1
|
Li S, Li Y, Xie X, Li Z, Yuan K, Chen X, Ci Z, Lin L, Hu L, Yin Y, Shi J, Luan T, Chen B. Unveiling in situ methylmercury production and degradation in aquaculture sediments: Transformation rates, functional genes and microbial methylators. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137659. [PMID: 39978200 DOI: 10.1016/j.jhazmat.2025.137659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 02/06/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Methylmercury (MeHg) is recognized as a deleterious neurotoxin with the traits of biomagnification through the food chain and accumulation in edible aquatic products. However, the in situ production of MeHg in aquaculture environments has not been well understood. Herein, the sediments were collected from aquaculture ponds with different rearing operations. Isotope-based tracer analysis showed that Hg methylation and MeHg demethylation rate constants in the aquaculture sediments were 0.001-0.022 d-1 and 0.11-0.40 d-1, respectively. Most of bacterial Hg methylators (> 97.0 %) in aquaculture sediments were assigned to Firmicutes and Actinobacteria phyla. Four functional genes responsible for Hg transformation (hgcAB and merAB) could be detected in the aquaculture sediments. In particular, Hg methylation rate constants were positively and significantly correlated with the levels of hgcAB genes (p < 0.05). Inhibitive reagent addition assays and correlation analysis consistently demonstrated that sulfate-reducing bacteria (SRB) were the main methylators in aquaculture sediments, and antibiotic use could fortify the resistance of Hg methylators to antibiotics. These findings suggest that the in situ production of MeHg in aquaculture sediments may be effectively reduced via inhibiting SRB activities, and both hgcAB genes are useful markers of MeHg production in aquaculture environments.
Collapse
Affiliation(s)
- Songzhang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiuqin Xie
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Ke Yuan
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Xin Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhijia Ci
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Li Lin
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Tiangang Luan
- State Key Laboratory of Biocontrol, School of Life Science, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China; Guangdong Provincial Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, China.
| |
Collapse
|
2
|
Fang J, Yin B, Wang X, Pan K, Wang WX. Clamworm bioturbation reduces mercury methylation through alteration of methylator composition in sediment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125947. [PMID: 40023235 DOI: 10.1016/j.envpol.2025.125947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 02/08/2025] [Accepted: 02/27/2025] [Indexed: 03/04/2025]
Abstract
Coastal sediment has been recognized as a hotspot of mercury (Hg) methylation and acts as an important reservoir for Hg-methylating microbes. The bioturbation behaviors of benthic organisms can significantly influence sediment properties and potentially affect the mobility and availability of contaminants within the sediment. However, the effects of bioturbation on Hg speciation and disposition in sediment have not been well addressed. This study investigated the influence of clamworm activities on the Hg-methylation process and the composition of methylators in sediment. The results showed that the presence of clamworms greatly suppressed the growth of Hg-methylators and led to a significant decrease in the production rate of methylmercury (MeHg) (from 0.61 to 0.36 ng g-1 dw d-1). Metagenomic results indicate that bioturbation significantly decreased the abundance and diversity of putative Hg methylators and altered the dominant contributors to Hg methylation process. Furthermore, clamworm activities influenced the metabolic traits of Hg methylators and shifted the community toward greater oxygen tolerance. Overall, bioturbation by clamworms suppressed the Hg methylation process and increased the abundance of eco-friendly microbiome, which ultimately contributed to making the sedimentary ecosystem more diverse and resilient. These findings highlight the vital role of bioturbation in mitigating MeHg contamination in sediment and provide a deeper understanding of Hg-methylating microbes and the Hg cycling processes in coastal environments.
Collapse
Affiliation(s)
- Junhao Fang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Bingxin Yin
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Wen-Xiong Wang
- School of Energy and Environment and State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, China; Research Centre for the Oceans and Human Health, City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
3
|
Krause V, Baldwin AK, Peterson BD, Krabbenhoft DP, Janssen SE, Willacker JJ, Eagles-Smith CA, Poulin BA. Riparian Methylmercury Production Increases Riverine Mercury Flux and Food Web Concentrations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20490-20501. [PMID: 39514639 PMCID: PMC11580175 DOI: 10.1021/acs.est.4c08585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
The production and uptake of toxic methylmercury (MeHg) impacts aquatic ecosystems globally. Rivers can be dynamic and difficult systems to study for MeHg production and bioaccumulation, hence identifying sources of MeHg to these systems is both challenging and important for resource management within rivers and main-stem reservoirs. Riparian zones, which are known biogeochemical hotspots for MeHg production, are understudied as potential sources of MeHg to rivers. Here, we present a comprehensive quantification of the hydrologic and biogeochemical processes governing MeHg concentrations, loads, and bioaccumulation at 16 locations along 164 km of the agriculturally intensive Snake River (Idaho, Oregon USA) during summer baseflow conditions, with emphasis on riparian production of MeHg. Approximately one-third of the MeHg load of the Snake River could not be attributed to inflowing waters (upgradient, tributaries, or irrigation drains). Across the study reach, increases in MeHg loads in surface waters were significantly correlated with MeHg concentrations in riparian porewaters, suggesting riparian zones were likely an important source of MeHg to the Snake River. Across all locations, MeHg concentrations in surface waters positively correlated with MeHg concentrations in benthic snails and clams, supporting that riparian produced MeHg was assimilated into local aquatic food webs. This study contributes new insights into riparian MeHg production within rivers which can inform mitigation efforts to reduce MeHg bioaccumulation in fish.
Collapse
Affiliation(s)
- Virginia
M. Krause
- Department
of Environmental Toxicology, University
of California—Davis, Davis, California 95616, United States
| | - Austin K. Baldwin
- Idaho
Water Science Center, U.S. Geological Survey, Boise, Idaho 83702, United States
| | - Benjamin D. Peterson
- Department
of Environmental Toxicology, University
of California—Davis, Davis, California 95616, United States
| | - David P. Krabbenhoft
- Upper
Midwest Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - Sarah E. Janssen
- Upper
Midwest Science Center, Mercury Research Laboratory, U.S. Geological Survey, Madison, Wisconsin 53726, United States
| | - James J. Willacker
- Forest
and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon 97330, United States
| | - Collin A. Eagles-Smith
- Forest
and Rangeland Ecosystem Science Center, U.S. Geological Survey, Corvallis, Oregon 97330, United States
| | - Brett A. Poulin
- Department
of Environmental Toxicology, University
of California—Davis, Davis, California 95616, United States
| |
Collapse
|
4
|
Bento B, Hintelmann H. Assessment of mercury methylation and methylmercury demethylation potentials in water and sediments along the Wabigoon River system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175658. [PMID: 39168343 DOI: 10.1016/j.scitotenv.2024.175658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/15/2024] [Accepted: 08/18/2024] [Indexed: 08/23/2024]
Abstract
Monomethylmercury (MMHg) plays a crucial role in the accumulation of mercury (Hg) within aquatic food chains. Since ambient levels of methylmercury are governed by the balance of simultaneous methylation and demethylation processes, determining in situ methylation and demethylation rates is critically important to understand the dynamics of methylmercury in the environment. This is especially important in the Wabigoon River system in Ontario, Canada, which is severely contaminated with Hg by a chlor-alkali facility operating in the 1960s, and still exhibits some of the highest recorded fish mercury concentrations in Canada. This work used a simultaneous addition of isotope enriched Hg and MMHg tracers to ascertain Hg methylation and MMHg demethylation potentials. At the locations investigated for this study, the most favourable conditions for Hg methylation were found at the Hydroelectric dam, being able to transform 4.2 % and 4.4 % of added Hg in water and sediments per day, respectively, to MMHg. This could correspond to 1.9 ng/L and 29 ng/g of new MMHg being produced from current ambient Hg. Clay Lake, which is considered a sink for mercury and exhibiting a seasonal anoxic environment at its bottom waters, also demonstrated significant MMHg generation, being able to produce 2.7 ng/L and 13 ng/g of MMHg per day, respectively. Demethylation rates in sediments of riverbed and wetland locations showed an average half-life for methylmercury of 2.1 days, indicating a rapid turnover of MMHg in the Wabigoon River. However, significantly lower demethylation rates were also measured near the inflow of Clay Lake, where it took up to 144 days for MMHg to decrease by 50 %. Generally, most of the investigated locations downstream of the pollution source displayed the potential to generate methylmercury, which could be distributed throughout the Wabigoon River system and therefore require attention with respect to future remediation activities.
