1
|
Wei J, Chen J, Zhang Z, Ban Y, Guo J, Dong L, Feng Z. Toxicity and Glutathione S-Transferase-Catalyzed Metabolism of R-/ S-Metolachlor in Rice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25001-25014. [PMID: 39487793 DOI: 10.1021/acs.jafc.4c06711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2024]
Abstract
Metolachlor, the chiral herbicide, inhibits the very-long-chain fatty acid (VLCFA) synthesis; elucidating the enantioselectivity between R- and S-metolachlor in the toxicological difference will facilitate the understanding of the site of action. We found that the endogenous accumulation of C22 VLCFAs decreased in both R-/S-metolachlor -treated plants by 6, 12, and 24 h after treatment, with more significant reduction in the S isomer group. Gene expression of glutathione S-transferase OsGST Tau members were obviously induced upon treatments with S or R isomer; both OsGSTU1 and OsGSTU4 can metabolize metolachlor effectively, with S isomer as the preference by directly catalyzing the conjugation between S-metolachlor and glutathione. In the current study, we provide the first evidence in rice seedlings that S-metolachlor showed herbicidal toxicity by blocking the synthesis of C22-type fatty acid, which eventually affects the whole elongation chain of (V)LCFA. Meanwhile, OsGSTU1 and 4 metabolize the metolachlor with the S isomer as preference. All of these discoveries broaden our knowledge about metolachlor toxicology and enantioselectivity.
Collapse
Affiliation(s)
- Jianguo Wei
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jinyi Chen
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhanzhan Zhang
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Yaxin Ban
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Jiaying Guo
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Liyao Dong
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| | - Zhike Feng
- College of Plant Protection, Nanjing Agriculture University, Nanjing 210095, China
- State & Local Joint Engineering Research Center of Green Pesticide Invention and Application, Nanjing 210095, China
| |
Collapse
|
2
|
Dmitrieva VA, Tyutereva EV, Voitsekhovskaja OV. What can reactive oxygen species (ROS) tell us about the action mechanism of herbicides and other phytotoxins? Free Radic Biol Med 2024; 220:92-110. [PMID: 38663829 DOI: 10.1016/j.freeradbiomed.2024.04.233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024]
Abstract
Reactive oxygen species (ROS) are formed in plant cells continuously. When ROS production exceeds the antioxidant capacity of the cells, oxidative stress develops which causes damage of cell components and may even lead to the induction of programmed cell death (PCD). The levels of ROS production increase upon abiotic stress, but also during pathogen attack in response to elicitors, and upon application of toxic compounds such as synthetic herbicides or natural phytotoxins. The commercial value of many synthetic herbicides is based on weed death as result of oxidative stress, and for a number of them, the site and the mechanism of ROS production have been characterized. This review summarizes the current knowledge on ROS production in plants subjected to different groups of synthetic herbicides and natural phytotoxins. We suggest that the use of ROS-specific fluorescent probes and of ROS-specific marker genes can provide important information on the mechanism of action of these toxins. Furthermore, we propose that, apart from oxidative damage, elicitation of ROS-induced PCD is emerging as one of the important processes underlying the action of herbicides and phytotoxins.
Collapse
Affiliation(s)
- Valeria A Dmitrieva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia; Laboratory of Phytotoxicology and Biotechnology, All-Russian Institute of Plant Protection, Saint Petersburg, 196608, Russia
| | - Elena V Tyutereva
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia
| | - Olga V Voitsekhovskaja
- Laboratory of Molecular and Ecological Physiology, Komarov Botanical Institute of the Russian Academy of Sciences, Saint Petersburg, 197022, Russia.
| |
Collapse
|
3
|
Cheng Y, Wang X, Zhao L, Zhang X, Kong Q, Li H, You X, Li Y. Wheat straw pyrochar more efficiently decreased enantioselective uptake of dinotefuran by lettuce and dissemination of antibiotic resistance genes than hydrochar in an agricultural soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163088. [PMID: 36996986 DOI: 10.1016/j.scitotenv.2023.163088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 03/01/2023] [Accepted: 03/23/2023] [Indexed: 05/27/2023]
Abstract
Remediation of soils pollution caused by dinotefuran, a chiral pesticide, is indispensable for ensuring human food security. In comparison with pyrochar, the effect of hydrochar on enantioselective fate of dinotefuran, and antibiotic resistance genes (ARGs) profiles in the contaminated soils remain poorly understood. Therefore, wheat straw hydrochar (SHC) and pyrochar (SPC) were prepared at 220 and 500 °C, respectively, to investigate their effects and underlying mechanisms on enantioselective fate of dinotefuran enantiomers and metabolites, and soil ARG abundance in soil-plant ecosystems using a 30-day pot experiment planted with lettuce. SPC showed a greater reduction effect on the accumulation of R- and S-dinotefuran and metabolites in lettuce shoots than SHC. This was mainly resulted from the lowered soil bioavailability of R- and S-dinotefuran due to adsorption/immobilization by chars, together with the char-enhanced pesticide-degrading bacteria resulted from increased soil pH and organic matter content. Both SPC and SHC efficiently reduced ARG levels in soils, owing to lowered abundance of ARG-carrying bacteria and declined horizontal gene transfer induced by decreased dinotefuran bioavailability. The above results provide new insights for optimizing char-based sustainable technologies to mitigate pollution of dinotefuran and spread of ARGs in agroecosystems.
