1
|
Sedlakova J, Daniore P, Horn Wintsch A, Wolf M, Stanikic M, Haag C, Sieber C, Schneider G, Staub K, Alois Ettlin D, Grübner O, Rinaldi F, von Wyl V, for the University of Zurich Digital Society Initiative (UZH-DSI) Health Community. Challenges and best practices for digital unstructured data enrichment in health research: A systematic narrative review. PLOS DIGITAL HEALTH 2023; 2:e0000347. [PMID: 37819910 PMCID: PMC10566734 DOI: 10.1371/journal.pdig.0000347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/14/2023] [Indexed: 10/13/2023]
Abstract
Digital data play an increasingly important role in advancing health research and care. However, most digital data in healthcare are in an unstructured and often not readily accessible format for research. Unstructured data are often found in a format that lacks standardization and needs significant preprocessing and feature extraction efforts. This poses challenges when combining such data with other data sources to enhance the existing knowledge base, which we refer to as digital unstructured data enrichment. Overcoming these methodological challenges requires significant resources and may limit the ability to fully leverage their potential for advancing health research and, ultimately, prevention, and patient care delivery. While prevalent challenges associated with unstructured data use in health research are widely reported across literature, a comprehensive interdisciplinary summary of such challenges and possible solutions to facilitate their use in combination with structured data sources is missing. In this study, we report findings from a systematic narrative review on the seven most prevalent challenge areas connected with the digital unstructured data enrichment in the fields of cardiology, neurology and mental health, along with possible solutions to address these challenges. Based on these findings, we developed a checklist that follows the standard data flow in health research studies. This checklist aims to provide initial systematic guidance to inform early planning and feasibility assessments for health research studies aiming combining unstructured data with existing data sources. Overall, the generality of reported unstructured data enrichment methods in the studies included in this review call for more systematic reporting of such methods to achieve greater reproducibility in future studies.
Collapse
Affiliation(s)
- Jana Sedlakova
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Institute of Biomedical Ethics and History of Medicine, University of Zurich, Zurich, Switzerland
| | - Paola Daniore
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
| | - Andrea Horn Wintsch
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center for Gerontology, University of Zurich, Zurich, Switzerland
- CoupleSense: Health and Interpersonal Emotion Regulation Group, University Research Priority Program (URPP) Dynamics of Healthy Aging, University of Zurich, Zurich, Switzerland
| | - Markus Wolf
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Mina Stanikic
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Christina Haag
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Chloé Sieber
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | - Gerold Schneider
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Computational Linguistics, University of Zurich, Zurich, Switzerland
| | - Kaspar Staub
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute of Evolutionary Medicine, University of Zurich, Zurich, Switzerland
| | - Dominik Alois Ettlin
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Oliver Grübner
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Department of Geography, University of Zurich, Zurich, Switzerland
| | - Fabio Rinaldi
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Switzerland
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Fondazione Bruno Kessler, Trento, Italy
- Swiss Institute of Bioinformatics, Switzerland
| | - Viktor von Wyl
- Digital Society Initiative, University of Zurich, Zurich, Switzerland
- Institute for Implementation Science in Health Care, University of Zurich, Zurich, Switzerland
- Epidemiology, Biostatistics and Prevention Institute, University of Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Parziale A, Mascalzoni D. Digital Biomarkers in Psychiatric Research: Data Protection Qualifications in a Complex Ecosystem. Front Psychiatry 2022; 13:873392. [PMID: 35757212 PMCID: PMC9225201 DOI: 10.3389/fpsyt.2022.873392] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/13/2022] [Indexed: 11/13/2022] Open
Abstract
Psychiatric research traditionally relies on subjective observation, which is time-consuming and labor-intensive. The widespread use of digital devices, such as smartphones and wearables, enables the collection and use of vast amounts of user-generated data as "digital biomarkers." These tools may also support increased participation of psychiatric patients in research and, as a result, the production of research results that are meaningful to them. However, sharing mental health data and research results may expose patients to discrimination and stigma risks, thus discouraging participation. To earn and maintain participants' trust, the first essential requirement is to implement an appropriate data governance system with a clear and transparent allocation of data protection duties and responsibilities among the actors involved in the process. These include sponsors, investigators, operators of digital tools, as well as healthcare service providers and biobanks/databanks. While previous works have proposed practical solutions to this end, there is a lack of consideration of positive data protection law issues in the extant literature. To start filling this gap, this paper discusses the GDPR legal qualifications of controller, processor, and joint controllers in the complex ecosystem unfolded by the integration of digital biomarkers in psychiatric research, considering their implications and proposing some general practical recommendations.
