1
|
Marín A, Feijóo P, Carbonetto B, González-Torres P, Tena-Medialdea J, García-March JR, Gámez-Pérez J, Cabedo L. Long-term monitoring of biofilm succession unveils differences between biodegradable and conventional plastic materials. MARINE POLLUTION BULLETIN 2025; 214:117820. [PMID: 40090043 DOI: 10.1016/j.marpolbul.2025.117820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/10/2025] [Indexed: 03/18/2025]
Abstract
A vast amount of plastic waste enters the ocean every year and the Mediterranean Sea is particularly affected by this issue. Biodegradable polymers like poly(lactic acid) (PLA) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), may help mitigate this problem. We investigated bacterial biofilm development and succession on these polymers over one year in the Western Mediterranean Sea. Scanning electron microscopy (SEM) and confocal laser scanning were used to examine microbial colonization and surface erosion, while bacterial community abundance and composition were assessed through culture plate counting and 16S rRNA gene amplicon sequencing. SEM revealed significant surface erosion on PHBV, indicative of microbial degradation, while PLA exhibited minor and irregular erosion. Culture-based quantification showed higher bacterial colonization on PHBV compared to PLA, suggesting that PHBV provides a more favourable surface for bacterial attachment Amplicon sequencing of the 16S rRNA gene revealed high bacterial diversity, with 17,781 operational taxonomic units across all samples. Proteobacteria, Bacteroidota, and Planctomycetota were the dominant phyla, with the Shannon index consistently exceeding 8, corroborating the bacterial diversity across all materials. Temporal shifts in bacterial community composition were significant, with exposure time explaining 29.8 % of the variation, suggesting biofilm succession as a key factor shaping microbial assemblages. While polymer type had a limited impact on bacterial composition, PHBV biofilms exhibited greater bacterial abundance and diversity compared to PLA. This study highlights PHBV's role in shaping biofilms and its relevance in assessing biodegradable plastics in marine environments. Understanding microbial interactions with bioplastics is crucial for evaluating their environmental impact and degradation dynamics.
Collapse
Affiliation(s)
- Anna Marín
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Patricia Feijóo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Belén Carbonetto
- Microomics Systems S.L., Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Sant Quintí, 77-79, Horta-Guinardó, Barcelona 08041, Spain
| | - Pedro González-Torres
- Microomics Systems S.L., Institut de Recerca - Hospital de la Santa Creu i Sant Pau, Sant Quintí, 77-79, Horta-Guinardó, Barcelona 08041, Spain
| | - José Tena-Medialdea
- Institute of Environment and Marine Science Research, Universidad Católica de Valencia (IMEDMAR-UCV), Av. del Port, 15, Calpe 03710, Spain
| | - José R García-March
- Institute of Environment and Marine Science Research, Universidad Católica de Valencia (IMEDMAR-UCV), Av. del Port, 15, Calpe 03710, Spain
| | - José Gámez-Pérez
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain
| | - Luis Cabedo
- Polymers and Advanced Materials Group (PIMA), Universitat Jaume I (UJI), Av. de Vicent Sos Baynat s/n, Castelló de la Plana, Castelló 12071, Spain.
| |
Collapse
|
2
|
Babkiewicz E, Nowakowska J, Zebrowski ML, Kunijappan S, Jarosińska K, Maciaszek R, Zebrowski J, Jurek K, Maszczyk P. Microplastic Passage through the Fish and Crayfish Digestive Tract Alters Particle Surface Properties. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:5693-5703. [PMID: 40085149 PMCID: PMC11948475 DOI: 10.1021/acs.est.4c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 03/04/2025] [Accepted: 03/04/2025] [Indexed: 03/16/2025]
Abstract
Most studies on the effects of organisms on microplastic characteristics have focused on microorganisms, while the impact of animal feeding behavior, particularly in aquatic species like fish and decapod crustaceans, has been less explored. This study examines how polyethylene spherical microplastics (275 μm in diameter) passing through the digestive tracts of crucian carp (Carassius carassius) and Australian crayfish (Cherax quadricarinatus) affect surface properties, particle size, and bacterial colonization. The species were fed diets with or without microplastics. The particles underwent two rounds of passage through the digestive tracts and were then exposed to known bacterial densities. Surface damage, size, and biofilm coverage were analyzed using scanning electron microscopy, while alterations in surface chemical composition were assessed through Fourier transform infrared spectroscopy with attenuated total reflectance, and the formation and penetration of nanoplastics in gut tissues and glands were determined using Py-GC/MS. Results show that the passage significantly altered surface properties and reduced microplastic size, without affecting chemical composition or nanoplastic penetration into tissues. These changes promoted bacterial colonization compared to controls. The findings suggest that animal feeding activity may play an important role in the mechanical fragmentation of microplastics in aquatic environments, potentially leading to their faster degradation.
