1D-IDI (p<0.001) donors. CONCLUSIONS/INTERPRETATION The nPOD-Virus Group conducted, to date, the largest and most comprehensive analysis of multiple indices of pancreatic enterovirus infections in type 1 diabetes; these were more prevalent in T1D-ICI and AAb++ donors than in other groups. Their preferential detection of these indices in donors with residual beta cells and autoimmunity implicates enterovirus infections across disease progression stages and supports a contribution to beta cell loss, directly or indirectly, even after diagnosis. The relatively small number of infected cells and the low amount of viral RNA support the existence of non-acute, low level, possibly persistent enterovirus infections in the pancreas.
Collapse
Affiliation(s)
- Sarah J Richardson
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Teresa Rodriguez-Calvo
- Institute of Diabetes Research, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
| | - Jutta E Laiho
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - John S Kaddis
- Department of Diabetes and Cancer Discovery Science, Arthur Riggs Diabetes and Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Julius O Nyalwidhe
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Irina Kusmartseva
- Department of Pathology, Immunology, and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Sofia Morfopoulou
- Division of Infection and Immunity, University College London, London, UK
| | | | | | - Kathrin Maedler
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Margaret A Morris
- Department of Medicine, Eastern Virginia Medical School, Norfolk, VA, USA
- Autoimmunity and Primary Immunodeficiency Disease Section, Autoimmunity and Mucosal Immunology Branch, DAIT NIAD NIH DHHS, Rockville, MD, USA
| | - Jerry L Nadler
- UC Davis School of Medicine, Sacramento, CA, USA
- ACOS-Research Northern California VA Health System, Mather, CA, USA
| | - Mark A Atkinson
- Diabetes Institute, Department of Pathology, University of Florida, Gainesville, FL, USA
| | - Matthias von Herrath
- Diabetes Research Institute, Miller School of Medicine, University of Miami, Miami, FL, USA
| | | | - Heikki Hyoty
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Fimlab Laboratories, Tampere, Finland
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Noel G Morgan
- Islet Biology Exeter (IBEx), Department of Clinical and Biomedical Sciences, University of Exeter Medical School, Exeter, UK
| | - Alberto Pugliese
- Department of Diabetes Immunology, Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute, City of Hope, Duarte, CA, USA.
| |
Collapse
|