Collapse
Affiliation(s)
- Beatriz Bento
- Environmental and Life Sciences, Trent University, Peterborough, ON, Canada.
| | - Holger Hintelmann
- Department of Chemistry, Trent University, Peterborough, ON, Canada; Water Quality Centre, Trent University, Peterborough, ON, Canada.
| |
Collapse
|
5
|
Xia J, Qiu YY, Zhen Y, Chen Z, Li H, Chen B, Zou J, Jiang F. Mercury Immobilization without Methylation in Sulfidogenic Systems Dominated by Sulfur Disproportionating Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19714-19724. [PMID: 39360610 DOI: 10.1021/acs.est.4c03973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
The sulfidogenic process mediated by sulfate-reducing bacteria (SRB) is not ideal for treating mercury (Hg)-bearing wastewater due to the risk of methylmercury (MeHg) production. Addressing this challenge, our study demonstrated that, under S0-rich conditions and without organic additives, sulfidogenic communities dominated by sulfur-disproportionating bacteria (SDB) can effectively remove Hg(II) and prevent MeHg production. Using various inocula, we successfully established biological sulfidogenic systems driven separately by SDB and SRB. Batch experiments revealed that SDB cultures completely removed Hg(II) from the solution as HgS. Remarkably, no MeHg production was observed in the SDB cultures, while an average concentration of 0.32 μg/L of MeHg was detected in the SRB cultures. The absence of MeHg production in the SDB cultures could be mainly attributed to the cultivation conditions that reshaped the microbial community, resulting in a rapid decline of SRB-dominated Hg-methylating microorganisms. Consequently, the average abundance of the hgcA gene was 28 times lower than the levels before cultivation. Additionally, we found that the enriched Dissulfurimicrobium sp. bin121 can produce biogenic sulfide through sulfur disproportionation but lacks the hgcA gene, rendering it incapable of methylating Hg. Overall, we propose a novel biotechnology driven by SDB that can safely and sustainably treat Hg-bearing wastewater.
Collapse
Affiliation(s)
- Juntao Xia
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yan-Ying Qiu
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yuming Zhen
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhe Chen
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Hao Li
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Boyu Chen
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiahui Zou
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Feng Jiang
- Guangdong Provincial Key Lab of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- Guangdong Provincial Engineering Research Center of Low-Carbon Technology for Water Pollution Control, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Liu Y, Guo X, Ju J, Gong H, Wang H, Chen L, Liu Y, Wang P, Liang Y. Determinations of methylmercury and mercury methylation/demethylation rate constants in environmental samples using isotope dilution/tracing methods by automatic ethylation-purge and trap-GC-ICP-MS. Anal Chim Acta 2024; 1323:343077. [PMID: 39182976 DOI: 10.1016/j.aca.2024.343077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND Mercury (Hg), especially methylmercury (MeHg) as a most toxic format of Hg in the environment, has been paid widely concern due to its high bioaccumulative capability and great risk to humans. Great efforts have been made to develop ethylation-purge and trap-gas chromatography-inductively coupled plasma mass spectrometry system for MeHg analysis and Hg biogeochemical cycling investigation. However, the generally manual operation limits the analytical efficiency, and the lack of applications in the real environmental samples restricts the future study. There is a great need for a rapid and accurate method to determine MeHg and Hg methylation/demethylation processes in environmental samples. RESULTS Herein, an automatic ethylation-purge and trap-GC-ICP-MS system based on isotope dilution method for MeHg analysis was developed. The results showed that the limit of detection of the developed method was 0.01 ng L-1, the MeHg can be analyzed within 6 min with a relative standard deviation of 4.3 %. The accuracy of this proposed method was verified by the satisfying recoveries of certified reference materials (99.0 ± 0.35 % in ECM-CC580, sediment; 98.0 ± 0.67 % in DORM-4, Fish protein). In addition, comparable concentrations of MeHg in natural water were measured using both of the developed and classical distillation methods. Subsequently, the developed method was adapted for measuring concentrations of MeHg in the water, sediment, and fish muscle collected from the coastal and freshwater systems. Finally, the photic demethylation and biotic methylation/demethylation rate constants in natural surface water and sediment were determined using isotope dilution/tracing methods by automatic ethylation-purge and trap-GC-ICP-MS. SIGNIFICANCE AND NOVELTY The developed automatic ethylation-purge and trap-GC-ICP-MS system is promising for accurate and convenient MeHg analysis and Hg biogeochemical cycling investigation in real environmental samples with isotope dilution and tracing methods.
Collapse
Affiliation(s)
- Yandong Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Xueyu Guo
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Jinqian Ju
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Haoting Gong
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Huijing Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Lufeng Chen
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yanqun Liu
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China; School of Medicine, Jianghan University, Wuhan, 430056, China.
| | - Pu Wang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| | - Yong Liang
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan, 430056, China
| |
Collapse
|
7
|
Jiang Z, Wang Z, Zhao Y, Peng M. Unveiling the vital role of soil microorganisms in selenium cycling: a review. Front Microbiol 2024; 15:1448539. [PMID: 39323878 PMCID: PMC11422209 DOI: 10.3389/fmicb.2024.1448539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
Selenium (Se) is a vital trace element integral to numerous biological processes in both plants and animals, with significant impacts on soil health and ecosystem stability. This review explores how soil microorganisms facilitate Se transformations through reduction, oxidation, methylation, and demethylation processes, thereby influencing the bioavailability and ecological functions of Se. The microbial reduction of Se compounds, particularly the conversion of selenate and selenite to elemental Se nanoparticles (SeNPs), enhances Se assimilation by plants and impacts soil productivity. Key microbial taxa, including bacteria such as Pseudomonas and Bacillus, exhibit diverse mechanisms for Se reduction and play a substantial role in the global Se cycle. Understanding these microbial processes is essential for advancing soil management practices and improving ecosystem health. This review underscores the intricate interactions between Se and soil microorganisms, emphasizing their significance in maintaining ecological balance and promoting sustainable agricultural practices.
Collapse
Affiliation(s)
- Zhihui Jiang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Zhiyong Wang
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| | - Yong Zhao
- College of Life Science, Baicheng Normal University, Baicheng, China
| | - Mu Peng
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi, China
- College of Biological and Food Engineering, Hubei Minzu University, Enshi, China
| |
Collapse
|
8
|
Li Y, Zhang H, Guan Y, Cheng G, Li Z, Li Z, Cao M, Yin Y, Hu L, Shi J, Chen B. Functional genes and microorganisms controlling in situ methylmercury production and degradation in marine sediments: A case study in the Eastern China Coastal Seas. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134965. [PMID: 38905972 DOI: 10.1016/j.jhazmat.2024.134965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
Dominant microorganisms and functional genes, including hgcA, hgcB, merA, and merB, have been identified to be responsible for mercury (Hg) methylation or methylmercury (MeHg) demethylation. However, their in situ correlation with MeHg levels and the processes of Hg methylation and MeHg demethylation in coastal areas remains poorly understood. In this study, four functional genes related to Hg methylation and MeHg demethylation (hgcA, hgcB, merA, and merB) were all detected in the sediments of the Eastern China Coastal Seas (ECCSs) (representative coastal seas highly affected by human activities) using metagenomic approaches. HgcA was identified to be the key gene controlling the in situ net production of MeHg in the ECCSs. Based on metagenomic analysis and incubation experiments, sulfate-reducing bacteria were identified as the dominant microorganisms controlling Hg methylation in the ECCSs. In addition, hgcA gene was positively correlated with the MeHg content and Hg methylation rates, highlighting the potential roles of Hg methylation genes and microorganisms influenced by sediment physicochemical properties in MeHg cycling in the ECCSs. These findings highlighted the necessity of conducting similar studies in other natural systems for elucidating the molecular mechanisms underlying MeHg production in aquatic environments.
