1
|
Saigo T, Satoh K, Kunieda T. Comparative Study of Gamma Radiation Tolerance between Desiccation-Sensitive and Desiccation-Tolerant Tardigrades. Zoolog Sci 2025; 42. [PMID: 39932749 DOI: 10.2108/zs240056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 08/08/2024] [Indexed: 05/08/2025]
Abstract
Tardigrades are small metazoans renowned for their exceptional tolerance against various harsh environments in a dehydrated state. Some species exhibited an extraordinary tolerance against high-dose irradiation even in a hydrated state. Given that natural sources of high radiation are rare, the selective pressure to obtain such a high radiotolerance during evolution remains elusive. It has been postulated that high radiation tolerances could be derived from adaptation to dehydration, because both dehydration and radiation cause similar damage on biomolecules at least partly, e.g., DNA cleavage and oxidation of various biomolecules, and dehydration is a common environmental stress that terrestrial organisms should adapt to. Although tardigrades are known for high radiotolerance, the radiotolerance records have been reported only for desiccation-tolerant tardigrade species and nothing was known about the radiotolerance in desiccation-sensitive tardigrade species. Hence, the relationship between desiccation-tolerance and radiotolerance remained unexplored. To this end, we examined the radiotolerance of the desiccation-sensitive tardigrade Grevenius myrops (formerly known as Isohypsibius myrops) in comparison to the well-characterized desiccation-tolerant tardigrade, Ramazzottius varieornatus. The median lethal dose (LD50) of G. myrops was approximately 2240 Gy. This was much lower than those reported for desiccation tolerant eutardigrades. The effects of irradiation on the lifespan and the ovipositions were more severe in G. myrops compared to those in R. varieornatus. The present study provides precise records on the radiotolerance of a desiccation-sensitive tardigrade and the current data supported the correlation between desiccation tolerance and radiotolerance at least in eutardigrades.
Collapse
Affiliation(s)
- Tokiko Saigo
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan
| | - Katsuya Satoh
- Department of Quantum-Applied Biosciences, Takasaki Institute for Advanced Quantum Science, National Institutes for Quantum Science and Technology (QST), Takasaki, Gunma 370-1292, Japan
| | - Takekazu Kunieda
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bukyo-ku, Tokyo 113-0033, Japan,
| |
Collapse
|
2
|
Bodnar IS, Cheban EV. Joint effects of gamma radiation and zinc on duckweed Lemna minor L. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 257:106438. [PMID: 36889126 DOI: 10.1016/j.aquatox.2023.106438] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 12/12/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
When assessing the consequences of combined chemical and radiation pollution on bodies of water, it is important to take into account the interaction of different factors, especially the possible synergistic increase in the toxic effect on growth, biochemical and physiological processes of living organisms. In this work, we studied the combined effect of γ-radiation and zinc on freshwater duckweed Lemna minor L. Irradiated plants (doses were 18, 42, and 63 Gy) were placed on a medium with an excess of zinc (3.15, 6.3, 12.6 μmol/L) for 7 days. Our results showed that the accumulation of zinc in tissues increased in irradiated plants when compared to non-irradiated plants. The interaction of factors in assessing their effect on the growth rate of plants was most often additive, but there was also a synergistic increase in the toxic effect at a zinc concentration of 12.6 μmol/L and irradiation at doses of 42 and 63 Gy. When comparing the combined and separate effects of gamma radiation and zinc, it was found that a reduction in the area of fronds (leaf-like plates) was caused exclusively due to the effects of radiation. Zinc and γ-radiation contributed to the enhancement of membrane lipid peroxidation. Irradiation stimulated the production of chlorophylls a and b, as well as carotenoids.
Collapse
Affiliation(s)
- I S Bodnar
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia.
| | - E V Cheban
- Institute of Biology of the Komi Science Center of the Ural Branch of the Russian Academy of Sciences, 28 Kommunisticheskaya st., Syktyvkar, Komi Republic, Russia
| |
Collapse
|
3
|
Tsuneizumi K, Yamada M, Kim HJ, Ichida H, Ichinose K, Sakakura Y, Suga K, Hagiwara A, Kawata M, Katayama T, Tezuka N, Kobayashi T, Koiso M, Abe T. Application of heavy-ion-beam irradiation to breeding large rotifer. Biosci Biotechnol Biochem 2021; 85:703-713. [PMID: 33624778 DOI: 10.1093/bbb/zbaa094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
In larviculture facilities, rotifers are generally used as an initial food source, while a proper size of live feeds to connect rotifer and Artemia associated with fish larval growth is needed. The improper management of feed size and density induces mass mortality and abnormal development of fish larvae. To improve the survival and growth of target larvae, this study applied carbon and argon heavy-ion-beam irradiation in mutation breeding to select rotifer mutants with larger lorica sizes. The optimal irradiation conditions of heavy-ion beam were determined with lethality, reproductivity, mutant frequency, and morphometric characteristics. Among 56 large mutants, TYC78, TYC176, and TYA41 also showed active population growth. In conclusion, (1) heavy-ion-beam irradiation was defined as an efficient tool for mutagenesis of rotifers and (2) the aforementioned 3 lines that have larger lorica length and active population growth may be used as a countermeasure of live feed size gap during fish larviculcure.