Collapse
Affiliation(s)
- Ewa Babkiewicz
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
- Biological
and Chemical Research Centre, University
of Warsaw, Warsaw 02-089, Poland
| | - Julita Nowakowska
- Imaging
Laboratory, Faculty of Biology, University
of Warsaw, Warsaw 00-927, Poland
| | - Marcin L. Zebrowski
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Selvaraj Kunijappan
- Department
of Biotechnology, Kalasalingam Academy of
Research and Education, Krishnankoil 626126, India
| | - Katarzyna Jarosińska
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| | - Rafał Maciaszek
- Warsaw
University of Life Sciences, Institute of
Animal Science, Department of Animal Genetics and Conservation, Warsaw 02-787, Poland
| | - Jacek Zebrowski
- Institute
of Biotechnology, College of Natural Sciences, University of Rzeszow, Rzeszow 35-310, Poland
| | - Krzysztof Jurek
- Faculty
of Geology, Geophysics and Environmental
Protection at the AGH University of Krakow, Kraków 30-059, Poland
| | - Piotr Maszczyk
- Department
of Hydrobiology, Institute of Ecology, Faculty of Biology, University of Warsaw, Warsaw 00-927, Poland
| |
Collapse
|
3
|
Tran TT, Stenger KS, Strømmen M, Bezuidenhout CC, Wikmark OG. Microplastic Categories Distinctively Impact Wastewater Bacterial Taxonomic Composition and Antimicrobial Resistance Genes. Microorganisms 2025; 13:260. [PMID: 40005627 PMCID: PMC11857732 DOI: 10.3390/microorganisms13020260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 02/27/2025] Open
Abstract
Wastewater treatment plants (WWTPs) may serve as hotspots for pathogens and promote antimicrobial resistance (AMR). Plastic debris in wastewater could further contribute to AMR dissemination. The aim of this study was to investigate the impact of various microplastic types on bacterial communities and AMR gene abundance in wastewater that were obtained from two WWTPs, one in Tromsø, Norway, and the other one in Potchefstroom, South Africa. The microcosm experiments were designed as follows: Five manufactured microplastic pellet types were used for testing, and two rock aggregate types were used as controls. In addition, each material type was subjected to artificial aging treatments using either ultra-violet light or hydrogen peroxide. Each material was incubated in flasks containing inlet/outlet wastewater obtained from these two WWTPs. Nucleic acids were extracted after a one-week incubation period. The detection of the blaFOXand blaMOX genes was performed using quantitative PCR. Extracted DNA was sequenced using a MinION device. Non-metric multi-dimensional scaling plot on full-length 16S sequencing data at the species level showed that samples were clustered into distinct material groups, which were in line with the ANOSIM test. The Indicator Species Analysis showed a strong association between many Acinetobacter species with the plastic group than the rock group. Aging treatment using hydrogen peroxide showed some effects on microbial composition in the outlet wastewater. The abundance of blaFOX and blaMOX genes in the Norwegian wastewater outlet were generally lower compared to those in the inlet, though the results were contrary in South African wastewater samples. The relative abundance of AMR genes seemed to be increased on several plastic types (PET, PE, and PLA) but decreased on PVC-A. WWTP treatments in this study did not effectively reduce the abundance of AMR genes. An in-depth understanding the role of specific microplastic type on bacterial communities and AMR profiles is, therefore, needed to combat AMR threat.