Collapse
Affiliation(s)
- Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Huimin Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yingjun Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Guoyi Cheng
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhaohong Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Zhuang Li
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Mengxi Cao
- Hubei Key Laboratory of Environmental and Health Effects of Persistent Toxic Substances, School of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ligang Hu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baowei Chen
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China.
| |
Collapse
|
9
|
Wang Y, Zhang L, Chen X, Li C, Ding S, Yan J, Xiao J, Wang B, Xu L, Hang X. Algal-derived dissolved organic matter accelerates mercury methylation under cyanobacterial blooms in the sediment of eutrophic lakes. ENVIRONMENTAL RESEARCH 2024; 251:118734. [PMID: 38493854 DOI: 10.1016/j.envres.2024.118734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/17/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Mercury (Hg), especially in the form of methylmercury (MeHg), poses a significant threat to both organisms and the environment due to its extreme toxicity. While methylation process of Hg in sediments has been extensively studied, recognition of its associated risks and mechanisms during cyanobacterial blooms remains limited. This study investigated the distribution characteristics of Hg and MeHg in sediments of Taihu Lake, China. The concentration of Hg and MeHg varied within the range of 96.0-212.0 ng g-1 and 0.1-0.5 ng g-1, respectively. Higher ecological risks of Hg were found in algal-dominated regions compared to macrophyte areas. The significant correlations observed between Hg, MeHg, and algal-derived dissolved organic matter (ADOM) components C1 and C2 in algal-dominated regions indicate a close association between ADOM components and the Hg methylation process. These components are involved in the absorption or complexation of Hg, participate in redox reactions, and modulate microbial activity. The dsrB gene in sulfate-reducing bacteria (SRB) was found to accelerate the metabolic pathways of Hg methylation. These findings indicate that ADOM could enhance the methylation process of Hg during cyanobacterial blooms, which warrants attention.
Collapse
Affiliation(s)
- Yan Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Lan Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Xiang Chen
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Cai Li
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Shiming Ding
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Jiabao Yan
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Jing Xiao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China
| | - Bin Wang
- Zhongyifeng Construction Group Co., Ltd., Suzhou, 215131, China
| | - Lv Xu
- Anhui Urban Construction Design Institute Corp., Ltd, Hefei, 230051, China
| | - Xiaoshuai Hang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing, 210042, China.
| |
Collapse
|
10
|
Cunha M, Nardi A, Henriques B, Soares AMVM, Pereira E, Regoli F, Freitas R. The role of the macroalgae Ulva lactuca on the cellular effects of neodymium and mercury in the mussel Mytilus galloprovincialis. CHEMOSPHERE 2024; 358:141908. [PMID: 38615948 DOI: 10.1016/j.chemosphere.2024.141908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 03/02/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Rare earth elements (REEs) are increasingly being studied mainly due to their economic importance and wide range of applications, but also for their rising environmental concentrations and potential environmental and ecotoxicological impacts. Among REEs, neodymium (Nd) is widely used in lasers, glass additives, and magnets. Currently, NdFeB-based permanent magnets are the most significant components of electronic devices and Nd is used because of its magnetic properties. In addition to REEs, part of the environmental pollution related to electrical and electronic equipment, fluorescent lamps and batteries also comes from mercury (Hg). Since both elements persist in ecosystems and are continuously accumulated by marine organisms, a promising approach for water decontamination has emerged. Through a process known as sorption, live marine macroalgae can be used, especially Ulva lactuca, to accumulate potential toxic elements from the water. Therefore, the present study aimed to evaluate the cellular toxicity of Nd and Hg in Mytilus galloprovincialis, comparing the biochemical effects induced by these elements in the presence or absence of the macroalgae U. lactuca. The results confirmed that Hg was more toxic to mussels than Nd, but also showed the good capability of U. lactuca in preventing the onset of cellular disturbance and homeostasis disruption in M. galloprovincialis by reducing bioavailable Hg levels. Overall, the biochemical parameters evaluated related to metabolism, antioxidant and biotransformation defences, redox balance, and cellular damage, showed that algae could prevent biological effects in mussels exposed to Hg compared to those exposed to Nd. This study contributes to the advancement of knowledge in this field, namely the understanding of the impacts of different elements on bivalves and the crucial role of algae in the protection of other aquatic organisms.
Collapse
Affiliation(s)
- Marta Cunha
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alessandro Nardi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Bruno Henriques
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal; LAQV-REQUIMTE - Associated Laboratory for Green Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Francesco Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Ancona, Italy; NBFC, National Biodiversity Future Center, Palermo 90131, Italy
| | - Rosa Freitas
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal; Centre for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
11
|
Kim J, Soerensen AL, Jeong H, Jeong S, Kim E, Lee YM, Jin YK, Rhee TS, Hong JK, Han S. Cross-shelf processes of terrigenous organic matter drive mercury speciation on the east siberian shelf in the Arctic Ocean. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123270. [PMID: 38163627 DOI: 10.1016/j.envpol.2023.123270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The cross-shelf distributions of total mercury (THg), methylmercury (MeHg) and organic and inorganic matter, as well as the presence of the hgcA gene were investigated on the East Siberian Shelf (ESS) to understand the processes underlying the speciation of sedimentary Hg. Samples were collected from 12 stations grouped into four zones based on water depth: inner shelf (5 stations), mid-shelf (3 stations), outer shelf (2 stations), and slope (2 stations). The THg concentration in the surface sediment increased from the inner shelf (0.25 ± 0.023 nmol g-1) toward the slope (0.52 nmol g-1), and, when normalized to total organic carbon content, the THg showed a positive correlation with the clay-to-sand ratio (r2 = 0.48, p = 0.012) and degree of chemical weathering (r2 = 0.79, p = 0.0001). The highest MeHg concentrations (3.0 ± 1.8 pmol g-1), as well as peaks in the S/C ratio (0.012 ± 0.002) of sediment-leached organic matter, were found on the mid-shelf, suggesting that the activities of sulfate reducers control the net Hg(II) methylation rates in the sediment. This was supported by results from a principal component analysis (PCA) performed with Hg species concentrations and sediment-leached organic matter compositions. The site-specific variation in MeHg showed the highest similarity with that of CHONS compounds in the PCA, where Deltaproteobacteria were projected to be putative Hg(II) methylators in the gene analysis. In summary, the hydrodynamic sorting of lithogenic particles appears to govern the cross-shelf distribution of THg, and in situ methylation is considered a major source of MeHg in the ESS sediment.
Collapse
Affiliation(s)
- Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm, Sweden
| | - Hakwon Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Seorin Jeong
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Eunsuk Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Yung Mi Lee
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Young Keun Jin
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Tae Siek Rhee
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Jong Kuk Hong
- Korea Polar Research Institute, Incheon, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
12
|
Ren Z, Jiang W, Sun N, Shi J, Zhang D, Zhang J, Wang Z, Yang J, Yu J, Lv Z. Responses of the structure and function of microbes in Yellow River Estuary sediments to different levels of mercury. MARINE ENVIRONMENTAL RESEARCH 2023; 190:106097. [PMID: 37441819 DOI: 10.1016/j.marenvres.2023.106097] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/28/2023] [Accepted: 07/07/2023] [Indexed: 07/15/2023]
Abstract
The health and stability of the estuary of the Yellow River ecosystem have come under increasing pressure from land-based inputs of heavy metals. While it is known that heavy metals affect the function and health of the microbial community, there remains little knowledge on the responses of the microbial community to heavy metals, particularly highly toxic mercury. The research aimed to characterize the responses of the sediment microbial community of the estuary of the Yellow River to different levels of mercury stress. Estuary sediment samples were collected for microbial community analysis, measurement of mercury [including total mercury (THg) and methylmercury (MeHg)], and measurement of other physicochemical factors, including pH, total organic carbon (TOC), sulfide, iron ratio (Fe3+/Fe2+), ammonium salt (NH4+), and biochemical oxygen demand (BOD). The application of 16S rRNA sequencing identified 60 phyla of bacteria, dominated by Proteobacteria, Firmicutes, and Bacteroidetes. Stations with higher THg or MeHg and lower microbial abundance and diversity were generally distributed further outside of the estuary. Besides mercury, the measured physicochemical factors had impacts on microbial diversities and distribution. Metagenomics assessment of three stations, representative of low, moderate, and high mercury concentrations and measured physicochemical factors, revealed the abundances and functions of predicted genes. The most abundant genes regulating the metabolic pathways were categorized as metabolic, environmental information processing, and genetic information processing, genes. At stations with high levels of mercury, the dominant genes were related to energy metabolism, signal transport, and membrane transport. Functional genes with a mercury-resistance function were generally in the mer system (merA, merC, merT, merR), alkylmercury lyase, and metal-transporting ATPase. These results offer insight into the microbial community structure of the sediments in the Yellow River Estuary and the microbial function of mercury resistance under mercury stress.
