1
|
Horak I, Horn S, Pieters R. The benefit of using in vitro bioassays to screen agricultural samples for oxidative stress: South Africa's case. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2023; 58:689-710. [PMID: 37814453 DOI: 10.1080/03601234.2023.2264739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Applied pesticides end up in non-target environments as complex mixtures. When bioavailable, these chemicals pose a threat to living organisms and can induce oxidative stress (OS). In this article, attention is paid to OS and the physiological role of the antioxidant defense system. South African and international literature was reviewed to provide extensive evidence of pesticide-induced OS in non-target organisms, in vivo and in vitro. Although in vitro approaches are used internationally, South African studies have only used in vivo methods. Considering ethical implications, the authors support the use of in vitro bioassays to screen environmental matrices for their OS potential. Since OS responses are initiated and measurable at lower cellular concentrations compared to other toxicity endpoints, in vitro OS bioassays could be used as an early warning sign for the presence of chemical mixtures in non-target environments. Areas of concern in the country could be identified and prioritized without using animal models. The authors conclude that it will be worthwhile for South Africa to include in vitro OS bioassays as part of a battery of tests to screen environmental matrices for biological effects. This will facilitate the development and implementation of biomonitoring programs to safeguard the South African environment.
Collapse
Affiliation(s)
- Ilzé Horak
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Occupational Hygiene and Health Research Initiative, North-West University, Potchefstroom, South Africa
| | - Rialet Pieters
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
2
|
Davydova NY, Hutner DA, Gaither KA, Singh DK, Prasad B, Davydov DR. High-Throughput Assay of Cytochrome P450-Dependent Drug Demethylation Reactions and Its Use to Re-Evaluate the Pathways of Ketamine Metabolism. BIOLOGY 2023; 12:1055. [PMID: 37626940 PMCID: PMC10451610 DOI: 10.3390/biology12081055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
In a search for a reliable, inexpensive, and versatile technique for high-throughput kinetic assays of drug metabolism, we elected to rehire an old-school approach based on the determination of formaldehyde (FA) formed in cytochrome P450-dependent demethylation reactions. After evaluating several fluorometric techniques for FA detection, we chose the method based on the Hantzsch reaction with acetoacetanilide as the most sensitive, robust, and adaptable to high-throughput implementation. Here we provide a detailed protocol for using our new technique for automatized assays of cytochrome P450-dependent drug demethylations and discuss its applicability for high-throughput scanning of drug metabolism pathways in the human liver. To probe our method further, we applied it to re-evaluating the pathways of metabolism of ketamine, a dissociative anesthetic and potent antidepressant increasingly used in the treatment of alcohol withdrawal syndrome. Probing the kinetic parameters of ketamine demethylation by ten major cytochrome P450 (CYP) enzymes, we demonstrate that in addition to CYP2B6 and CYP3A enzymes, which were initially recognized as the primary metabolizers of ketamine, an important role is also played by CYP2C19 and CYP2D6. At the same time, the involvement of CYP2C9 suggested in the previous reports was deemed insignificant.
Collapse
Affiliation(s)
- Nadezhda Y. Davydova
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (N.Y.D.); (D.A.H.)
| | - David A. Hutner
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (N.Y.D.); (D.A.H.)
| | - Kari A. Gaither
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.A.G.); (D.K.S.); (B.P.)
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.A.G.); (D.K.S.); (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (K.A.G.); (D.K.S.); (B.P.)
| | - Dmitri R. Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA; (N.Y.D.); (D.A.H.)
| |
Collapse
|
3
|
van Rensburg GJ, Wepener V, Horn S, Greenfield R. Oxidative stress in the freshwater shrimp Caridina africana following exposure to atrazine. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 109:443-449. [PMID: 35476078 DOI: 10.1007/s00128-022-03526-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The toxicity of pesticides to non-target organisms continues to be important in understanding the dynamic interactions between anthropogenic chemicals and ecosystem health. This study assesses biochemical markers to determine the effects that varying concentrations of atrazine (13.1-5557 µg/l) have on the freshwater shrimp, Caridina africana. Exposure and oxidative stress biomarkers were analysed and followed by univariate, integrated biomarker response v2 (IBRv2) and Kendall Tau correlation statistical analyses, to gain insight into the concentration-dependent responses. Oxidative stress biomarkers such as reduced glutathione content (GSH), glutathione-S-transferase activity (GST), superoxide dismutase activity (SOD) and catalase activity (CAT) were significantly correlated with increasing atrazine exposure concentration (p < 0.01). Bimodality has been seen when looking at both the univariate statistically significant differences as well as the IBRv2, with the first peak at 106.8 µg/l and the second peak at 5557 µg/l atrazine. The results indicate that while individual responses may indicate statistically significant differences, using correlation and integrated statistical analysis can shed light on trends in the adaptive response of these.