Collapse
Affiliation(s)
- Tam Thanh Tran
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838 Bergen, Norway; (M.S.); (O.-G.W.)
| | - Kabelo Stephans Stenger
- Unit for Environmental Sciences and Management–Microbiology, North-West University, Potchefstroom 2520, South Africa; (K.S.S.); (C.C.B.)
| | - Marte Strømmen
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838 Bergen, Norway; (M.S.); (O.-G.W.)
| | - Cornelius Carlos Bezuidenhout
- Unit for Environmental Sciences and Management–Microbiology, North-West University, Potchefstroom 2520, South Africa; (K.S.S.); (C.C.B.)
| | - Odd-Gunnar Wikmark
- Norwegian Research Centre AS (NORCE), Nygårdstangen, 5838 Bergen, Norway; (M.S.); (O.-G.W.)
- Unit for Environmental Sciences and Management–Microbiology, North-West University, Potchefstroom 2520, South Africa; (K.S.S.); (C.C.B.)
| |
Collapse
|
4
|
De Jesus R, Iqbal S, Mundra S, AlKendi R. Heterogenous bioluminescence patterns, cell viability, and biofilm formation of Photobacterium leiognathi strains exposed to ground microplastics. FRONTIERS IN TOXICOLOGY 2024; 6:1479549. [PMID: 39665083 PMCID: PMC11631867 DOI: 10.3389/ftox.2024.1479549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/30/2024] [Indexed: 12/13/2024] Open
Abstract
Microplastics (MPs) have been detected in various aquatic environments and negatively affect organisms, including marine luminous bacteria. This study investigated the differences in bioluminescence patterns, cell viability, and biofilm formation of Photobacterium leiognathi strains (LB01 and LB09) when exposed to various concentrations of ground microplastics (GMPs; 0.25%, 0.50%, 1%, or 2% [w/v] per mL) at 22°C or 30°C for 3.1 days (75 h) and 7 days. The strains exhibited heterogenous responses, including variable bioluminescence patterns, cell viability, and biofilm formation, due to the GMPs having effects such as hormesis and bioluminescence quenching. Moreover, the bioluminescence and cell viability differed between the two strains, possibly involving distinct cellular mechanisms, suggesting that GMPs affect factors that influence quorum sensing. Furthermore, the biofilm formation of LB01 and LB09 was observed following exposure to GMPs. Both strains showed increased biofilm formation at higher GMP concentrations (1% and 2%) after 3.1 days at 30°C and 22°C. However, in the 7-day experiment, LB01 significantly (p < 0.05) increased biofilms at 22°C, while LB09 significantly (p < 0.05) produced biofilms at 30°C. These findings highlight the strain-specific responses of Phb. leiognathi to MP pollutants. Therefore, this study underscores the importance of evaluating MPs as environmental stressors on marine microorganisms and their role in the ecophysiological repercussions of plastic pollution in aquatic environments.
Collapse
Affiliation(s)
- Rener De Jesus
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sameera Iqbal
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Sunil Mundra
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
- Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Ruwaya AlKendi
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
5
|
Huang Y, Hu T, Lin B, Ke Y, Li J, Ma J. Microplastics-biofilm interactions in biofilm-based wastewater treatment processes: A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124836. [PMID: 39216664 DOI: 10.1016/j.envpol.2024.124836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Microplastics, pervasive contaminants from plastic, present significant challenges to wastewater treatment processes. This review critically examines the interactions between microplastics and biofilm-based treatment technologies, specifically focusing on the concepts of "biofilm on microplastics" and "microplastics in biofilm". It discusses the implications of these interactions in contaminant removal and process performance. Advanced characterization techniques, including morphological characterization, chemical composition analysis, and bio-information analysis, are assessed to elucidate the complex interplay between microplastics and biofilms within biofilters, biological aerated filters (BAFs), rotating biological contactors (RBCs), and moving bed biofilm reactors (MBBRs). This review synthesizes current research findings, highlighting that microplastics can either hinder or enhance the treatment processes, contingent on their concentration, physicochemical properties, and the specific biofilm technology employed. The insights gained from this review are essential for developing strategies to mitigate the adverse effects of microplastics and for optimizing the design and operation of wastewater treatment.