Collapse
Affiliation(s)
- Zhonghua Ren
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China.
| | - Wenliang Jiang
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China
| | - Na Sun
- MabPlex International Co. Ltd (Worldwide), Yantai, 265500, China
| | - Junfeng Shi
- Clinical Research Center, Affiliated Hospital of Weifang Medical University, Weifang, 261042, China
| | - Depu Zhang
- Institute of Marine Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Jingjing Zhang
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China
| | - Zhikang Wang
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China
| | - Jisong Yang
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China
| | - Junbao Yu
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China
| | - Zhenbo Lv
- Institute for Advanced Study of Coastal Ecology, Lu Dong University, Yantai, 264025, China.
| |
Collapse
|
13
|
Wang T, Yang X, Li Z, Chen W, Wen X, He Y, Ma C, Yang Z, Zhang C. MeHg production in eutrophic lakes: Focusing on the roles of algal organic matter and iron-sulfur-phosphorus dynamics. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131682. [PMID: 37270963 DOI: 10.1016/j.jhazmat.2023.131682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/20/2023] [Accepted: 05/21/2023] [Indexed: 06/06/2023]
Abstract
The mechanisms by which eutrophication affects methylmercury (MeHg) production have not been comprehensively summarized, which hinders accurately predicting the MeHg risk in eutrophic lakes. In this review, we first discussed the effects of eutrophication on biogeochemical cycle of mercury (Hg). Special attentions were paid to the roles of algal organic matter (AOM) and iron (Fe)-sulfur (S)-phosphorus (P) dynamics in MeHg production. Finally, the suggestions for risk control of MeHg in eutrophic lakes were proposed. AOM can affect in situ Hg methylation by stimulating the abundance and activities of Hg methylating microorganisms and regulating Hg bioavailability, which are dependent on bacteria-strain and algae species, the molecular weight and composition of AOM as well as environmental conditions (e.g., light). Fe-S-P dynamics under eutrophication including sulfate reduction, FeS formation and P release could also play crucial but complicated roles in MeHg production, in which AOM may participate through influencing the dissolution and aggregation processes, structural order and surface properties of HgS nanoparticles (HgSNP). Future studies should pay more attention to the dynamics of AOM in responses to the changing environmental conditions (e.g., light penetration and redox fluctuations) and how such variations will subsequently affect MeHg production. The effects of Fe-S-P dynamics on MeHg production under eutrophication also deserve further investigations, especially the interactions between AOM and HgSNP. Remediation strategies with lower disturbance, greater stability and less cost like the technology of interfacial O2 nanobubbles are urgent to be explored. This review will deepen our understanding of the mechanisms of MeHg production in eutrophic lakes and provide theoretical guidance for its risk control.
Collapse
Affiliation(s)
- Tantan Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zihao Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Wenhao Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Xin Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Yubo He
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chi Ma
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Zhongzhu Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, China.
| |
Collapse
|
14
|
Chen Y, Guo Y, Liu Y, Xiang Y, Liu G, Zhang Q, Yin Y, Cai Y, Jiang G. Advances in bacterial whole-cell biosensors for the detection of bioavailable mercury: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161709. [PMID: 36682565 DOI: 10.1016/j.scitotenv.2023.161709] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/15/2023] [Indexed: 06/17/2023]
Abstract
Mercury (Hg) and its organic compounds, especially monomethylmercury (MeHg), cause major damage to the ecosystem and human health. In surface water or sediments, microorganisms play a crucial role in the methylation and demethylation of Hg. Given that Hg transformation processes are intracellular reactions, accurate assessment of the bioavailability of Hg(II)/MeHg in the environment, particularly for microorganisms, is of major importance. Compared with traditional analytical methods, bacterial whole-cell biosensors (BWCBs) provide a more accurate, convenient, and cost-effective strategy to assess the environmental risks of Hg(II)/MeHg. This Review summarizes recent progress in the application of BWCBs in the detection of bioavailable Hg(II)/MeHg, providing insight on current challenges and strategies. The principle and components of BWCBs for Hg(II)/MeHg bioavailability analysis are introduced. Furthermore, the impact of water chemical factors on the bioavailability of Hg is discussed as are future perspectives of BWCBs in bioavailable Hg analysis and optimization of BWCBs.
Collapse
Affiliation(s)
- Yueqian Chen
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yingying Guo
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanwei Liu
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yuping Xiang
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Guangliang Liu
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Qinghua Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yongguang Yin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China; Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yong Cai
- Laboratory of Environmental Nanotechnology and Health, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Department of Chemistry and Biochemistry, Florida International University, Miami, FL 33199, United States of America
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Park J, Cho H, Han S, An SU, Choi A, Lee H, Hyun JH. Impacts of the invasive Spartina anglica on C-S-Hg cycles and Hg(II) methylating microbial communities revealed by hgcA gene analysis in intertidal sediment of the Han River estuary, Yellow Sea. MARINE POLLUTION BULLETIN 2023; 187:114498. [PMID: 36603235 DOI: 10.1016/j.marpolbul.2022.114498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
We investigated the impact of invasive vegetation on mercury cycles, and identified microorganisms directly related to Hg(II) methylation using hgcA gene in vegetated mud flats (VMF) inhabited by native Suaeda japonica (SJ) and invasive Spartina anglica (SA), and unvegetated mud flats (UMF) in Ganghwa intertidal sediments. Sulfate reduction rate (SRR) and rate constants of Hg(II) methylation (Km) and methyl-Hg demethylation (Kd) were consistently greater in VMF than in UMF, specifically 1.5, 2 and 11.7 times higher, respectively, for SA. Both Km and Kd were significantly correlated with SRR and the abundance of sulfate-reducing bacteria. These results indicate that the rhizosphere of invasive SA provides a hotspot for Hg dynamics coupled with sulfate reduction. HgcA gene analysis revealed that Hg(II)-methylators were dominated by Deltaproteobacteria, Chloroflexi and Euryarchaeota, comprising 37.9%, 35.8%, and 6.5% of total hgcA gene sequences, respectively, which implies that coastal sediments harbor diverse Hg(II)-methylating microorganisms that previously underrepresented.
Collapse
Affiliation(s)
- Jisu Park
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Hyeyoun Cho
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, South Korea
| | - Sung-Uk An
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Ayeon Choi
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea; Korean Institute of Ocean Science & Technology (KIOST), 385 Haeyang-ro, Yeongdo-gu, Busan Metropolitan City 49111, South Korea
| | - Hyeonji Lee
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea
| | - Jung-Ho Hyun
- Department of Marine Sciences and Convergent Technology, Hanyang University (ERICA Campus), 55 Hanyangdaehak-ro, Sangnok-gu, Ansan, Gyeonggi-do 15588, South Korea.
| |
Collapse
|
16
|
The Transformation of Hg 2+ during Anaerobic S 0 Reduction by an AMD Environmental Enrichment Culture. Microorganisms 2022; 11:microorganisms11010072. [PMID: 36677364 PMCID: PMC9865316 DOI: 10.3390/microorganisms11010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 12/29/2022] Open
Abstract
Mercury (Hg) is a highly toxic and persistent heavy metal pollutant. The acid mine drainage (AMD) environment in sulfide-mining areas is a typical Hg pollution source. In this paper, the transformation of Hg2+ during anaerobic S0 reduction by an AMD environmental enrichment culture was studied by multiple spectroscopic and microscopic techniques. The experimental results showed that the microbial S0 reduction of the AMD enrichment culture was significantly inhibited in the presence of Hg2+. The results of cell surface morphology and composition analysis showed that there was obvious aggregation of flocculent particles on the cell surface in the presence of Hg2+, and the components of extracellular polymeric substances on the cell surface changed significantly. The results of surface morphology and C/S/Hg speciation transformation analyses of the solid particulate showed that Hg2+ gradually transformed to mercuric sulfide and Hg0 under anaerobic S0 reduction by the AMD enrichment culture. The microbial community structure results showed that Hg2+ significantly changed the enrichment community structure by decreasing their evenness. The dominant microorganisms with S0 reduction functions are closely related to mercury transformation and are the key driving force for the transformation of substrate solid particulate and cellular substances, as well as the fixation of Hg2+.