Collapse
Affiliation(s)
- Gregg J van Rensburg
- Department of Zoology, Kingsway Campus, University of Johannesburg, PO Box 524, 2006, Auckland Park, South Africa
| | - Victor Wepener
- Water Research Group, Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa
| | - Suranie Horn
- Water Research Group, Unit for Environmental Science and Management, North-West University, Potchefstroom, South Africa
- Environment & Health Research Unit, South African Medical Research Council (SAMRC), 7505, Tygerberg, South Africa
| | - Richard Greenfield
- Department of Zoology, Kingsway Campus, University of Johannesburg, PO Box 524, 2006, Auckland Park, South Africa.
| |
Collapse
|
4
|
Liu J, Zhang D, Zhang L, Wang Z, Shen J. New Insight on Vitality Differences for the Penaeid Shrimp, Fenneropenaeus chinensis, in Low Salinity Environment Through Transcriptomics. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.716018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Excessive rainfall changes salinity in shrimp farming ponds in short period and exerts low salinity stress on the outdoor breeding shrimp under global warming. Fenneropenaeus chinensis can have different performance on vitality in low salinity environments. To reveal mechanisms of vitality difference in shrimp living in low saline environments. This study based on the normal and moribund F. chinensis in 10 ppt salinity environment using high-throughput sequencing identifies 1,429 differentially expressed genes (DEGs), 586 of which are upregulated, while 843 of which are downregulated in the normal group (FCN10) as compared to the moribund group (FCM10). Meanwhile, another transcriptomic analysis is conducted on the normal and moribund shrimp from 25 ppt (FCN25 vs. FCM25) salinity environment as the control, in which 1,311 DEGs (upregulated: 327 genes, downregulated: 984 genes) are identified. In this study, intersective pathways, GO (Gene Ontology) categories and DEGs from the two groups of comparative transcriptome are investigated. The two intersective pathways (Metabolism of xenobiotics by cytochrome P450, Pentose, and glucuronate interconversions) significantly enriched by DEGs are related to detoxification. In these two pathways, there is one vitality regulation-related gene (VRRG), the Dhdh (dihydrodiol dehydrogenase), which is upregulated in both the groups of FCN10 and FCN25 as compared to the groups of FCM10 and FCM25, respectively. Similarly, in the 25 top intersective GO categories, four VRRGs are revealed. Three of them are upregulated (Itgbl, kielin/chordin-like protein, Slc2a8, solute carrier family 2, facilitated glucose transporter member 8-like protein and Cyp3a30, cytochrome P450 3A30-like protein); one of them is downregulated (Slc6a9, sodium-dependent nutrient amino acid transporter 1-like protein isoform X2). These GO categories are related to transmembrane transporter activity of substance, enzyme inhibitor activity, monooxygenase activity. RT-qPCR analysis further verifies the VRRGs. The study gives new insight into understanding the vitality differences for F. chinensis, in low salinity environment. The pathways and DEGs in response to low salinity stress in modulating the vitality of F. chinensis that could serve as tools in future genetic studies and molecular breeding.
Collapse
|
5
|
Wang Z, Fan L, Wang J, Zhou J, Ye Q, Zhang L, Xu G, Zou J. Impacts of microplastics on three different juvenile shrimps: Investigating the organism response distinction. ENVIRONMENTAL RESEARCH 2021; 198:110466. [PMID: 33189744 DOI: 10.1016/j.envres.2020.110466] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on aquaculture animals have raised increasing concern, but studies on MPs contamination in cultured shrimp are still limited. Therefore, the responses of three widely farmed shrimp species to MPs, including Penaeus monodon (P. monodon), Marsupenaeus japonicas (M. japonicus) and Litopenaeus vannamei (L. vannamei), were investigated in this study. The results showed that the mortality of P. monodon, M. japonicus and L. vannamei were 47%, 53% and 20% respectively after 48 h of 300 mg/L MPs exposure. After 48 h of 100 mg/L MPs exposure, for P. monodon, the MPs content in water and excreta were significantly different from that in M. japonicus and L. vannamei. For genes expressions, the expression of catalase (Cat) was significantly increased and the expression of apoptosis protein (IAP) was inhibited in these three shrimps, but only the expression of Lysozyme (Lys) was increased in L. vannamei after MPs exposure. After 48 h of depuration, the Cat and IAP expression of P. monodon and M. japonicus was significant decreased while the IAP and Lys expression of L. vannamei still maintained at a high level. The results suggested that the metabolic rate of MPs in P. monodon was significantly higher than that in M. japonicus and L. vannamei. The tolerance of L. vannamei to MPs was higher than that of P. monodon and M. japonicas and their different responses in anti-microbial gene might be one of the reasons for the difference of their mortality. This study provides the first report comparing the organism response distinction in cultured shrimp and enriching to the understanding of the impact of MPs on ecosystem.
Collapse
Affiliation(s)
- Zhenlu Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Lanfen Fan
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| | - Jiang Zhou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qiao Ye
- College of Life Sciences, Huizhou University, Huizhou, 516007, Guangdong, China
| | - Li Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Guohuan Xu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China.
| | - Jixing Zou
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|