Collapse
|
3
|
Rao AR, Rao S, Chhabra R. Rising Mental Health Incidence Among Adolescents in Westchester, NY. Community Ment Health J 2022; 58:41-51. [PMID: 33591481 PMCID: PMC7884869 DOI: 10.1007/s10597-021-00788-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 01/29/2021] [Indexed: 01/31/2023]
Abstract
CONTEXT Many governments have publicly released healthcare data, which can be mined for insights about disease conditions, and their impact on society. METHODS We present a big-data analytics approach to investigate data in the New York Statewide Planning and Research Cooperative System (SPARCS) consisting of 20 million patient records. FINDINGS Whereas the age group 30-48 years exhibited an 18% decline in mental health (MH) disorders from 2009 to 2016, the age group 0-17 years showed a 5.4% increase. MH issues amongst the age group 0-17 years comprise a significant expenditure in New York State. Within this age group, we find a higher prevalence of MH disorders in females and minority populations. Westchester County has seen a 32% increase in incidences and a 41% increase in costs. CONCLUSIONS Our approach is scalable to data from multiple government agencies and provides an independent perspective on health care issues, which can prove valuable to policy and decision-makers.
Collapse
Affiliation(s)
| | - Saroja Rao
- State University of New York, Buffalo, NY, USA
| | - Rosy Chhabra
- Albert Einstein College of Medicine, New York, NY, USA
| |
Collapse
|
4
|
Russ TC, Woelbert E, Davis KAS, Hafferty JD, Ibrahim Z, Inkster B, John A, Lee W, Maxwell M, McIntosh AM, Stewart R. How data science can advance mental health research. Nat Hum Behav 2019; 3:24-32. [PMID: 30932051 DOI: 10.1038/s41562-018-0470-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 10/11/2018] [Indexed: 02/07/2023]
Abstract
Accessibility of powerful computers and availability of so-called big data from a variety of sources means that data science approaches are becoming pervasive. However, their application in mental health research is often considered to be at an earlier stage than in other areas despite the complexity of mental health and illness making such a sophisticated approach particularly suitable. In this Perspective, we discuss current and potential applications of data science in mental health research using the UK Clinical Research Collaboration classification: underpinning research; aetiology; detection and diagnosis; treatment development; treatment evaluation; disease management; and health services research. We demonstrate that data science is already being widely applied in mental health research, but there is much more to be done now and in the future. The possibilities for data science in mental health research are substantial.
Collapse
Affiliation(s)
- Tom C Russ
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK.
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK.
- Centre for Dementia Prevention, University of Edinburgh, Edinburgh, UK.
- Alzheimer Scotland Dementia Research Centre, University of Edinburgh, Edinburgh, UK.
- Old Age Psychiatry, Royal Edinburgh Hospital, NHS Lothian, Edinburgh, UK.
| | | | - Katrina A S Davis
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| | - Jonathan D Hafferty
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Zina Ibrahim
- Department of Biostatistics and Health Informatics, King's College London, London, UK
- The Farr Institute of Health Informatics Research, University College London, London, UK
| | - Becky Inkster
- Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ann John
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - William Lee
- Community and Primary Care Research Group, Plymouth University Peninsula Schools of Medicine and Dentistry, University of Plymouth, Plymouth, UK
- Devon Partnership NHS Trust, Exeter, UK
| | | | - Andrew M McIntosh
- Centre for Cognitive Ageing and Cognitive Epidemiology, University of Edinburgh, Edinburgh, UK
- Division of Psychiatry, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Rob Stewart
- Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|