Collapse
Affiliation(s)
- Yaning Huang
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Tanqiu Hu
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Bincheng Lin
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Youqing Ke
- China Construction Eighth Engineering Division. Corp. Ltd., Guangzhou, 510663, China
| | - Jibin Li
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | - Jinxing Ma
- Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Key Laboratory for City Cluster Environmental Safety and Green Development of the Ministry of Education, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Wang Q, Zheng G, Ni L, Wang H, Li W, Guo P, Wang Y, Zheng D, Wu J, Zhang D. Colonization characteristics and dynamic transition of archaea communities on polyethylene and polypropylene microplastics in the sediments of mangrove ecosystems. JOURNAL OF HAZARDOUS MATERIALS 2024; 471:134343. [PMID: 38640671 DOI: 10.1016/j.jhazmat.2024.134343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 02/28/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
Microplastics are a growing concern in mangrove ecosystems; however, their effects on archaeal communities and related ecological processes remain unclear. We conducted in situ biofilm-enrichment experiments to investigate the ecological influence of polyethylene (PE) and polypropylene microplastics on archaeal communities in the sediments of mangrove ecosystems. The archaeal community present on microplastics was distinct from that of the surrounding sediments at an early stage but became increasingly similar over time. Bathyarchaeota, Thaumarchaeota, Euryarchaeota, and Asgardaeota were the most abundant phyla. Methanolobus, an archaeal biomarker, was enriched in PE biofilms, and significantly controlled by homogeneous selection in the plastisphere, indicating an increased potential risk of methane emission. The dominant archaeal assembly process in the sediments was deterministic (58.85%-70.47%), while that of the PE biofilm changed from stochastic to deterministic during the experiment. The network of PE plastispheres showed less complexity and competitive links, and higher modularity and stability than that of sediments. Functional prediction showed an increase in aerobic ammonia oxidation during the experiment, whereas methanogenesis and chemoheterotrophy were significantly higher in the plastisphere. This study provides novel insights into the impact of microplastic pollution on archaeal communities and their mediating ecological functions in mangrove ecosystems.
Collapse
Affiliation(s)
- Qiong Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China; Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Gang Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Xianghu Laboratory, Hangzhou 311231, Zhejiang, China
| | - Lingfang Ni
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Heng Wang
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316021, Zhejiang, China
| | - Weiye Li
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Peng Guo
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Yi Wang
- Institute of Agricultural Products Processing and Nuclear Agriculture Technology Research, Hubei Academy of Agricultural Sciences, Wuhan 430064, Hubei, China
| | - Daoqiong Zheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China
| | - Jiaping Wu
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Dongdong Zhang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China; Donghai Laboratory, Zhoushan 316021, Zhejiang, China; Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
7
|
Bydalek F, Webster G, Barden R, Weightman AJ, Kasprzyk-Hordern B, Wenk J. Microplastic biofilm, associated pathogen and antimicrobial resistance dynamics through a wastewater treatment process incorporating a constructed wetland. WATER RESEARCH 2023; 235:119936. [PMID: 37028211 DOI: 10.1016/j.watres.2023.119936] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/05/2023] [Accepted: 04/01/2023] [Indexed: 06/19/2023]
Abstract
Microplastics in wastewater are colonized by biofilms containing pathogens and antimicrobial resistance (AMR) genes that can be exported into receiving water bodies. This study investigated establishment and changes in microplastic-associated biofilm and AMR during a conventional full-scale 2100 population equivalent wastewater treatment process combined with a free water surface polishing constructed wetland. Sequential microplastic colonization experiments were conducted at different stages of the wastewater treatment process, including in raw sewage, treated effluent and the constructed wetland. Two scenarios were tested in which the constructed wetland served as either (i) a polishing step or (ii) as primary recipient of sewage inoculated microplastics. Bacterial 16S rRNA gene sequencing was carried out for qualitative bacterial community analysis. qPCR was applied for quantitative analysis of AMR genes (sul1, ermB, tetW, intiI1), bacterial biomass (16S rRNA) and a human fecal marker (HF183). Microbial diversity on microplastics increased with incubation time. The initial sewage-derived biofilm composition changed more significantly in the wastewater effluent compared to the constructed wetland. Pathogen and AMR load decreased by up to two orders of magnitude after coupled conventional and constructed wetland treatment, while less impact was observed when sewage-inoculated microplastic material was directly transferred into the constructed wetland. Aeromonas, Klebsiella, and Streptococcus were key pathogenic genera correlated with AMR in microplastic-associated biofilms. Despite decreasing trends on human pathogens and AMR load along the treatment process, microplastic-associated biofilms were a considerable potential hotspot for AMR (intI1 gene) and accommodated Cyanobacteria and fish pathogens.