Collapse
|
17
|
Feng P, Xiang Y, Cao D, Li H, Wang L, Wang M, Jiang T, Wang Y, Wang D, Shen H. Occurrence of methylmercury in aerobic environments: Evidence of mercury bacterial methylation based on simulation experiments. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129560. [PMID: 35999748 DOI: 10.1016/j.jhazmat.2022.129560] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Methylmercury (MeHg) is mainly produced by anaerobic δ-proteobacteria such as sulfate-reducing bacteria (SRB). However, mercury bio-methylation has also been found to occur in the aerobic soil of the Three Gorges Reservoir (TGR). Using γ-proteobacterial TGR bacteria (TGRB) and δ-proteobacterial Desulfomicrobium escambiense strains, the efficiency of mercury methylation and demethylation was evaluated using an isotope tracer technique. Kinetics simulation showed that the bacterial Hg methylation rate (km) of TGRB3 was 4.36 × 10-9 pg·cell-1·h-1, which was significantly lower than that of D. escambiense (170.74 ×10-9 pg·cell-1·h-1) under anaerobic conditions. Under facultative and/or aerobic conditions, D. escambiense could not survive, while the km of TGRB3 were 0.35 × 10-9 and 0.29 × 10-9 pg·cell-1·h-1, respectively. Furthermore, the bacterial MeHg tolerance threshold of TGRB3 was 3.47 × 10-9 pg·cell-1, which was 98.6-fold lower than that of D. escambiense under anaerobic conditions. However, the MeHg tolerance threshold of TGRB3 remained at 0.50-0.52 × 10-9 pg·cell-1 under facultative and/or aerobic conditions. Notably, bacterial Hg methylation rates (km) were higher than the corresponding bacterial MeHg demethylation rates (kd1). These results establish the contribution of some aerobic and/or facultative anaerobic bacteria to net environmental MeHg production in terrestrial ecosystems and provide a novel understanding of the biogeochemical cycle of MeHg. SYNOPSIS: Hg methylation of facultative and/or aerobic bacteria may contribute to the net production of environmental methylmercury in terrestrial ecosystems.
Collapse
Affiliation(s)
- Pengyu Feng
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yuping Xiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dan Cao
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hui Li
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Lanqing Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Mingxuan Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Tao Jiang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Yongmin Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Dingyong Wang
- College of Resources and Environment, Southwest University, Chongqing 400715, China.
| | - Hong Shen
- College of Resources and Environment, Southwest University, Chongqing 400715, China; Biological Science Research Center of Southwest University, Chongqing 400715, China.
| |
Collapse
|
18
|
Zheng X, Wang J, Zhang C, Zhang Y, Huang D, Yan S, Sun T, Mao Y, Cai Y. Influence of dissolved organic matter on methylmercury transformation during aerobic composting of municipal sewage sludge under different C/N ratios. J Environ Sci (China) 2022; 119:130-138. [PMID: 35934458 DOI: 10.1016/j.jes.2022.06.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/26/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Current knowledge about the transformation of total mercury and methylmercury (MeHg) in aerobic composting process is limited. In this study, the composition and transformation of mercury and dissovled organic matter (DOM) in aerobic composting process of municipal sewage sludge were were comprehensively characterized, and the differences among the three C/N ratio (20, 26 and 30) were investigated. The main form of mercury in C/N 20 and 26 was organo-chelated Hg (F3, 46%-60%); while the main form of mercury in C/N 30 was mercuric sulfide (F5, 64%-70%). The main component of DOM in C/N 20 and 26 were tyrosine-like substance (C1, 53%-76%) while the main fractions in C/N 30 were tyrosine-like substance (C1, 28%-37%) and fulvic-like substance (C2, 17%-39%). The mercury and DOM varied significantly during the 9 days composting process. Compared to C/N 20 and 26, C/N 30 produced the less MeHg after aerobic composting process, with values of 658% (C/N 20), 1400% (C/N 26) and 139% (C/N 30) of the initial, respectively. Meanwhile, C/N 30 produced the best compost showed greater degree of DOM molecular condensation and humification. Hg fraction had been altered by DOM, as indicated by a significant correlation between mercury species and DOM components. Notably, C/N 30 should be used as an appropriate C/N ratio to control the methylation processes of mercury and degration of DOM.
Collapse
Affiliation(s)
- Xin Zheng
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China
| | - Jing Wang
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China; School of Environment and Health, Jianghan University, Wuhan 430056, China.
| | - Chuanbing Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Yong Zhang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Doudou Huang
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Shuxiao Yan
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Tengfei Sun
- Huaxia Besince Environmental Technology Co. Ltd., Zhengzhou 450008, China
| | - Yuxiang Mao
- School of Resources & Environment, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yong Cai
- School of Environment and Health, Jianghan University, Wuhan 430056, China; Department of Chemistry and Biochemistry & Southeast Environmental Research Center, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
19
|
Qasim GH, Fareed H, Lee M, Lee W, Han S. Aqueous monomethylmercury degradation using nanoscale zero-valent iron through oxidative demethylation and reductive isolation. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128990. [PMID: 35523091 DOI: 10.1016/j.jhazmat.2022.128990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
This paper proposes a Fenton-like reaction activated by nanoscale zero-valent iron (nZVI) for aqueous monomethylmercury (MMHg) decomposition. Reacting 10 μg L-1 MMHg with 280 mg L-1 nZVI removed 70% of the aqueous MMHg within 1 min, and its main product was aqueous Hg(II). Within 1 - 5 min, the aqueous Hg(II) decreased while the aqueous, solid, and gas-phase Hg(0) increased with 92% MMHg removal. Then, a secondary Hg(II) reduction to solid Hg(0) was prevalent within 30 - 60 min, with 98% MMHg removal. Diverse-shaped magnetite crystals were observed on the surface of nZVI in 2 h, suggesting that Fe(II) oxidation on magnetite can be a source of electrons for secondary Hg(II) reduction. When FeCl2 and H2O2 were added to the MMHg solution without nZVI, 99% of the MMHg changed to Hg(II) within 1 min. The reactive oxygen species (ROS) produced by the Fenton-like reaction accounted for the rapid demethylation but not for the further reduction of Hg(II) to Hg(0). The results suggest a three-step pathway of MMHg decomposition by nZVI: (1) rapid MMHg demethylation by ROS; (2) rapid Hg(II) reduction by Fe(0); and (3) slow Hg(II) reduction by magnetite on the nZVI surface.
Collapse
Affiliation(s)
- Ghulam Hussain Qasim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Hasan Fareed
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Mijin Lee
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Woojin Lee
- Department of Civil and Environmental Engineering, National Laboratory Astana, Nazarbayev University, 53 Kabanbay Batyr Ave., Nur-Sultan 010000, Kazakhstan
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea; Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (Inn-ECOSysChem), Gwangju Institute of Science and Technology (GIST), 123 Cheomdan-gwagiro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
20
|
Yu RQ, Barkay T. Microbial mercury transformations: Molecules, functions and organisms. ADVANCES IN APPLIED MICROBIOLOGY 2022; 118:31-90. [PMID: 35461663 DOI: 10.1016/bs.aambs.2022.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Mercury (Hg) methylation, methylmercury (MeHg) demethylation, and inorganic redox transformations of Hg are microbe-mediating processes that determine the fate and cycling of Hg and MeHg in many environments, and by doing so influence the health of humans and wild life. The discovery of the Hg methylation genes, hgcAB, in the last decade together with advances in high throughput and genome sequencing methods, have resulted in an expanded appreciation of the diversity of Hg methylating microbes. This review aims to describe experimentally confirmed and recently discovered hgcAB gene-carrying Hg methylating microbes; phylogenetic and taxonomic analyses are presented. In addition, the current knowledge on transformation mechanisms, the organisms that carry them out, and the impact of environmental parameters on Hg methylation, MeHg demethylation, and inorganic Hg reduction and oxidation is summarized. This knowledge provides a foundation for future action toward mitigating the impact of environmental Hg pollution.
Collapse
Affiliation(s)
- Ri-Qing Yu
- Department of Biology, University of Texas at Tyler, Tyler, TX, United States.
| | - Tamar Barkay
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
21
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
22
|
Priyadarshanee M, Chatterjee S, Rath S, Dash HR, Das S. Cellular and genetic mechanism of bacterial mercury resistance and their role in biogeochemistry and bioremediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:126985. [PMID: 34464861 DOI: 10.1016/j.jhazmat.2021.126985] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
Mercury (Hg) is a highly toxic element that occurs at low concentrations in nature. However, various anthropogenic and natural sources contribute around 5000 to 8000 metric tons of Hg per year, rapidly deteriorating the environmental conditions. Mercury-resistant bacteria that possess the mer operon system have the potential for Hg bioremediation through volatilization from the contaminated milieus. Thus, bacterial mer operon plays a crucial role in Hg biogeochemistry and bioremediation by converting both reactive inorganic and organic forms of Hg to relatively inert, volatile, and monoatomic forms. Both the broad-spectrum and narrow-spectrum bacteria harbor many genes of mer operon with their unique definitive functions. The presence of mer genes or proteins can regulate the fate of Hg in the biogeochemical cycle in the environment. The efficiency of Hg transformation depends upon the nature and diversity of mer genes present in mercury-resistant bacteria. Additionally, the bacterial cellular mechanism of Hg resistance involves reduced Hg uptake, extracellular sequestration, and bioaccumulation. The presence of unique physiological properties in a specific group of mercury-resistant bacteria enhances their bioremediation capabilities. Many advanced biotechnological tools also can improve the bioremediation efficiency of mercury-resistant bacteria to achieve Hg bioremediation.
