1
|
Mejait A, Fildier A, Giroud B, Daniele G, Wiest L, Raviglione D, Kotarba J, Toulza E, Ramirez T, Lanseman A, Clerissi C, Vulliet E, Calvayrac C, Salvia MV. Validation of the Chemical and Biological Steps Required Implementing an Advanced Multi-Omics Approach for Assessing the Fate and Impact of Contaminants in Lagoon Sediments. Metabolites 2024; 14:454. [PMID: 39195550 DOI: 10.3390/metabo14080454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024] Open
Abstract
The increasing use of chemicals requires a better understanding of their presence and dynamics in the environment, as well as their impact on ecosystems. The aim of this study was to validate the first steps of an innovative multi-omics approach based on metabolomics and 16S metabarcoding data for analyses of the fate and impact of contaminants in Mediterranean lagoons. Semi-targeted analytical procedures for water and sediment matrices were implemented to assess chemical contamination of the lagoon: forty-six compounds were detected, 28 of which could be quantified in water (between 0.09 and 47.4 ng/L) and sediment (between 0.008 and 26.3 ng/g) samples using the UHPLC-MS/MS instrument. In addition, a non-targeted approach (UHPLC-HRMS) using four different sample preparation protocols based on solid/liquid extractions or an automated pressurized fluid extraction system (EDGE®) was carried out to determine the protocol with the best metabolome coverage, efficiency and reproducibility. Solid/liquid extraction using the solvent mixture acetonitrile/methanol (50/50) was evaluated as the best protocol. Microbial diversity in lagoon sediment was also measured after DNA extraction using five commercial extraction kits. Our study showed that the DNeasy PowerSoil Pro Qiagen kit (Promega, USA) was the most suitable for assessing microbial diversity in fresh sediment.
Collapse
Affiliation(s)
- Anouar Mejait
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Aurélie Fildier
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Barbara Giroud
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Gaëlle Daniele
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Laure Wiest
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Delphine Raviglione
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
- Plateau MSXM Bio2Mar, Université de Perpignan, 66860 Perpignan, France
| | - Jules Kotarba
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
| | - Eve Toulza
- IHPE, Université Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Triana Ramirez
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Alexia Lanseman
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Camille Clerissi
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
| | - Emmanuelle Vulliet
- Institut des Sciences Analytiques UMR 5280, Université Claude Bernard Lyon 1, CNRS, 69100 Villeurbanne, France
| | - Christophe Calvayrac
- Laboratoire de Biodiversité et Biotechnologies Microbiennes, LBBM, Sorbonne Université, CNRS, 66650 Banyuls-sur-Mer, France
- Biocapteurs-Analyse-Environnement, Université de Perpignan Via Domitia, 66860 Perpignan, France
| | - Marie-Virginie Salvia
- Centre de Recherches Insulaires et Observatoire de l'Environnement (CRIOBE), 66860 Perpignan, France
- UFR Sciences Exactes et Expérimentales, Université de Perpignan, 66860 Perpignan, France
| |
Collapse
|
2
|
Huynh NC, Nguyen TTT, Nguyen DTC, Tran TV. Occurrence, toxicity, impact and removal of selected non-steroidal anti-inflammatory drugs (NSAIDs): A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 898:165317. [PMID: 37419350 DOI: 10.1016/j.scitotenv.2023.165317] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/09/2023]
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) are among the most frequently used pharmaceuticals for human therapy, pet therapeutics, and veterinary feeds, enabling them to enter into water sources such as wastewater, soil and sediment, and seawater. The control of NSAIDs has led to the advent of the novel materials for treatment techniques. Herein, we review the occurrence, impact and toxicity of NSAIDs against aquatic microorganisms, plants and humans. Typical NSAIDs, e.g., ibuprofen, ketoprofen, diclofenac, naproxen and aspirin were detected at high concentrations in wastewater up to 2,747,000 ng L-1. NSAIDs in water could cause genotoxicity, endocrine disruption, locomotive disorders, body deformations, organs damage, and photosynthetic corruption. Considering treatment methods, among adsorbents for removal of NSAIDs from water, metal-organic frameworks (10.7-638 mg g-1) and advanced porous carbons (7.4-400 mg g-1) were the most robust. Therefore, these carbon-based adsorbents showed promise in efficiency for the treatment of NSAIDs.