Collapse
Affiliation(s)
| | - Mieko Yamada
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | - Hee-Jin Kim
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Hiroyuki Ichida
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| | | | - Yoshitaka Sakakura
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Koushirou Suga
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Graduate School of Fisheries Science and Environmental Sciences, Nagasaki University, Nagasaki, Japan.,Organization for Marine Science and Technology, Nagasaki University, Nagasaki, Japan
| | - Miki Kawata
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takashi Katayama
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Nobuhiro Tezuka
- Japan Sea National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Miyazu, Japan
| | - Takanori Kobayashi
- National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, Yokohama, Japan
| | - Masahiko Koiso
- Seikai National Fisheries Research Institute, Japan Fisheries Research and Education Agency, Ishigaki, Japan
| | - Tomoko Abe
- Nishina Center for Accelerator-Based Science, RIKEN, Wako, Japan
| |
Collapse
|
4
|
Lee YH, Kang HM, Kim MS, Lee JS, Wang M, Hagiwara A, Jeong CB, Lee JS. Multigenerational Mitigating Effects of Ocean Acidification on In Vivo Endpoints, Antioxidant Defense, DNA Damage Response, and Epigenetic Modification in an Asexual Monogonont Rotifer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:7858-7869. [PMID: 32490673 DOI: 10.1021/acs.est.0c01438] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ocean acidification (OA) is caused by changes in ocean carbon chemistry due to increased atmospheric pCO2 and is predicted to have deleterious effects on marine ecosystems. While the potential impacts of OA on many marine species have been studied, the multigenerational effects on asexual organisms remain unknown. We found that low seawater pH induced oxidative stress and DNA damage, decreasing growth rates, fecundity, and lifespans in the parental generation, whereas deleterious effects on in vivo endpoints in F1 and F2 offspring were less evident. The findings suggest that multigenerational adaptive effects play a role in antioxidant abilities and other defense mechanisms. OA-induced DNA damage, including double-strand breaks (DSBs), was fully repaired in F1 offspring of parents exposed to OA for 7 days, indicating that an adaptation mechanism may be the major driving force behind multigenerational adaptive effects. Analysis of epigenetic modification in response to OA involved examination of histone modification of DNA repair genes and a chromatin immunoprecipitation assay, as Bombus koreanus has no methylation pattern for CpG in its genome. We conclude that DSBs, DNA repair, and histone modification play important roles in multigenerational plasticity in response to OA in an asexual monogonont rotifer.
Collapse
Affiliation(s)
- Young Hwan Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hye-Min Kang
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Min-Sub Kim
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jin-Sol Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Minghua Wang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems/College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
- Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Chang-Bum Jeong
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
- Department of Marine Science, College of Nature Science, Incheon National University, Incheon 22012, South Korea
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| |
Collapse
|
5
|
Lee JS, Kang HM, Jeong CB, Han J, Park HG, Lee JS. Protective Role of Freshwater and Marine Rotifer Glutathione S-Transferase Sigma and Omega Isoforms Transformed into Heavy Metal-Exposed Escherichia coli. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7840-7850. [PMID: 31244073 DOI: 10.1021/acs.est.9b01460] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Glutathione S-transferases (GSTs) play an important role in phase II of detoxification to protect cells in response to oxidative stress generated by exogenous toxicants. Despite their important role in defense, studies on invertebrate GSTs have mainly focused on identification and characterization. Here, we isolated omega and sigma classes of GSTs from the freshwater rotifer Brachionus calyciflorus and the marine rotifer Brachionus koreanus and explored their antioxidant function in response to metal-induced oxidative stress. The recombinant Bc- and Bk-GSTs were successfully transformed and expressed in Escherichia coli. Their antioxidant potential was characterized by measuring kinetic properties and enzymatic activity in response to pH, temperature, and chemical inhibitor. In addition, a disk diffusion assay, reactive oxygen species assay, and morphological analysis revealed that GST transformed into E. coli significantly protected cells from oxidative stress induced by H2O2 and metals (Hg, Cd, Cu, and Zn). Stronger antioxidant activity was exhibited by GST-S compared to GST-O in both rotifers, suggesting that GST-S plays a prominent function as an antioxidant defense mechanism in Brachionus spp. Overall, our study clearly shows the antioxidant role of Bk- and Bc-GSTs in E. coli and provides a greater understanding of GST class-specific and interspecific detoxification in rotifer Brachionus spp.
Collapse
Affiliation(s)
- Jin-Sol Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Hye-Min Kang
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Chang-Bum Jeong
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Jeonghoon Han
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| | - Heum Gi Park
- Department of Marine Resource Development , Gangneung-Wonju National University , Gangneung , South Korea
| | - Jae-Seong Lee
- Department of Biological Science , Sungkyunkwan University , Suwon , South Korea
| |
Collapse
|