Collapse
Affiliation(s)
- Yadong Cheng
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xiao Wang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Liuwei Zhao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Xin Zhang
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Qingxian Kong
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Hui Li
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC 27695, United States
| | - Xiangwei You
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yiqiang Li
- Marine Agriculture Research Center, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| |
Collapse
|
4
|
Menzyanova NG, Shishatskaya EI, Pyatina SA, Volova TG. Cytogenotoxic activity of herbicidal and fungicidal pesticides on Triticum aestivum root meristem. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87602-87612. [PMID: 35818017 DOI: 10.1007/s11356-022-21936-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 07/05/2022] [Indexed: 06/15/2023]
Abstract
Phytotoxicity, cytotoxicity and genotoxicity of pesticides with various mechanisms of targeted activity were studied in a hydroponic culture of 2-day-old seedlings of Triticum aestivum. All studied pesticides (with the exception of metribuzin) exhibited dose-dependent phytotoxicity (inhibited the growth of the main root and reduced the yield of root biomass). All studied pesticides did not affect mitotic index in the root apex meristem but did affect the duration of some phases of mitosis. Herbicides increased, while fungicides, on the contrary, decreased the duration of the cytokinesis phase. All pesticides (1 μg/mL) exhibited genotoxic activity: in the root apex meristem the number of cells with mitotic abnormalities was significantly higher than in the control variant (7-14 times). The genotoxic activity of metribuzin and tebuconazole was 2 times lower than for tribenuron-methyl, fenoxaprop-P-ethyl, epoxiconazole and azoxystrobin. The genotoxicity of the studied pesticides was combined: depending on the class of the pesticide, clastogenic or aneugenous effects dominated.
Collapse
Affiliation(s)
| | - Ekaterina Igorevna Shishatskaya
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia.
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia.
| | | | - Tatiana Grigorievna Volova
- Siberian Federal University, 79 Svobodnyi av., Krasnoyarsk, 660041, Russia
- Institute of Biophysics SB RAS, Federal Research Center 'Krasnoyarsk Science Center SB RAS', 50/50 Akademgorodok, Krasnoyarsk, 660036, Russia
| |
Collapse
|
5
|
Qiu D, Ye Y, Ke M, Xu N, Zhang Z, Zhang F, Kang J, Yu Y, Lu T, Qian H. Effects of chiral herbicide dichlorprop on Arabidopsis thaliana metabolic profile and its implications for microbial communities in the phyllosphere. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28256-28266. [PMID: 34988791 DOI: 10.1007/s11356-021-17936-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Dichlorprop (2-(2,4-dichlorophenoxy) propionic acid, DCPP), a commonly used herbicide for weed control, can be residually detected in soil. It is still unclear whether chiral DCPP exerts an enantioselective adverse effect on plant metabolism and the microbial community of the phyllosphere. In this study, we selected Arabidopsis thaliana as a model plant to explore the effects of R- and S-DCPP enantiomers on plant physiological activities, metabolism, and associated changes in the phyllosphere microbial community. Results indicated that the fresh weight of plants decreased by 37.6% after R-DCPP treatment, whereas it increased by 7.6% after S-DCPP treatment. The R-DCPP enantiomer also caused stronger disturbance to leaf morphology, mesophyll cell structure, and leaf metabolites compared with S-DCPP. GC-MS analysis of DCPP-treated Arabidopsis leaves pointed out a differential profile mostly in carbohydrates, organic acids, and fatty acids, between S-DCPP and R-DCPP treatments. The diversity of phyllospheric microorganisms decreased and the stability of microbial community in the phyllosphere increased after R-DCPP treatment, whereas the opposite result was detected after S-DCPP exposure. The correlation analysis revealed that chiral herbicides may affect microbial communities in the phyllosphere by influencing leaf metabolism, while sugars and terpenoids were considered the main factors in reshaping the microbial community structure in the phyllosphere. Our study provides a new perspective for evaluating the effect of residual DCPP enantiomers on plant physiology and corresponding phyllosphere microorganism changes via the regulation of leaf metabolism, and clarifies the ecological risk of DCPP enantiomer application in agriculture.