Collapse
Affiliation(s)
- Nguyen Chi Huynh
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam; Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Thuy Thi Thanh Nguyen
- Faculty of Science, Nong Lam University, Thu Duc District, Ho Chi Minh City 700000, Vietnam
| | - Duyen Thi Cam Nguyen
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam
| | - Thuan Van Tran
- Institute of Applied Technology and Sustainable Development, Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam.
| |
Collapse
|
3
|
Ojemaye CY, Pampanin DM, Sydnes MO, Green L, Petrik L. The burden of emerging contaminants upon an Atlantic Ocean marine protected reserve adjacent to Camps Bay, Cape Town, South Africa. Heliyon 2022; 8:e12625. [PMID: 36619409 PMCID: PMC9816787 DOI: 10.1016/j.heliyon.2022.e12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The presence and levels of fifteen chemicals of emerging concerns, including five perfluorinated compounds (PFCs), two industrial chemicals, seven pharmaceuticals and one personal care product, were evaluated in biota, seawater and sediments obtained from near-shore coastal zone in Camps Bay, Cape Town, South Africa. Eight compounds were found in seawater, and between nine to twelve compounds were quantified in marine invertebrates, sediment and seaweed. Diclofenac was the prevalent pharmaceutical with a maximum concentration of 2.86 ng/L in seawater, ≥110.9 ng/g dry weight (dw) in sediments and ≥67.47 ng/g dw in marine biotas. Among PFCs, perfluoroheptanoic acid was predominant in seawater (0.21-0.46 ng/L). Accumulation of perfluorodecanoic acid (764 ng/g dw) as well as perfluorononanoic acid and perfluorooctanoic acid (504.52 and 597.04 ng/g dw, respectively) was highest in samples of seaweed. The environmental risk assessment carried out in this study showed that although individual pollutants pose a low acute and chronic risk, yet individual compounds each had a high bioaccumulation factor in diverse marine species, and their combination as a complex mixture in marine organisms might have adverse effects upon aquatic organisms. Data revealed that this Atlantic Ocean marine protected environment is affected by the presence of numerous and diverse emerging contaminants that could only have originated from sewage discharges. The complex mixture of persistent chemicals found bioaccumulating in marine organisms could bode ill for the propagation and survival of marine protected species, since many of these compounds are known toxicants.
Collapse
Affiliation(s)
- Cecilia Y. Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa,Corresponding author.
| | - Daniela M. Pampanin
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
4
|
Ojemaye CY, Petrik L. Pharmaceuticals and Personal Care Products in the Marine Environment Around False Bay, Cape Town, South Africa: Occurrence and Risk-Assessment Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:614-634. [PMID: 33783837 DOI: 10.1002/etc.5053] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the marine environment has been increasing as a result of anthropogenic activities. The preservation of marine ecosystems as well as the safety of harvested seafood are nowadays a global concern. In the present study, levels of pharmaceuticals and personal care products were assessed in different environmental compartments in the near-shore marine environment of False Bay, Cape Town, South Africa. The study revealed the presence of these persistent chemical compounds in different environmental samples from this location. Diclofenac was the most dominant compound detected, with higher concentration than the other pharmaceutical compounds, as well as being present in almost all the samples from the different sites (seawater, 3.70-4.18 ng/L; sediment, 92.08-171.89 ng/g dry wt; marine invertebrates, 67.67-780.26 ng/g dry wt; seaweed, 101.50-309.11 ng/g dry wt). The accumulation of pharmaceuticals and personal care products in the different species of organisms reflects the increasing anthropogenic pressure taking place at the sampling sites along the bay, as a result of population growth, resident lifestyle as well as poorly treated sewage effluent discharge from several associated wastewater-treatment plants. The concentration of these contaminants is in the order marine biota > sediments > seawater. The contaminants pose a low acute and chronic risk to the selected trophic levels. A public awareness campaign is needed to reduce the pollution at the source, as well as wastewater discharge limits need to be more stringent. Environ Toxicol Chem 2022;41:614-634. © 2021 SETAC.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