Collapse
Affiliation(s)
- Franciszek Bydalek
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; GW4 NERC CDT in Freshwater Biosciences and Sustainability, Cardiff University, Cardiff CF10 3AX, UK; Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Gordon Webster
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | | | - Andrew J Weightman
- Microbiomes, Microbes and Informatics Group, Organisms and Environment Division, School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Barbara Kasprzyk-Hordern
- Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK; Department of Chemistry, University of Bath, Bath BA2 7AY, UK
| | - Jannis Wenk
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath BA2 7AY, UK; Water Innovation and Research Centre (WIRC), University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
8
|
Liu SS, Jia YW, Guo XY, Zhao JL, Gao Y, Sweetman AJ, Ying GG, Xu L, Tu C, Chen CE. Insights into the release of triclosan from microplastics in aquatic environment assessed with diffusive gradient in thin-films. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 882:163601. [PMID: 37087021 DOI: 10.1016/j.scitotenv.2023.163601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/08/2023] [Accepted: 04/16/2023] [Indexed: 05/03/2023]
Abstract
Organic chemicals associated with microplastics (MPs) can be released and thus pose potential risks during weathering processes. However, the thermodynamics and kinetics of their release processes still need to be better understood. Herein, the adsorption and desorption kinetics of triclosan on polystyrene (PS) and polyvinyl chloride (PVC) were investigated by using both batch experiments and diffusive gradients in thin-films (DGT) technique. The pseudo-second-order model fitted the data best, implying that both intraparticle diffusion and external liquid film diffusion influence the adsorption and desorption processes. DGT continuously accumulated triclosan from MP suspensions but slower than theoretical values, indicating some restrictions to desorption. The DGT-induced fluxes in Soils/Sediment (DIFS) model, employed to interpret DGT data, gave distribution coefficients for labile species (Kdl) of 5000 mL g-1 (PS) and 1000 mL g-1 (PVC) and the corresponding response times (Tc) were 10 s and 1000 s, respectively. Higher Kdl but smaller Tc for PS than PVC showed that more triclosan adsorbed on PS could be rapidly released, while there were some kinetic limitations for triclosan on PVC. A novel finding was that pH and ionic strength individually and interactively affected the supply of triclosan to DGT. This is the first study to quantify interactions of organics with MPs by using DGT, aiding our understanding of MPs' adsorption/desorption behavior in the aquatic environment.
Collapse
Affiliation(s)
- Si-Si Liu
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yu-Wei Jia
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China; Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Xiao-Yuan Guo
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, 999078, Macau
| | - Jian-Liang Zhao
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Yue Gao
- Analytical, Environmental and Geochemistry (AMGC), Vrije Universiteit Brussel (VUB), Brussel, Belgium
| | - Andy J Sweetman
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Guang-Guo Ying
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China
| | - Li Xu
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chang-Er Chen
- Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
9
|
Rozman U, Filker S, Kalčíková G. Monitoring of biofilm development and physico-chemical changes of floating microplastics at the air-water interface. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121157. [PMID: 36716948 DOI: 10.1016/j.envpol.2023.121157] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/03/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
Microplastics in the aquatic environment serve as a habitat for microbial life, on which they can form biofilms. However, how the development of the biofilm alters the properties of floating microplastics that are at the air-water interface and, therefore, not fully submerged, is not well understood. In this context, an aging experiment was conducted to monitor biofilm formation and changes in physico-chemical properties of low-density polyethylene (floating) microplastics over time. The growth of the biofilm followed the typical bacterial/biofilm growth phases and reached about 30% of the total mass of the microplastics, while the concentration of extracellular polymeric substances within the biofilm remained stable. Presence of chlorophyll a and urease activity indicated presence of photosynthetic microrganisms within the biofilm which was also confirmed by analysis of the biofilm composition. Chemical characterization by FTIR showed the formation of additional functional groups attributed to the formed biofilm, and SEM imaging showed cracks on the surface of the aged microplastics, indicating incipient degradation of the polyethylene. Moreover, the adsorption capacity of the aged particles for metals (Pb(II)) was 52% higher compared to the pristine ones. Aging increased the density and size of the particles; however, it did not lead to the submersion of the aged particles even after 12 weeks of aging, suggesting that additional environmental processes may influence the transport of microplastics from the air-water interface into the water body.