Collapse
Affiliation(s)
- Danyan Qiu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Mingjing Ke
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Fan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Jian Kang
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Yitian Yu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou, 310032, People's Republic of China.
| |
Collapse
|
6
|
Sule RO, Condon L, Gomes AV. A Common Feature of Pesticides: Oxidative Stress-The Role of Oxidative Stress in Pesticide-Induced Toxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:5563759. [PMID: 35096268 PMCID: PMC8791758 DOI: 10.1155/2022/5563759] [Citation(s) in RCA: 177] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 12/17/2021] [Indexed: 12/16/2022]
Abstract
Pesticides are important chemicals or biological agents that deter or kill pests. The use of pesticides has continued to increase as it is still considered the most effective method to reduce pests and increase crop growth. However, pesticides have other consequences, including potential toxicity to humans and wildlife. Pesticides have been associated with increased risk of cardiovascular disease, cancer, and birth defects. Labels on pesticides also suggest limiting exposure to these hazardous chemicals. Based on experimental evidence, various types of pesticides all seem to have a common effect, the induction of oxidative stress in different cell types and animal models. Pesticide-induced oxidative stress is caused by both reactive oxygen species (ROS) and reactive nitrogen species (RNS), which are associated with several diseases including cancer, inflammation, and cardiovascular and neurodegenerative diseases. ROS and RNS can activate at least five independent signaling pathways including mitochondrial-induced apoptosis. Limited in vitro studies also suggest that exogenous antioxidants can reduce or prevent the deleterious effects of pesticides.
Collapse
Affiliation(s)
- Rasheed O. Sule
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Liam Condon
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
| | - Aldrin V. Gomes
- Department of Neurobiology, Physiology and Behavior, University of California, Davis, Davis, CA 95616, USA
- Department of Physiology and Membrane Biology, University of California, Davis, Davis, CA 95616, USA
| |
Collapse
|
7
|
Ou-Yang K, Feng T, Han Y, Li G, Li J, Ma H. Bioaccumulation, metabolism and endocrine-reproductive effects of metolachlor and its S-enantiomer in adult zebrafish (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149826. [PMID: 34455281 DOI: 10.1016/j.scitotenv.2021.149826] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 08/17/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
The aim of the present study was to evaluate the enantioselective bioaccumulation, metabolism, and toxic effects of metolachlor and S-metolachlor in zebrafish. Five-month-old zebrafish were exposed to metolachlor and S-metolachlor for 28 days, then transferred to clean water and purified for 7 days. In the uptake phase, S-metolachlor was preferentially accumulated at low concentrations, while metolachlor was preferentially accumulated at high concentrations. The two chemicals were metabolized by >70% in zebrafish on the first day and showed same metabolic process. At the accumulation endpoint, S-metolachlor had no significant inhibitory effect on the enzymes activities of superoxide dismutase (SOD), catalase (CAT) and glutathione S-transferase (GST) and developmental indicators of zebrafish. However, 300 μg/L metolachlor significantly inhibited the enzymes activities of SOD, CAT and GST and affected the liver development. The preferential enrichment of metolachlor at the high concentration may be the reason for its higher toxicity to zebrafish. Further research demonstrated that metolachlor significantly altered the expression of hypothalamic-pituitary-gonadal (HPG) axis-related genes, including gnrh2, gnrh3, lhβ, 17βhsd and cyp19a, thereby reducing the levels of testosterone (T) in females and sex hormones (estradiol and testosterone) in males. S-metolachlor increased the levels of estradiol (E2) in females by altering the expression of HPG axis-related genes such as fshβ, cyp17, 17βhsd and cyp19a. The mechanism of metolachlor and S-metolachlor on the endocrine disrupting effects of zebrafish is different, which may be sex-specific. 7 days after transferring the exposed zebrafish to clean water, most of the enzymes activities, sex hormone levels and related gene expression levels returned to normal, which may be related to the rapid metabolism of the two chemicals.