Collapse
Affiliation(s)
- Monika Priyadarshanee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Shreosi Chatterjee
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Sonalin Rath
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Hirak R Dash
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology Rourkela, Rourkela 769 008, Odisha, India.
| |
Collapse
|
23
|
Cossart T, Garcia-Calleja J, Worms IAM, Tessier E, Kavanagh K, Pedrero Z, Amouroux D, Slaveykova VI. Species-specific isotope tracking of mercury uptake and transformations by pico-nanoplankton in an eutrophic lake. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 288:117771. [PMID: 34271517 DOI: 10.1016/j.envpol.2021.117771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The present study aims to explore the bioaccumulation and biotic transformations of inorganic (iHg) and monomethyl mercury (MMHg) by natural pico-nanoplankton community from eutrophic lake Soppen, Switzerland. Pico-nanoplankton encompass mainly bacterioplankton, mycoplankton and phytoplankton groups with size between 0.2 and 20 μm. Species-specific enriched isotope mixture of 199iHg and 201MMHg was used to explore the accumulation, the subcellular distribution and transformations occurring in natural pico-nanoplankton sampled at 2 different depths (6.6 m and 8.3 m). Cyanobacteria, diatoms, cryptophyta, green algae and heterotrophic microorganisms were identified as the major groups of pico-nanoplankton with diatoms prevailing at deeper samples. Results showed that pico-nanoplankton accumulated both iHg and MMHg preferentially in the cell membrane/organelles, despite observed losses. The ratios between the iHg and MMHg concentrations measured in the membrane/organelles and cytosol were comparable for iHg and MMHg. Pico-nanoplankton demethylate added 201MMHg (~4 and 12% per day depending on cellular compartment), although the involved pathways are to further explore. Comparison of the concentrations of 201iHg formed from 201MMHg demethylation in whole system, medium and whole cells showed that 82% of the demethylation was biologically mediated by pico-nanoplankton. No significant methylation of iHg by pico-nanoplankton was observed. The accumulation of iHg and MMHg and the percentage of demethylated MMHg correlated positively with the relative abundance of diatoms and heterotrophic microorganisms in the pico-nanoplankton, the concentrations of TN, Mg2+, NO3-, NO2-, NH4+ and negatively with the concentrations of DOC, K+, Na+, Ca2+, SO42-. Taken together the results of the present field study confirm the role of pico-nanoplankton in Hg bioaccumulation and demethylation, however further research is needed to better understand the underlying mechanisms and interconnection between heterotrophic and autotrophic microorganisms.
Collapse
Affiliation(s)
- Thibaut Cossart
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Javier Garcia-Calleja
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Isabelle A M Worms
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Killian Kavanagh
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland
| | - Zoyne Pedrero
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les matériaux, Pau, France
| | - Vera I Slaveykova
- Environmental Biogeochemistry and Ecotoxicology, Department F.-A. Forel for Environmental and Aquatic Sciences, Earth and Environmental Sciences, Faculty of Sciences, University of Geneva, Uni Carl Vogt, Bvd Carl-Vogt 66, CH-1211, Geneva 4, Switzerland.
| |
Collapse
|
24
|
Faßbender S, von der Au M, Koenig M, Pelzer J, Piechotta C, Vogl J, Meermann B. Species-specific isotope dilution analysis of monomethylmercury in sediment using GC/ICP-ToF-MS and comparison with ICP-Q-MS and ICP-SF-MS. Anal Bioanal Chem 2021; 413:5279-5289. [PMID: 34302182 PMCID: PMC8405517 DOI: 10.1007/s00216-021-03497-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/28/2021] [Accepted: 06/22/2021] [Indexed: 11/24/2022]
Abstract
A recently introduced inductively coupled plasma-time-of-flight-mass spectrometer (ICP-ToF-MS) shows enhanced sensitivity compared to previous developments and superior isotope ratio precision compared to other ToF and commonly used single-collector ICP-MS instruments. Following this fact, an improvement for isotope dilution ICP-MS using the new instrumentation has been reported. This study aimed at investigating whether this improvement also meets the requirements of species-specific isotope dilution using GC/ICP-MS, where short transient signals are recorded. The results of the analysis of monomethylmercury (MMHg) of a sediment reference material show that isotope ratio precision of ICP-MS instruments equipped with quadrupole, sector-field, and time-of-flight mass analyzers is similar within a broad range of peak signal-to-noise ratio when analyzing one isotopic system. The procedural limit of quantification (LOQ) for MMHg, expressed as mass fraction of Hg being present as MMHg, w(Hg)MMHg, was similar as well for all investigated instruments and ranged between 0.003 and 0.016 μg/kg. Due to the simultaneous detection capability, the ICP-ToF-MS might, however, be more favorable when several isotopic systems are analyzed within one measurement. In a case study, the GC/ICP-ToF-MS coupling was applied for analysis of MMHg in sediments of Finow Canal, a historic German canal heavily polluted with mercury. Mass fractions between 0.180 and 41 μg/kg (w(Hg)MMHg) for MMHg, and 0.056 and 126 mg/kg (w(Hg)total) for total mercury were found in sediment samples taken from the canal upstream and downstream of a former chemical plant.
Collapse
Affiliation(s)
- Sebastian Faßbender
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Marcus von der Au
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Maren Koenig
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | | | - Christian Piechotta
- Division 1.8 - Environmental Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Jochen Vogl
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany
| | - Björn Meermann
- Division 1.1 - Inorganic Trace Analysis, Federal Institute for Materials Research and Testing (BAM), Richard-Willstätter-Str. 11, 12489, Berlin, Germany.
| |
Collapse
|
25
|
Pinzone M, Cransveld A, Tessier E, Bérail S, Schnitzler J, Das K, Amouroux D. Contamination levels and habitat use influence Hg accumulation and stable isotope ratios in the European seabass Dicentrarchus labrax. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 281:117008. [PMID: 33813195 DOI: 10.1016/j.envpol.2021.117008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/15/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Hg accumulation in marine organisms depends strongly on in situ water or sediment biogeochemistry and levels of Hg pollution. To predict the rates of Hg exposure in human communities, it is important to understand Hg assimilation and processing within commercially harvested marine fish, like the European seabass Dicentrarchus labrax. Previously, values of Δ199Hg and δ202Hg in muscle tissue successfully discriminated between seven populations of European seabass. In the present study, a multi-tissue approach was developed to assess the underlying processes behind such discrimination. We determined total Hg content (THg), the proportion of monomethyl-Hg (%MeHg), and Hg isotopic composition (e.g. Δ199Hg and δ202Hg) in seabass liver. We compared this to the previously published data on muscle tissue and local anthropogenic Hg inputs. The first important finding of this study showed an increase of both %MeHg and δ202Hg values in muscle compared to liver in all populations, suggesting the occurrence of internal MeHg demethylation in seabass. This is the first evidence of such a process occurring in this species. Values for mass-dependent (MDF, δ202Hg) and mass-independent (MIF, Δ199Hg) isotopic fractionation in liver and muscle accorded with data observed in estuarine fish (MDF, 0-1‰ and MIF, 0-0.7‰). Black Sea seabass stood out from other regions, presenting higher MIF values (≈1.5‰) in muscle and very low MDF (≈-1‰) in liver. This second finding suggests that under low Hg bioaccumulation, Hg isotopic composition may allow the detection of a shift in the habitat use of juvenile fish, such as for first-year Black Sea seabass. Our study supports the multi-tissue approach as a valid tool for refining the analysis of Hg sourcing and metabolism in a marine fish. The study's major outcome indicates that Hg levels of pollution and fish foraging location are the main factors influencing Hg species accumulation and isotopic fractionation in the organisms.