Collapse
Affiliation(s)
- Ula Rozman
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia
| | - Sabine Filker
- RPTU Kaiserslautern-Landau, Faculty of Biology, Department of Molecular Ecology, Erwin-Schroedinger-Str. 14, 67663 Kaiserslautern, Germany
| | - Gabriela Kalčíková
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 113 Večna pot, SI-1000 Ljubljana, Slovenia.
| |
Collapse
|
10
|
Wang S, Shi Y, Wang H, Li Z, Zhao M. Succession of Bacteria Attached to Microplastics After Transferring from a Mariculture Area to a Seagrass Meadow. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 110:69. [PMID: 36943489 DOI: 10.1007/s00128-023-03700-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Microplastics have been recognized as a novel niche for bacteria. However, studies have characterized the plastisphere microbial community in situ without exploring the microbial changes after transferring to other ecosystems. Here we focus on bacterial succession on typical microplastics (polypropylene and expanded polystyrene) and natural substrates (wood) after transferring from mariculture area to seagrass meadows system. Using high-throughput sequencing of 16 S rRNA, we found that alpha diversity significantly reduced after transferring and microplastics especially PP had significant separations on PCoA plots at different succession stages. The abundance and metabolic pathways of potential pathogen-associated microorganisms are significantly decreased. The relative abundance of xenobiotics biodegradation pathways was significantly lower and of energy metabolism pathways was significantly higher by comparing before and after transferring. Main environmental factors affecting microbial communities changed from nutrient characteristics to basic physicochemical properties after transferring. The succession times of the microbial communities of the three materials were different.
Collapse
Affiliation(s)
- Shuai Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Yunfeng Shi
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Hui Wang
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Zhaoyang Li
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China
| | - Muqiu Zhao
- Bay Innovation Institute/Modern Marine Ranching Engineering Research Center of Hainan/Key Laboratory of Utilization and Conservation for Tropical Marine Bioresources of Ministry of Education/Key Laboratory for Coastal Marine Eco-Environment Process and Carbon Sink of Hainan, Hainan Tropical Ocean University, Sanya, 572022, China.
| |
Collapse
|
11
|
Pořízka P, Brunnbauer L, Porkert M, Rozman U, Marolt G, Holub D, Kizovský M, Benešová M, Samek O, Limbeck A, Kaiser J, Kalčíková G. Laser-based techniques: Novel tools for the identification and characterization of aged microplastics with developed biofilm. CHEMOSPHERE 2023; 313:137373. [PMID: 36435319 DOI: 10.1016/j.chemosphere.2022.137373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 06/16/2023]
Abstract
Microplastics found in the environment are often covered with a biofilm, which makes their analysis difficult. Therefore, the biofilm is usually removed before analysis, which may affect the microplastic particles or lead to their loss during the procedure. In this work, we used laser-based analytical techniques and evaluated their performance in detecting, characterizing, and classifying pristine and aged microplastics with a developed biofilm. Five types of microplastics from different polymers were selected (polyamide, polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) and aged under controlled conditions in freshwater and wastewater. The development of biofilm and the changes in the properties of the microplastic were evaluated. The pristine and aged microplastics were characterized by standard methods (e.g., optical and scanning electron microscopy, and Raman spectroscopy), and then laser-induced breakdown spectroscopy (LIBS) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) were used. The results show that LIBS could identify different types of plastics regardless of the ageing and major biotic elements of the biofilm layer. LA-ICP-MS showed a high sensitivity to metals, which can be used as markers for various plastics. In addition, LA-ICP-MS can be employed in studies to monitor the adsorption and desorption (leaching) of metals during the ageing of microplastics. The use of these laser-based analytical techniques was found to be beneficial in the study of environmentally relevant microplastics.