Collapse
Affiliation(s)
- Kang Ou-Yang
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Tangqi Feng
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifang Han
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guangyu Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhong Li
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongju Ma
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Qu Q, Li Y, Zhang Z, Cui H, Zhao Q, Liu W, Lu T, Qian H. Effects of S-metolachlor on wheat (Triticum aestivum L.) seedling root exudates and the rhizosphere microbiome. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125137. [PMID: 33858101 DOI: 10.1016/j.jhazmat.2021.125137] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/09/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
S-metolachlor (S-ME) is a common chloroacetanilide herbicide. Here, we investigated the effects of S-ME on wheat seedling growth and explored via metabolomics the driver through which S-ME changes the rhizosphere microbiome. The results indicated that 4 mg/kg S-ME had a strong inhibitory effect on plant growth by inducing hydrogen peroxide (H2O2) levels. The richness of the rhizosphere microbiome markedly decreased after S-ME treatment, although the abundance of some potential beneficial rhizobacteria, such as Rhizobiaceae and Burkholderiaceae, increased suggesting that plants recruited potential beneficial microorganisms to resist S-ME-induced stress. Spearman correlation analysis revealed that Rhizobiaceae and Burkholderiaceae were positively correlated with organic acids secreted by plants after S-ME treatment, implying that potential beneficial microorganisms may be attracted mainly by organic acids. Our results demonstrated the phytotoxicity of S-ME on crop growth and indicated both that S-ME could influence rhizosphere microorganism abundance and that recruitment of potential beneficial microorganisms could be the result of root exudate regulation.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qianqiu Zhao
- Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China
| | - Wanyue Liu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|
9
|
Xu N, Qu Q, Zhang Z, Yuan W, Cui H, Shen Y, Lin W, Lu T, Qian H. Effects of residual S-metolachlor in soil on the phyllosphere microbial communities of wheat (Triticum aestivum L.). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 748:141342. [PMID: 32818888 DOI: 10.1016/j.scitotenv.2020.141342] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
S-metolachlor (S-ME) is a widely used chiral herbicide that can cause potential ecological risks via long-term usage. In this work, we chose a model plant, wheat, as the test material to determine the effects of applying 10 mg/kg S-ME to soil on its fresh weight, chlorophyll and malondialdehyde (MDA) content, and superoxide dismutase (SOD) activity and the diversity and structural composition of the phyllosphere microorganisms after 7 and 14 days of exposure. Our work showed that this concentration of residual S-ME in soil only slightly decreased plant biomass and had little effect on lipid peroxidation, the antioxidant enzyme system and chlorophyll content. Interestingly, although the test concentration of S-ME did not exert strong inhibitory effects on the physiological activities of wheat, it decreased the diversity of phyllosphere microbial communities and changed their structure, indicating that microorganisms were more sensitive stress indicators. S-ME reduced the colonization by some beneficial bacteria related to plant nitrogen fixation among the phyllosphere microorganisms, which influenced the growth and yield of wheat because these bacteria contribute to plant fitness. In addition, S-ME affected the association between the host and the composition of the phyllosphere microbial communities under different growth conditions. Our work provides insights into the ecological implications of the effects of herbicides on the phyllosphere microbiome.
Collapse
Affiliation(s)
- Nuohan Xu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wenting Yuan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Yijia Shen
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Wei Lin
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, PR China.
| |
Collapse
|
10
|
Qu Q, Zhang Z, Li Y, Zhou Z, Ye Y, Lu T, Sun L, Qian H. Comparative molecular and metabolic responses of wheat seedlings (Triticum aestivum L.) to the imazethapyr enantiomers S-IM and R-IM. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:723-731. [PMID: 31539980 DOI: 10.1016/j.scitotenv.2019.07.333] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 07/19/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
The enantioselective effects of imazethapyr (IM) enantiomers on wheat seedlings in a hydroponic medium were studied. R-IM at 0.05mg/L exerted a stronger inhibitory effect on shoot weight and root weight than 0.05mg/L S-IM, suggesting that R-IM more severely inhibited growth. Oxidative damage, based on the anthocyanin content, malondialdehyde (MDA) content, antioxidant enzyme activities and transcript levels of antioxidant enzyme genes, were studied together with the cellular ultrastructure of wheat leaves. The anthocyanin and MDA contents in the R-IM treatment group were significantly increased compared with those in the control group, but no significant changes were observed in the S-IM treatment group. The antioxidant enzyme activities of CAT and SOD were inhibited by 0.32- and 0.73-fold, respectively, in the 14day R-IM treatment group compared to those in the control. However, the transcript levels of antioxidant enzyme genes, including CuZnSOD, POD and CAT, were downregulated in the 14day R-IM exposure group, but those of DHAR were not. The number and size of starch granules increased and chloroplast swelling was observed in wheat leaf cells after R-IM exposure, which showed that photosynthetic functions were potentially disturbed. These results directly or indirectly imply that R-IM exposure causes more oxidative stress and exerts a stronger negative effect on wheat than S-IM. A metabolomics approach revealed that the tricarboxylic acid cycle was heavily suppressed by R-IM treatment. Some amino acids (proline, threonine, lysine, valine) were increased by only the R-IM treatment, indicating the activation of antioxidant pathways. The decrease in a series of fatty acids implied that the cell membrane composition changed in response to R-IM. These results provide a deeper understanding of the enantioselective effects of IM enantiomers on the molecular and metabolic responses in wheat seedlings.
Collapse
Affiliation(s)
- Qian Qu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yan Li
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhigao Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yizhi Ye
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Liwei Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China; Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, PR China.
| |
Collapse
|