Collapse
Affiliation(s)
- Marianna Pinzone
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Alice Cransveld
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium
| | - Emmanuel Tessier
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Sylvain Bérail
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| | - Joseph Schnitzler
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium; Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine of Hannover, Foundation, Werftstraße 6, 25761, Büsum, Schleswig-Holstein, Germany
| | - Krishna Das
- Freshwater and Oceanic Sciences Unit of Research (FOCUS), Laboratory of Oceanology, University of Liège, B6c Allée du 6 Août, 4000, Liège, Belgium.
| | - David Amouroux
- Universite de Pau et des Pays de l'Adour, E2S UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour l'Environnement et les Matériaux (IPREM), Technopôle Helioparc, 2 Avenue Pierre Angot, 64053, Pau Cedex 09, France
| |
Collapse
|
26
|
Eckley CS, Luxton TP, Knightes CD, Shah V. Methylmercury Production and Degradation under Light and Dark Conditions in the Water Column of the Hells Canyon Reservoirs, USA. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1829-1839. [PMID: 33729607 PMCID: PMC8745031 DOI: 10.1002/etc.5041] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 02/28/2021] [Accepted: 03/09/2021] [Indexed: 05/28/2023]
Abstract
Methylmercury (MeHg) is a highly toxic form of mercury that can bioaccumulate in fish tissue. Methylmercury is produced by anaerobic bacteria, many of which are also capable of MeHg degradation. In addition, demethylation in surface waters can occur via abiotic sunlight-mediated processes. The goal of the present study was to understand the relative importance of microbial Hg methylation/demethylation and abiotic photodemethylation that govern the mass of MeHg within an aquatic system. The study location was the Hells Canyon complex of 3 reservoirs on the Idaho-Oregon border, USA, that has fish consumption advisories as a result of elevated MeHg concentrations. Our study utilized stable isotope addition experiments to trace MeHg formation and degradation within the water column of the reservoirs to understand the relative importance of these processes on the mass of MeHg using the Water Quality Analysis Simulation Program. The results showed that rates of MeHg production and degradation within the water column were relatively low (<0.07 d-1 ) but sufficient to account for most of the MeHg observed with the system. Most MeHg production within the water column appeared to occur in the spring when much of the water column was in the processes of becoming anoxic. In the surface waters, rates of photodemethylation were relatively large (up to -0.25 d-1 ) but quickly decreased at depths >0.5 m below the surface. These results can be used to identify the relative importance of MeHg processes that can help guide reservoir management decisions. Environ Toxicol Chem 2021;40:1829-1839. © 2021 SETAC. This article has been contributed to by US Government employees and their work is in the public domain in the USA.
Collapse
Affiliation(s)
- Chris S. Eckley
- US Environmental Protection Agency, Region-10, Seattle, Washington
| | - Todd P. Luxton
- Office of Research and Development, US Environmental Protection Agency, Cincinnati, Ohio
| | - Christopher D. Knightes
- Office of Research and Development, US Environmental Protection Agency, Narragansett, Rhode Island
| | - Vishal Shah
- College of the Sciences and Mathematics, West Chester University, West Chester, Pennsylvania, USA
| |
Collapse
|
27
|
Du H, Sun T, Liu Y, An S, Xie H, Wang D, Igarashi Y, Imanaka T, Luo F, Ma M. Bacteria and archaea involved in anaerobic mercury methylation and methane oxidation in anaerobic sulfate-rich reactors. CHEMOSPHERE 2021; 274:129773. [PMID: 33556662 DOI: 10.1016/j.chemosphere.2021.129773] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
The identification of dominant microbes in anaerobic mercury (Hg) methylation, methylmercury (MeHg) demethylation, and methane oxidation as sulfate-reducing bacteria, methanogens or, probably, anaerobic methanotrophic archaea (ANMEs) is of great interest. To date, however, the interrelationship of bacteria and archaea involved in these processes remains unclear. Here, we demonstrated the dynamics of microorganisms participating in these processes. Anaerobic fixed-bed reactors were operated with swine manure and sludge to produce methane stably, and then, sulfate (reactor C), sulfate and Hg(II) (reactor H), and sulfate and MeHg (reactor M) were added, and the reactors were operated for 120 d, divided equally into four periods, P1-P4. The bacterial compositions changed nonsignificantly, whereas Methanosaeta in reactors H and M decreased significantly, revealing that it was irrelevant for Hg transformation. The abundances of Syntrophomonadaceae, Methanoculleus, Candidatus Methanogranum and Candidatus Methanoplasma increased continuously with time; these species probably functioned in these processes, but further evidence is needed. Desulfocella and Desulfobacterium dominated first but eventually almost vanished, while the dominant archaeal genera Methanogenium, Methanoculleus and Methanocorpusculum were closely related to ANME-1 and ANME-2. PLS-DA results indicated that both bacteria and archaea in different periods in the three reactors were clustered separately, implying that the microbial compositions in the same periods were similar and changed markedly with time.
Collapse
Affiliation(s)
- Hongxia Du
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tao Sun
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yang Liu
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Siwei An
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Haiying Xie
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Dingyong Wang
- Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Yasuo Igarashi
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Tadayuki Imanaka
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China
| | - Feng Luo
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| | - Ming Ma
- Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing, 400715, China; Center of Molecular Ecophysiology (CMEP), College of Resources and Environment, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
28
|
Hu K, Xu Y, Xu S, Cheng L, Zhou T, Xie A, Xu A, Wu L, Chen S. Ecotoxicity Risk of Low-Dose Methylmercury Exposure to Caenorhabditis elegans: Multigenerational Toxicity and Population Discrepancy. Chem Res Toxicol 2021; 34:1114-1123. [PMID: 33739826 DOI: 10.1021/acs.chemrestox.0c00518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Methylmercury (MeHg) is a common organic form of mercury in water, which has been linked to several forms of biological toxicity. However, studies on the ecotoxicity risk of long-term exposure to low-dose MeHg are insufficient for the assessment of environmental safety. In the present study, the effects of MeHg on multiple generations (P0-F3) and population of Caenorhabditis elegans were investigated under long-term, low-dose exposure. We investigated the multigenerational toxicity of MeHg by analyzing reproductive and developmental indicators. According to our results, exposure to 100 nM MeHg had little effect on the parental generation (P0) but caused serious reproductive toxicity in the offspring (F1-F3), and the effect of MeHg was aggravated with each passing generation. The genes related to apoptosis and DNA damage were upregulated in the F3 generation. Pearson correlation analysis showed that the changes in these genes were closely related to the apoptosis of gonadal cells. Furthermore, chronic exposure to MeHg (from 100 to 1000 nM group) caused a sharp decline in population size and triggered the "bag of worms" phenotype. Genes related to vulvar development were downregulated in the F3 generation after treatment with 100 nM MeHg. These data suggest that long-term low-dose MeHg exposure adversely affected C. elegans and its offspring and triggered multigenerational toxicity and population discrepancy.
Collapse
Affiliation(s)
- Kunyu Hu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Yun Xu
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shengmin Xu
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Lei Cheng
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Tong Zhou
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Aidi Xie
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - An Xu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Lijun Wu
- School of Environmental Science and Optoelectronic Technology, University of Science and Technology of China, Hefei 230026, China.,Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Shaopeng Chen
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Key Laboratory of Environmental Toxicology and Pollution Control Technology of Anhui Province, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.,School of Public Health, Wannan Medical College, Wuhu 241002, China
| |
Collapse
|
29
|
Leclerc M, Harrison MC, Storck V, Planas D, Amyot M, Walsh DA. Microbial Diversity and Mercury Methylation Activity in Periphytic Biofilms at a Run-of-River Hydroelectric Dam and Constructed Wetlands. mSphere 2021; 6:e00021-21. [PMID: 33731467 PMCID: PMC8546676 DOI: 10.1128/msphere.00021-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/24/2021] [Indexed: 01/04/2023] Open
Abstract
Periphytic biofilms have the potential to greatly influence the microbial production of the neurotoxicant monomethylmercury in freshwaters although few studies have simultaneously assessed periphyton mercury methylation and demethylation rates and the microbial communities associated with these transformations. We performed a field study on periphyton from a river affected by run-of-river power plants and artificial wetlands in a boreal landscape (Québec, Canada). In situ incubations were performed on three sites using environmental concentrations of isotopically enriched monomethylmercury (MM198Hg) and inorganic mercury (200Hg) for demethylation and methylation rate measurements. Periphytic microbial communities were investigated through 16S rRNA gene analyses and metagenomic screenings for the hgcA gene, involved in mercury methylation. Positive mercury methylation rates ([5.9 ± 3.4] × 10-3 day-1) were observed only in the wetlands, and demethylation rates averaged 1.78 ± 0.21 day-1 for the three studied sites. The 16S rRNA gene analyses revealed Proteobacteria as the most abundant phylum across all sites (36.3% ± 1.4%), from which families associated with mercury methylation were mostly found in the wetland site. Metagenome screening for HgcA identified 24 different hgcA sequences in the constructed wetland site only, associated with 8 known families, where the iron-reducing Geobacteraceae were the most abundant. This work brings new information on mercury methylation in periphyton from habitats of impacted rivers, associating it mostly with putative iron-reducing bacteria.IMPORTANCE Monomethylmercury (MMHg) is a biomagnifiable neurotoxin of global concern with risks to human health mostly associated with fish consumption. Hydroelectric reservoirs are known to be sources of MMHg many years after their impoundment. Little is known, however, on run-of-river dams flooding smaller terrestrial areas, although their numbers are expected to increase considerably worldwide in decades to come. Production of MMHg is associated mostly with anaerobic processes, but Hg methylation has been shown to occur in periphytic biofilms located in oxic zones of the water column. Therefore, in this study, we investigated in situ production of MMHg by periphytic communities in habitats impacted by the construction of a run-of-river dam by combining transformation rate measurements with genomic approaches targeting hgcAB genes, responsible for mercury methylation. These results provide extended knowledge on mercury methylators in river ecosystems impacted by run-of-river dams in temperate habitats.