Collapse
Affiliation(s)
- Pavel Pořízka
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669, Brno, Czech Republic
| | - Lukas Brunnbauer
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I(2)AC, 1060, Vienna, Austria
| | - Michaela Porkert
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I(2)AC, 1060, Vienna, Austria
| | - Ula Rozman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000, Ljubljana, Slovenia
| | - Gregor Marolt
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000, Ljubljana, Slovenia
| | - Daniel Holub
- Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669, Brno, Czech Republic
| | - Martin Kizovský
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Markéta Benešová
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Ota Samek
- Institute of Scientific Instruments, Czech Academy of Sciences, Královopolská 147, 612 64, Brno, Czech Republic
| | - Andreas Limbeck
- TU Wien, Institute of Chemical Technologies and Analytics, Getreidemarkt 9/164-I(2)AC, 1060, Vienna, Austria
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Purkyňova 656/123, 61200, Brno, Czech Republic; Faculty of Mechanical Engineering, Brno University of Technology, Technická 2896/2, 61669, Brno, Czech Republic
| | - Gabriela Kalčíková
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna Pot 113, 1000, Ljubljana, Slovenia.
| |
Collapse
|
12
|
Zhou Q, Tu C, Liu Y, Li Y, Zhang H, Vogts A, Plewe S, Pan X, Luo Y, Waniek JJ. Biofilm enhances the copper (II) adsorption on microplastic surfaces in coastal seawater: Simultaneous evidence from visualization and quantification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158217. [PMID: 36028022 DOI: 10.1016/j.scitotenv.2022.158217] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 07/29/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) exposed to the urban coastal seawater could form biofilms, which facilitate the adsorption and transportation of hazardous contaminants. However, influence of biofilms on the metal adsorption of MPs, especially the co-existence of biofilm and metals on MPs, is still less known. In this study, the adsorption of copper (Cu) on biofilm-coated MPs (BMPs) was visually analyzed and quantified. The results of scanning electron microscopy in combination with energy dispersive X-ray showed that biofilm and metals co-occurred on MPs in seawater. The nanoscale secondary ion mass spectrometry images further exhibited that the distribution of Cu, chlorine (Cl) and biofilm on MP surfaces was highly consistent. Moreover, the adsorption of Cu(II) on BMPs was enhanced as quantified by inductively coupled plasma-mass spectrometer. Furthermore, different species on BMPs with and without Cu were identified, and their potential functions of metal or Cl metabolism were predicted based on KEGG pathway database. Overall, for the first time, this study provides visual and quantified evidences for the enhancement of Cu(II) adsorption on BMPs based on co-localization, and it may shed a light on the development of methodologies for investigating the interaction among MPs, biofilms and pollutants in marine environment.
Collapse
Affiliation(s)
- Qian Zhou
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Chen Tu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Ying Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Yuan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Haibo Zhang
- Zhejiang Province Key Laboratory of Soil Contamination Bioremediation, School of Environment and Resources, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China
| | - Angela Vogts
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| | - Sascha Plewe
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yongming Luo
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| | - Joanna J Waniek
- Leibniz Institute for Baltic Sea Research, Rostock 18119, Germany
| |
Collapse
|
13
|
Rosato A, Barone M, Negroni A, Brigidi P, Fava F, Biagi E, Candela M, Zanaroli G. Bacterial colonization dynamics of different microplastic types in an anoxic salt marsh sediment and impact of adsorbed polychlorinated biphenyls on the plastisphere. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120411. [PMID: 36240963 DOI: 10.1016/j.envpol.2022.120411] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 09/14/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Plastic debris dispersed into the environment provide a substrate for microbial colonization, constituting a new human-made ecosystem called "plastisphere", and altering the microbial species distribution in aquatic, coastal and benthic ecosystems. The study aims at exploring the interaction among microplastics (MPs) made of different polymers, a persistent organic contaminant (polychlorinated biphenyls, PCBs), and the environmental microbial communities, in an anoxic marine sediment. Plastic pellets were incubated in the field in a salt marsh anoxic sediment, to observe the stages of plastisphere formation, by quantitative PCR and 16S rRNA gene sequencing, and PCB dechlorination activity on the MPs surface. Microbes from the sediment rapidly colonized the different microplastics types, with PVC recruiting a peculiar community enriched in sulfate-reducing bacteria. The composition of the plastisphere varied along the 1-year incubation possibly in response either to warmer temperatures in spring-summer or to microhabitat's changes due to the progressive plastic surface weathering. Even if PCB contaminated MPs were able to recruit potentially dehalogenating taxa, actual dechlorination was not detectable after 1 year. This suggests that the concentration of potentially dehalorespiring bacteria in the natural environment could be too low for the onset of the dechlorination process on MP-sorbed contaminants. Our study, which is among very few available longitudinally exploring the plastisphere composition in an anoxic sediment context, is the first exploring the fate and possible biodegradation of persistent organic pollutants sorbed on MPs reaching the seafloor.