5
|
Song N, Tian Y, Luo Z, Dai J, Liu Y, Duan Y. Advances in pretreatment and analysis methods of aromatic hydrocarbons in soil. RSC Adv 2022; 12:6099-6113. [PMID: 35424557 PMCID: PMC8981609 DOI: 10.1039/d1ra08633b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/21/2022] Open
Abstract
Benzene compounds that are prevalent in the soil as organic pollutants mainly include BTEX (benzene, toluene, ethylbenzene, and three xylene isomers) and PAHs (polycyclic aromatic hydrocarbons). These pose a severe threat to many aspects of human health. Therefore, the accurate measurement of BTEX and PAHs concentrations in the soil is of great importance. The samples for analysis of BTEX and PAHs need to be suitable for the various detection methods after pretreatment, which include Soxhlet extraction, ultrasonic extraction, solid-phase microextraction, supercritical extraction, and needle trap. The detection techniques mainly consist of gas chromatography (GC), mass spectrometry (MS), and online sensors, and provide comprehensive information on contaminants in the soil. Their performance is evaluated in terms of sensitivity, selectivity, and recovery. Recently, there has been rapid progress in the pretreatment and analysis methods for the quantitative and qualitative analyses of BTEX and PAHs. Therefore, it is necessary to produce a timely and in-depth review of the emerging pretreatment and analysis methods, which is unfortunately absent from the recent literature. In this work, state-of-art extraction techniques and analytical methods have been summarized for the determination of BTEX and PAHs in soil, with a particular focus on the potential and limitations of the respective methods for different aromatic hydrocarbons. Accordingly, the paper will describe the basic methodological knowledge, as well as the recent advancement of pretreatment and analysis methods for samples containing BTEX and PAHs.
Collapse
Affiliation(s)
- Na Song
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yonghui Tian
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Zewei Luo
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Jianxiong Dai
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yan Liu
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry & Materials Science, Northwest University Xi'an Shaanxi 710069 P. R.China
| |
Collapse
|
6
|
Ajibola AS, Fawole ST, Ajibola FO, Adewuyi GO. Diclofenac and Ibuprofen Determination in Sewage Sludge Using a QuEChERS Approach: Occurrence and Ecological Risk Assessment in Three Nigerian Wastewater Treatment Plants. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:690-699. [PMID: 33591413 DOI: 10.1007/s00128-021-03139-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
A quick, easy, cheap, effective, rugged and safe (QuEChERS) method was optimized for the extraction of non-steroidal anti-inflammatory drugs (NSAIDs) diclofenac and ibuprofen from sewage sludge. Dispersive-solid phase extraction (d-SPE) was employed for sample clean-up. Instrumental analysis was performed by high-performance liquid chromatography. Ecological risk was assessed for four trophic levels: fish, daphnia, algae and bacteria. The method limits of quantification for diclofenac and ibuprofen were 0.43 µg g- 1 and 0.45 µg g- 1, respectively. Correlation coefficients were above 0.999. Extraction recoveries ranged from 70 to 118 % and satisfactory inter-day reproducibility (% RSD) of < 18 % was obtained. Diclofenac and ibuprofen were measured up to 1.02 µg g- 1 and 6.6 µg g- 1, respectively in sewage sludge from three Nigerian wastewater treatment plants (WWTPs). Ibuprofen posed high risk to fish, daphnia, algae and bacteria. This work presents the first report on the ecological risk assessment of diclofenac and ibuprofen in sewage sludge from Nigerian WWTPs.
Collapse
Affiliation(s)
- Akinranti S Ajibola
- Analytical/Environmental Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria.
| | - Segun T Fawole
- Analytical/Environmental Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
| | - Florence O Ajibola
- Department of Crop Protection and Environmental Biology (Ecotoxicology), University of Ibadan, Ibadan, Nigeria
| | - Gregory O Adewuyi
- Analytical/Environmental Unit, Department of Chemistry, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|