Collapse
Affiliation(s)
- Maxime Leclerc
- GRIL, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
- GRIL, Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | | | - Veronika Storck
- GRIL, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
- Department of Biology, Concordia University, Montréal, Québec, Canada
| | - Dolors Planas
- GRIL, Département de Sciences Biologiques, Université du Québec à Montréal, Montréal, Québec, Canada
| | - Marc Amyot
- GRIL, Département de Sciences Biologiques, Université de Montréal, Montréal, Québec, Canada
| | - David A Walsh
- Department of Biology, Concordia University, Montréal, Québec, Canada
| |
Collapse
|
30
|
Bravo AG, Cosio C. Biotic formation of methylmercury: A bio-physico-chemical conundrum. LIMNOLOGY AND OCEANOGRAPHY 2020; 65:1010-1027. [PMID: 32612306 PMCID: PMC7319479 DOI: 10.1002/lno.11366] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 10/02/2019] [Indexed: 05/11/2023]
Abstract
Mercury (Hg) is a natural and widespread trace metal, but is considered a priority pollutant, particularly its organic form methylmercury (MMHg), because of human's exposure to MMHg through fish consumption. Pioneering studies showed the methylation of divalent Hg (HgII) to MMHg to occur under oxygen-limited conditions and to depend on the activity of anaerobic microorganisms. Recent studies identified the hgcAB gene cluster in microorganisms with the capacity to methylate HgII and unveiled a much wider range of species and environmental conditions producing MMHg than previously expected. Here, we review the recent knowledge and approaches used to understand HgII-methylation, microbial biodiversity and activity involved in these processes, and we highlight the current limits for predicting MMHg concentrations in the environment. The available data unveil the fact that HgII methylation is a bio-physico-chemical conundrum in which the efficiency of biological HgII methylation appears to depend chiefly on HgII and nutrients availability, the abundance of electron acceptors such as sulfate or iron, the abundance and composition of organic matter as well as the activity and structure of the microbial community. An increased knowledge of the relationship between microbial community composition, physico-chemical conditions, MMHg production, and demethylation is necessary to predict variability in MMHg concentrations across environments.
Collapse
Affiliation(s)
- Andrea G. Bravo
- Department of Marine Biology and Oceanography, Institute of Marine SciencesSpanish National Research Council (CSIC)BarcelonaSpain
| | - Claudia Cosio
- Université de Reims Champagne Ardennes, UMR‐I 02 INERIS‐URCA‐ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des milieux aquatiquesReimsFrance
| |
Collapse
|
31
|
Moyo S. Preliminary Estimations of Insect Mediated Transfers of Mercury and Physiologically Important Fatty Acids from Water to Land. Biomolecules 2020; 10:biom10010129. [PMID: 31940985 PMCID: PMC7023014 DOI: 10.3390/biom10010129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Aquatic insects provide an energy subsidy to riparian food webs. However, most empirical studies have considered the role of subsidies only in terms of magnitude (using biomass measurements) and quality (using physiologically important fatty acids), negating an aspect of subsidies that may affect their impact on recipient food webs: the potential of insects to transport contaminants (e.g., mercury) to terrestrial ecosystems. To this end, I used empirical data to estimate the magnitude of nutrients (using physiologically important fatty acids as a proxy) and contaminants (total mercury (Hg) and methylmercury (MeHg)) exported by insects from rivers and lacustrine systems in each continent. The results reveal that North American rivers may export more physiologically important fatty acids per unit area (93.0 ± 32.6 Kg Km-2 year-1) than other continents. Owing to the amount of variation in Hg and MeHg, there were no significant differences in MeHg and Hg among continents in lakes (Hg: 1.5 × 10-4 to 1.0 × 10-3 Kg Km-2 year-1; MeHg: 7.7 × 10-5 to 1.0 × 10-4 Kg Km-2 year-1) and rivers (Hg: 3.2 × 10-4 to 1.1 × 10-3 Kg Km-2 year-1; MeHg: 3.3 × 10-4 to 8.9 × 10-4 Kg Km-2 year-1), with rivers exporting significantly larger quantities of mercury across all continents than lakes. Globally, insect export of physiologically important fatty acids by insect was estimated to be ~43.9 × 106 Kg year-1 while MeHg was ~649.6 Kg year-1. The calculated estimates add to the growing body of literature, which suggests that emerging aquatic insects are important in supplying essential nutrients to terrestrial consumers; however, with the increase of pollutants in freshwater systems, emergent aquatic insect may also be sentinels of organic contaminants to terrestrial consumers.
Collapse
Affiliation(s)
- Sydney Moyo
- Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
32
|
Trdin A, Falnoga I, Fajon V, Živković I, Snoj Tratnik J, Prpić I, Špirić Z, Horvat M. Mercury speciation in meconium and associated factors. ENVIRONMENTAL RESEARCH 2019; 179:108724. [PMID: 31627028 DOI: 10.1016/j.envres.2019.108724] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Meconium is formed early in gestation and it is normally not excreted until after birth. Thus it may provide a longer and cumulative record of exposure to mercury (Hg). The present study aims to speciate Hg in meconium samples (N = 488) from Slovenian and Croatian new-borns prenatally exposed to low levels of methyl-Hg (MeHg) from maternal seafood intake and to Hg0 from maternal dental amalgam fillings. We had complete data of total Hg (THg) and MeHg in meconium and THg in maternal hair (MH), while THg and MeHg in maternal blood (MB) were available only for Croatian mothers. Personal data namely maternal seafood intake, age, pre-pregnancy BMI, parity, smoking, estimated gestational age at birth, sex, and birth weight were available for the majority of participants, except the number of dental amalgams which was in most cases missing for Croatian mothers. The median THg concentration in meconium was 11.1 (range: 0.41-375.2) ng/g and inorganic Hg (Hg(II)) presented 98.8% (range: 82%-100%, CV: 2%) of THg. We observed significant correlation between meconium and MH Hg levels, with the highest correlation between hair THg and meconium MeHg. Correlation analysis including MB (available only for Croatian population) showed a significant positive correlation between THg in meconium and THg in MB (Rs = 0.642). Additionally, MeHg from MB was correlated with MeHg in meconium (Rs = 0.898), while the correlation between Hg(II) in MB and meconium was positive, but not significant. Maternal seafood intake was significantly correlated with meconium MeHg (Rs = 0.498) and Hg(II) (Rs = 0.201). Multiple linear regression (performed on the Slovenian population, N = 143) confirmed a positive association between meconium MeHg and seafood intake. Furthermore, meconium Hg(II) was positively associated with the number of maternal dental amalgam fillings, but linear regression models did not confirm correlation between seafood intake and meconium Hg(II) levels. We assume that Hg0 released from maternal dental amalgam fillings and MeHg from seafood intake were both transported through the placental barrier and portioned between different foetal compartments including meconium. Weak correlation between maternal seafood intake and Hg(II) levels in meconium suggests that there is certain evidence of MeHg demethylation. However, because this correlation was not confirmed by the multiple regression, MeHg demethylation during prenatal life cannot be neither confirmed nor excluded. Further investigations at higher level of exposure are needed to confirm this observations. We can conclude that meconium is a suitable biomarker for MeHg and Hg0 exposure during pregnancy. However, comparability of the results reported in meconium in different studies is hindered by a lack of standardized sampling protocols, storage, and analysis.
Collapse
Affiliation(s)
- Ajda Trdin
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Ingrid Falnoga
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor Živković
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Janja Snoj Tratnik
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| | - Igor Prpić
- Department of Paediatrics, University Hospital Centre Rijeka, Rijeka, Croatia
| | | | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Ljubljana, Slovenia; Jožef Stefan International Postgraduate School, Ljubljana, Slovenia.
| |
Collapse
|