Collapse
Affiliation(s)
- Antonella Rosato
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Monica Barone
- Dept. of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy; Dept. of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Andrea Negroni
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Patrizia Brigidi
- Dept. of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, Via Massarenti 9, 40138, Bologna, Italy
| | - Fabio Fava
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Elena Biagi
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy
| | - Marco Candela
- Dept. of Pharmacy and Biotechnology (FaBit), Alma Mater Studiorum University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Giulio Zanaroli
- Dept. of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum University of Bologna, Via Terracini 28, 40131, Bologna, Italy.
| |
Collapse
|
14
|
Nguyen HT, Choi W, Kim EJ, Cho K. Microbial community niches on microplastics and prioritized environmental factors under various urban riverine conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157781. [PMID: 35926609 DOI: 10.1016/j.scitotenv.2022.157781] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide habitats to microorganisms in aquatic environments; distinct microbial niches have recently been elucidated. However, there is little known about the microbial communities on MPs under urban riverine conditions, in which environmental factors fluctuate. Therefore, this study investigated MP biofilm communities under various urban riverine conditions (i.e., organic content, salinity, and dissolved oxygen (DO) concentration) and evaluated the prioritized factors affecting plastisphere communities. Nine biofilm-forming reactors were operated under various environmental conditions. Under all testing conditions, biofilms grew on MPs with decreasing bacterial diversity. Interestingly, biofilm morphology and bacterial populations were driven by the environmental parameters. We found that plastisphere community structures were grouped according to the environmental conditions; organic content in the water was the most significant factor determining MP biofilm communities, followed by salinity and DO concentration. The principal plastisphere communities were Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes phyla. In-depth analyses of plastisphere communities revealed that biofilm-forming and plastic-degrading bacteria were the predominant microbes. In addition, potential pathogens were majorly discovered in the riverine waters with high organic content. Our results suggest that distinct plastisphere communities coexist with MP particles under certain riverine water conditions, implying that the varied MP biofilm communities may affect urban riverine ecology in a variety of ways.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun-Ju Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
15
|
Liu S, Huang Y, Luo D, Wang X, Wang Z, Ji X, Chen Z, Dahlgren RA, Zhang M, Shang X. Integrated effects of polymer type, size and shape on the sinking dynamics of biofouled microplastics. WATER RESEARCH 2022; 220:118656. [PMID: 35635917 DOI: 10.1016/j.watres.2022.118656] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/28/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
Sinking of microplastics (MPs) after biofouling is considered an important mechanisms responsible for the downward transport/sedimentation of MPs in the ocean and freshwaters. Previous studies demonstrated MP sinking caused by an increase in the composite density of MPs after biofouling, while MPs with smaller size or shapes with higher surface area to volume ratios (SA:V), such as films, are speculated to sink faster. In this study, we designed an in situ microcosm to simulate the ambient environmental conditions experienced by floating MPs to elucidate the biofouling and sinking of polyethylene (PE), polypropylene (PP), and expanded-polystyrene (EPS) MPs of various sizes and shapes. Our results showed smaller PE and PP MP granules sank faster than large ones. Even EPS granules of 100 μm diameter, having a much lower density (0.02 mg/mm3) than water, started to sink after 2 weeks of biofouling. Moreover, PE film and fiber MPs with higher SA:V did not sink faster than PE MP granules of the same mass, implying that mechanisms other than SA:V, such as fouling contact area and drag coefficient, play a role in the regulation of biofouling and sinking of MPs.
Collapse
Affiliation(s)
- Siguang Liu
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Fujian Institute of Oceanography, Xiamen 361013, China
| | - Yifeng Huang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361102, China
| | - Dehua Luo
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiao Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhenfeng Wang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Xiaoliang Ji
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Zheng Chen
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China
| | - Randy A Dahlgren
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Minghua Zhang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China; Department of Land, Air and Water Resources, University of California Davis, CA 95616, USA
| | - Xu Shang
- Key Laboratory of Watershed Sciences and Health of Zhejiang Province, School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
16
|
Zhurina MV, Bogdanov KI, Gannesen AV, Mart’yanov SV, Plakunov VK. Microplastics as a New Ecological Niche For Multispecies Microbial Biofilms within the Plastisphere. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722020126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|